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Abstract

New calculus of the liquid-gas phase transition is developed for the strange
hadronic matter in the relativistic mean-�eld model. Against the familiar geomet-
rical construction of phase equilibrium we investigate canonical and micro-canonical
ensembles. For the former the pressure and the chemical potentials are determined
from de�nite values of baryon density, strangeness and temperature. We recover
the convex minimized Helmholtz energy. Due to the �eld-dependent meson-nucleon
coupling constants, the section of binodal surface has no critical point. The appear-
ance of the retrograde condensation is also proved. For micro-canonical ensemble
the temperature and the chemical potentials are determined from de�nite values
of baryon density, strangeness and pressure. We recover the concave maximized
entropy and the minimized Gibbs energy. The resultant caloric and boiling curves
are analyzed. Because the derivatives of chemical potentials have discontinuities at
transition points, we conclude against the preceding works that the phase transition
is the �rst order.

1 Introduction

The author has recently developed a new calculus [1,2] of the liquid-gas phase transition

[3-6] in asymmetric nuclear matter against the geometrical construction used widely in

the literature [7-11]. The asymmetric nuclear matter is a binary system that has two

independent chemical potentials of proton and neutron. According to the Gibbs condition

on phase equilibrium, both the chemical potentials in liquid and gaseous phases are

equilibrated. In the geometrical construction the chemical potentials are determined for

de�nite values of temperature, pressure and the asymmetry of nuclear matter. To the

contrary, our calculus is applicable to canonical [1] and micro-canonical ensembles [2] of

nuclear matter.

The strange hadronic matter (SHM) [12-18] composed of nucleons and hyperons is

another binary system in nuclear physics. It has two independent chemical potentials

[15], the baryon and strangeness chemical potentials. The liquid-gas phase transition in
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SHM has been also investigated [19-22] in terms of the geometrical construction. To the

contrary, in the present paper we apply the calculus in Refs. [1] and [2] to the liquid-

gas phase transition in canonical and micro-canonical ensembles of SHM. We are based

on the relativistic mean-�eld (RMF) model of SHM developed in Ref. [18]. The model

has �eld-dependent meson-baryon coupling constants from a constituent quark picture of

baryons. The hidden strange mesons �� and � [12] are taken into account.

2 Maxwell construction of phase transition

At �nite temperature T the thermodynamic potential per volume ~
 � 
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where M�
B = m

�
BMB and E�kB = (k

2 +M�
B
2)
1=2 are the e¤ective mass and the energy of

each baryon in SHM. In the present paper we set the Boltzmann constant as a unit. The

spin-isospin degeneracy factor is de�ned as 
B = f4; 2; 6; 4g for B = fN;�;�;�g. The
�B is given by the chemical potential �B and the vector potential VB of each baryon as

�B = �B � VB: (2)

Because of the chemical equilibrium condition [15]

�� = �� =
�N + ��

2
; (3)

we have two independent chemical potentials �N and �� or the strangeness chemical

potential [15] �S = �N � ��.
Then, the e¤ective masses m�

N and m
�
� and the vector potential VN and V� are deter-

mined from extremizing the thermodynamic potential ~
. The resultant equations are
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where

CN�! = V� �
g���!
g�NN!

VN : (8)

The e¤ective masses and the vector potentials of � and � are expressed [18] in terms

of those of N and �. The mean-�elds and the e¤ective coupling constants are also

expressed [18] in terms of them. In the present paper we use the same meson-baryon

coupling constants as EZM-P in Ref. [23].

The baryon and scalar densities in Eqs. (4)-(7) are de�ned by

� bB = 
B

1Z
0

d3k
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B; vB;�B; T )� �nkB (m�
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where the Fermi-Dirac distribution functions of each baryon and antibaryon are

nkB (m
�
B; vB;�B; T ) =

�
1 + exp

�
E�kB � �B

T

���1
; (11)

�nkB (m
�
B; vB;�B; T ) =

�
1 + exp

�
E�kB + �B

T

���1
: (12)

In our calculations the Fermi integrals are performed using the adaptive automatic inte-

gration with 20-points Gaussian quadrature.

For the canonical ensemble of a constant temperature T , a given total baryon density

�T =
X

B=N;�;�;�

� bB (13)
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and a de�nite strangeness fraction

fS =
�b� + �b� + 2�b�

�T
; (14)

we have to solve the 6th-rank simultaneous nonlinear equations (4)-(7), (13) and (14) so

that the e¤ective masses m�
N and m

�
�, the vector potentials VN and V�, and the chemical

potentials �N and �� are determined selfconsistently. Using the results, the pressure is

calculated from
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The black curve in Fig. 1 shows an isotherm of T = 10MeV in the pressure-density plane

of fS = 0:5. It exhibits typical nature of van der Waals equation of state. The black curve

in Fig. 2 shows the corresponding Helmholtz energy per baryon F=A = G=A� P=�T as
a function of volume, where G=A = (

P
B �B�bB)=�T is the Gibbs energy per baryon. A

concave on the curve between ��1B = 5:74fm3 and 62:73fm3 marked by the red crosses is

a signal of liquid-gas phase transition. Because the Helmholtz energy must be convex,

the concave is not realized physically. Although the SHM is a binary system, we can

draw the common tangent depicted by the red line. Its inclination is the pressure P =

0:118MeV=fm3 in the phase transition, which is shown by the horizontal red line in Fig. 1.

The pressure is also determined from a crossing point on the black curve in Fig. 3, which

shows the Gibbs energy per baryon as a function of pressure. The Gibbs energy on the

crossing point is its equilibrated value in gaseous and liquid phases. To the contrary, the

chemical potentials �N and �� are not equilibrated in the Maxwell construction of phase

transition. As a matter of fact the black solid curves in Figs. 4 and 5, which show the

chemical potentials as functions of pressure, expose discontinuities marked by the vertical

red dotted lines, because the black dotted curves are the results in a region of the concave

on Helmholtz energy and so are not realized physically. We have �N = 919:5MeV and

�� = 1099:9MeV in gaseous phase but �N = 913:2MeV and �� = 1106:4MeV in liquid

phase. Consequently, the Gibbs condition on the chemical potentials in phase equilibrium

is not satis�ed. The black curves in Fig. 6 show the baryon fractions �bB=�T as functions

of the total baryon density. As the SHM becomes denser, the fraction of � decreases

while the fraction of � increases, although the total strangeness of SHM is constant. The

fraction of � is too low to be apparent in the �gure.

For the micro-canonical ensemble of a constant pressure P , a given total baryon den-

sity �T and a de�nite strangeness fraction fS, we have to solve the 7th-rank simultaneous

nonlinear equations (4)-(7) and (13)-(15) so that the e¤ective masses, the vector poten-

tials and the chemical potentials of nucleon and lambda, and the internal temperature of
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SHM are determined. The quantity characterizing the thermodynamic process under a

constant pressure is the enthalpy H:

~H = H=V = E + P; (16)

where the energy density is given by

E =
X

B=N;�;�;�
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B
1Z
0
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+
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2
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2 +
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2
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�� h��i

2 � 1
2
m2
� h�0i

2 : (17)

The entropy per volume ~S = S=V is calculated in terms of the Gibbs-Duhem relation

T ~S = ~H � ~G, where ~G = G=V =
P

B �B�bB is the Gibbs energy per volume.

The black curve in Fig. 7 shows the entropy per baryon S=A = ~S=�T as a function

of the enthalpy per baryon H=A = ~H=�T for P = 0:05MeV=fm3 and fS = 0:5. A dip

or a convex intruder is due to liquid-gas phase transition. Because the entropy should

be concave, the convex intruder is not realized physically. Although the SHM is a bi-

nary system, we can draw the common tangent depicted by the red line. Because of

@S=@H = 1=T we can determine the boiling temperature T = 7:92MeV of SHM liq-

uid from the inclination of the common tangent. The temperature is also determined

from a crossing point on the black curve in Fig. 8, which shows the Gibbs energy per

baryon G=A = ~G=�T as a function of temperature. The latent heat involved in the

Maxwell construction of phase transition is a di¤erence between the two enthalpies on

the red crosses in Fig. 7. The black curve in Fig. 9 shows the caloric curve, the in-

ternal temperature T of SHM as a function of the excitation energy per baryon E�=A,

which is obtained by subtracting the binding energy of cold (T = 0) SHM [18] from

E=�T . The dotted part is the spurious result in a region of the convex intruder on en-
tropy, and so is replaced by the horizontal red line of the boiling temperature. The black

solid curves in Figs. 10-12 show the entropy per baryon and the chemical potentials

�N and �� as functions of internal temperature of SHM. They expose the discontinu-

ities at T = 7:92MeV marked by the horizontal red dotted lines, because the black

dotted curves are the spurious results in a region of the convex intruder in Fig. 7. We

have �N = 922:2MeV and �� = 1102:1MeV in gaseous phase but �N = 915:1MeV and

�� = 1109:3MeV in liquid phase. Consequently, we see again that the chemical potentials

in the Maxwell construction of phase transition are not equilibrated.
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3 Gibbs construction of phase transition

As seen in Figs. 4 and 5 the common tangent prescription is not appropriate to the binary

nuclear system as SHM because the Gibbs condition on the two independent chemical

potentials is not satis�ed. So as to construct the physically reasonable liquid-gas phase

transition in the canonical ensemble of SHM, we have to calculate the following 11th-

rank simultaneous nonlinear equations. The four equations of them determine the vector

potentials and the e¤ective masses of nucleon and lambda in gaseous phase marked by

su¢ x g:
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It is noted again [18] that the mean-�elds are expressed in terms of the e¤ective masses

and the vector potentials.

Similarly, the equations for liquid phase (marked by su¢ x l) are

�
(l)
bN +

X
Y=�;�

 
g
(l)�
Y Y !

g
(l)�
NN!

�
g
(l)�
Y Y �

g
(l)�
���

g
(l)�
��!

g
(l)�
NN!

!
�
(l)
bY �

 
m!

g
(l)�
NN!

!2
V
(l)
N +

 
m�

g
(l)�
���

!2
g
(l)�
��!

g
(l)�
NN!

C
(l)
N�! = 0;

(22)

�
(l)
b� +

X
Y=�;�

g
(l)�
Y Y �

g
(l)�
���

�
(l)
bY �

 
m�

g
(l)�
���

!2
C
(l)
N�! = 0; (23)

6



K. Miyazaki

X
B=N;�;�

@m
(l)�
B

@m
(l)�
N

MB�
(l)
sB +

X
Y=�;�

@V
(l)
Y

@m
(l)�
N

�
(l)
bY +m

2
� h�il

@ h�il
@m

(l)�
N

+m2
�� h��il

@ h��il
@m

(l)�
N

+

 
m!

g
(l)�
NN!

!2
1

g
(l)�
NN!

@g
(l)�
NN!

@m
(l)�
N

�
V
(l)
N

�2
+

 
m�

g
(l)�
���

!2
1

g
(l)�
���

@g
(l)�
���

@m
(l)�
N

�
C
(l)
N�!

�2
+

 
m�

g
(l)�
���

!2
1

g
(l)�
NN!

 
@g

(l)�
��!

@m
(l)�
N

� g
(l)�
��!

g
(l)�
NN!

@g
(l)�
NN!

@m
(l)�
N

!
V
(l)
N C

(l)
N�! = 0; (24)

X
Y

@m
(l)�
Y

@m
(l)�
�

MY �
(l)
sY +

X
Y=�;�

@V
(l)
Y

@m
(l)�
�

�
(l)
bY +m

2
�� h��il

@ h��il
@m

(l)�
�

+

 
m�

g
(l)�
���

!2
1

g
(l)�
NN!

@g
(l)�
��!

@m
(l)�
�

V
(l)
N C

(l)
N�! +

 
m�

g
(l)�
���

!2
1

g
(l)�
���

@g
(l)�
���

@m
(l)�
�

�
C
(l)
N�!

�2
= 0:(25)

The other two equations determine the mixture of gas and liquid in the phase transition:
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where fg (0 � fg � 1) is the ratio of gas. The baryon density and the strangeness fraction
in gaseous and liquid phases are determined from Eqs. (13) and (14) using the following

densities of each baryon:
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The last equation imposes an equilibrium condition on pressures in gaseous and liquid
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Solving Eqs. (18)-(27) and (30) simultaneously, we have the e¤ective masses and the

vector potentials of nucleon and lambda in each of phases, the chemical potentials of

nucleon and lambda, and the ratio of gas (or liquid) in the phase transition. For numerical

calculations we have used the globally convergent Newton algorism in Ref. [24]. The trial

values for solutions are easily found from the corresponding results in the common tangent

method.

The numerical results for fS = 0:5 and T = 10MeV are shown by the blue curves in

Figs. 1-6. We can see that the Gibbs condition on pressure and chemical potentials re-

covers the convex minimized Helmholtz energy lying below the common tangent, because

the Gibbs condition in isothermal process is derived by minimizing the Helmholtz energy

through the fundamental thermodynamic equation dF = �SdT � PdV +
P

B �BdNB.

Consequently, the pressure in Fig. 1, which is the value of the right or left hand side of

Eq. (30), increases slowly in the phase transition from gas to liquid against the constant

pressure from the common tangent. Moreover, the region of phase transition between

�T = 0:0095fm�3 and 0:181fm�3 is wider than the one between �T = 0:016fm�3 and

0:174fm�3 from the common tangent. The Gibbs energy in Fig. 3 is also minimized as a

function pressure because of G=A = F=A+P=�T . The chemical potentials in Figs. 4 and

5 become the continuous functions of pressure, because their values move from the black

solid curves to the blue curves and vise versa at the blue dots as the pressure increases.

These are natural results from the proper calculus of phase transition. We can see in Fig.

6 that the Gibbs condition on phase equilibrium also a¤ects baryon fractions in phase

transition. The N and � become richer while � becomes poorer. The result is due to our

choice [23] of hyperon-hyperon interaction. Because we assume a weak �� attraction,

poorer � or richer � is favorable to the minimized Helmholtz energy. Figure 13 shows

the ratio of liquid fl = 1� fg and the strangeness fractions of gaseous and liquid phases
f
(g)
S and f (l)S in Eq. (27). Both the strangeness fractions become higher in the phase

transition from gas to liquid, although the gaseous phase has much higher strangeness

than the liquid phase.

Here we have to discuss the order of the phase transition. Because the black curve

and the blue dashed curve in Fig. 3 connect smoothly on the two blue dots, @G=@P has

no discontinuity. Reference [7] therefore certi�es that the liquid-gas phase transition in

a binary nuclear system is the second order. However, the argument is not consistent

with the Gibbs condition, to which each of the chemical potentials rather than the Gibbs

energy is relevant. We see in Figs. 4 and 5 that @�N=@P and @��=@P have discontinuities

on the blue dots or the transition points. It is therefore concluded against Ref. [7] that

the phase transition is the �rst order.

Next, we investigate the dependence of liquid-gas phase transition on the strangeness

fraction. Figure 14 shows the pressure-density isotherms of T = 10MeV for several values

of fS. The physically realized pressures in the phase transitions are the solid curves from

Eq. (30), while the dashed curves are the spurious results from Eq. (15). Although
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the dashed curve of fS = 1:2 does not behave as van der Waals equation of state, the

minimization of the Helmholtz energy still leads to the liquid-gas phase transition. Figure

15 shows the section of binodal surface at T = 10MeV. Between fS = 1:45 and fS = 1:505

there are upper limits on the baryon density, above which we �nd no solutions of the

simultaneous equations (18)-(27) and (30). Consequently, there is no critical point, on

which the liquid branch connects with the gas branch. The absence of critical point

was found �rst in Ref. [8] and was recovered in the recent works [1,11] for asymmetric

nuclear matter. It was due to the density-dependent [8] or the momentum-dependent [11]

e¤ective NN interaction. The �eld-dependent e¤ective meson-nucleon coupling constants

in Ref. [1] are also derived from the momentum-dependent coupling constants [25] and

lead to e¤ective density dependencies. The absence of critical point in SHM was found

�rst in Ref. [22] and has been recovered in the present work that uses the �eld-dependent

e¤ective meson-nucleon coupling constants too. The gas branch in the binodal surface

shows a backbend with a bending point at fS = 1:636, above which there is no SHM

liquid. Consequently, between fS = 1:505 and fS = 1:636 we can see the retrograde

condensation. For an example Fig. 16 shows the ratio of liquid as a function of pressure

for strangeness fraction fS = 1:57.

Next, we construct the physically reasonable liquid-gas phase transition in the micro-

canonical ensemble of SHM. For the purpose we have to solve Eqs. (18)-(27) under the

Gibbs condition on pressures in the equilibrated gaseous and liquid phases:

P =
1

6�2

X
B=N;�;�;�


B

1Z
0

dk
k4

E�kB

h
nkB

�
m
(g)�
B ; v

(g)
B ;�B; T

�
+ �nkB

�
m
(g)�
B ; v

(g)
B ;�B; T

�i
� 1

2
m2
� h�i

2
g +

1

2
m2
! h!0i

2
g �

1

2
m2
�� h��i

2
g +

1

2
m2
� h�0i

2
g : (31)

P =
1

6�2

X
B=N;�;�;�


B

1Z
0

dk
k4

E�kB

h
nkB

�
m
(l)�
B ; v

(l)
B ;�B; T

�
+ �nkB

�
m
(l)�
B ; v

(l)
B ;�B; T

�i
� 1

2
m2
� h�i

2
l +

1

2
m2
! h!0i

2
l �

1

2
m2
�� h��i

2
l +

1

2
m2
� h�0i

2
l : (32)

Solving these 12th-rank simultaneous nonlinear equations for a constant pressure P , we

have the e¤ective masses and the vector potentials of nucleon and lambda in each of

phases, the chemical potentials of nucleon and lambda, the ratio of gaseous (or liquid)

phase, and the internal temperature of SHM. The trial values for solutions are easily

found from the corresponding results in the common tangent prescription. Using the

results, the total energy density is given by

E = fg Eg + (1� fg) E l; (33)
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where the energy densities of gaseous and liquid phases in the phase transition are

Eg =
X

B=N;�;�;�


B

1Z
0

d3k

(2�)3
E
(g)�
kB

h
nkB

�
m
(g)�
B ; v

(g)
B ;�B; T

�
+ �nkB

�
m
(g)�
B ; v

(g)
B ;�B; T

�i
+

X
B=N;�;�;�

V
(g)
B �

(g)
bB +

1

2
m2
� h�i

2
g �

1

2
m2
! h!0i

2
g +

1

2
m2
�� h��i

2
g �

1

2
m2
� h�0i

2
g ; (34)

E l =
X

B=N;�;�;�


B

1Z
0

d3k

(2�)3
E
(l)�
kB

h
nkB

�
m
(l)�
B ; v

(l)
B ;�B; T

�
+ �nkB

�
m
(l)�
B ; v

(l)
B ;�B; T

�i
+

X
B=N;�;�;�

V
(l)
B �

(l)
bB +

1

2
m2
� h�i

2
l �

1

2
m2
! h!0i

2
l +

1

2
m2
�� h��i

2
l �

1

2
m2
� h�0i

2
l : (35)

The numerical results for fS = 0:5 and P = 0:05MeV=fm
3 are shown by the blue curves

in Figs. 7-12. We can see in Fig. 7 that the Gibbs condition on temperature and chemical

potentials recovers the maximized entropy lying above the common tangent, because the

Gibbs condition in micro-canonical ensemble is derived from the maximization of entropy.

Because the entropy is concave, the region of phase transition betweenH=A = 1019:7MeV

and 1049.1MeV marked by the two blue dots is wider than the one from the common

tangent between H=A = 1022MeV and 1046MeV marked by the two red crosses. The

concavity also produces the graduate increase of caloric curve in the phase transition

against the constant boiling temperature from the common tangent. We see in Fig. 8

that the Gibbs condition leads to the minimum Gibbs energy in the phase transition.

The entropy and the chemical potentials in Figs. 10-12 become the continuous functions

of temperature, because their values move from the black solid curves to the blue curves

and vise versa at the blue dots as the temperature increases. These are natural results

from the proper calculus of phase transition. On the other hand, their derivatives have

discontinuities on the blue dots or the transition points. Although Ref. [22] certi�es that

the phase transition is the second order because of the discontinuity in @S=@T or the

speci�c heat capacity, we certify that the phase transition is the �rst order because of the

discontinuities in @�N=@T and @��=@T . Moreover, we have a �nite latent heat, which

is a di¤erence between the two enthalpies on the blue dots in Fig. 7. Figure 17 shows

the boiling temperature of SHM liquid (the blue curve) and the condensed temperature

of SHM gas (the red curve) as functions of the strangeness fraction. The nuclear liquid

of strangeness f (l)S = 0:5 begins to evaporate at T = 6:0MeV into highly strange nuclear

gas of f (g)S = 1:34. When the evaporation completes at T = 8:92MeV, the liquid phase

has a rather low strangeness f (l)S = 0:1385.
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4 Summary

We have developed new calculus of the liquid-gas phase transition in the canonical and

micro-canonical ensembles of SHM based on the RMF model in Refs. [18] and [23]. It

is di¤erent from the geometrical construction used widely in literature. For canonical

ensemble the pressure and the chemical potentials are determined from de�nite values

of temperature, strangeness and baryon density. The pressure increases in the phase

transition from gas to liquid against the constant value from the Maxwell construction

of phase equilibrium. The Helmholtz energy is minimized and so lies below the common

tangent. Due to the convexity of Helmholtz energy, the region of phase transition is wider

than that from the Maxwell construction. The liquid and gas branches in the section of

binodal surface are connected on the normal state fS = 0, but there is no critical point.

Because the gas branch shows a backbend, the retrograde condensation in SHM has

been proved. For micro-canonical ensemble of SHM, the temperature and the chemical

potentials are determined from de�nite values of pressure, strangeness and baryon density.

The resultant entropy is maximized and so lies above the common tangent, while the

Gibbs energy is minimized. Due to the concavity of entropy, the boiling temperature of

nuclear liquid increases slowly against the constant value from the Maxwell construction.

We also investigate the change of strangeness in gaseous and liquid phases during the

boiling process. Because at transition points there are discontinuities in the derivatives

of chemical potentials @�N=@P and @��=@P in canonical ensemble and @�N=@T and

@��=@T in micro-canonical ensemble, we conclude against the preceding works that the

phase transition is the �rst order.
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Figure 1: The pressure-density isotherm of temperature T = 10MeV for strangeness
fraction fS = 0:5. The black curve is the result from Eq. (15). The horizontal red line
is the pressure in the phase transition derived from the common tangent prescription in
Fig. 2. The blue curve is the pressure in the phase transition from Eq. (30). The vertical
red and blue dashed lines indicate the regions of phase transition.
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Figure 2: The Helmholtz energy per baryon as a function of volume for strangeness frac-
tion fS = 0:5 and temperature T = 10MeV. The black curve is the result corresponding
to the black curve in Fig. 1. The red line is the common tangent that contacts with
the black curve on the two red crosses. The blue curve between the two blue dots is
the minimized Helmholtz energy in liquid-gas phase transition, which satis�es the Gibbs
condition on phase equilibrium.
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Figure 3: The Gibbs energy per baryon as a function of pressure for strangeness fraction
fS = 0:5 and temperature T = 10MeV. The black curve is the result corresponding to the
black curve in Fig. 2. It has a crossing point denoted by the red line. The blue dashed
curve between the two blue dots is the Gibbs energy in liquid-gas phase transition, which
satis�es the Gibbs condition on phase equilibrium.
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Figure 4: The nucleon chemical potential as a function of pressure for strangeness fraction
fS = 0:5 and temperature T = 10MeV. The black dotted curve is the result in a region
of the concave on Helmholtz energy in Fig. 2 and so is not realized. Consequently, the
black solid curve exposes a discontinuity marked by the vertical red dotted line. The blue
curve is the chemical potential in liquid-gas phase transition, which satis�es the Gibbs
condition on phase equilibrium.
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Figure 5: The same as Fig. 4 but for ��.
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Figure 6: The baryon fractions �bB=�T as functions of the total baryon density. The black
curves are the results corresponding to the black curve in Fig. 2. The blue curves are
the fractions in liquid-gas phase transition, which satis�es the Gibbs condition on phase
equilibrium. The fraction of � is too small to be apparent in the �gure.
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Figure 7: The black curve is the entropy per baryon as a function of the enthalpy per
baryon for SHM of strangeness fraction fS = 0:5 and pressure P = 0:05MeV=fm

3. The
red line is the common tangent that contacts with the black curve on the two red crosses.
The blue dashed curve between the two blue dots is the maximized entropy in liquid-gas
phase transition, which satis�es the Gibbs condition on phase equilibrium.
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Figure 8: The Gibbs energy per baryon as a function of temperature for fS = 0:5 and
P = 0:05MeV=fm3. The black curve is the result derived from the black curve in Fig.
7. It has a crossing point marked by the red line. The blue dashed curve between the
two blue dots is the Gibbs energy in liquid-gas phase transition, which satis�es the Gibbs
condition on phase equilibrium.
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Figure 9: The black curve is the caloric curve derived from the black curve in Fig. 7.
The horizontal red line is the boiling temperature in liquid-gas phase transition from the
common tangent in Fig. 7. The blue curve is the caloric curve in the phase transition
derived from the blue dashed curve in Fig. 7.
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Figure 10: The entropy par baryon as a function of temperature. The black dotted curve
is the result in a region of the convex in Fig. 7 and so is not realized. Consequently, the
black solid curve exposes a discontinuity marked by the vertical red dotted line. The blue
curve is the entropy in liquid-gas phase transition, which satis�es the Gibbs condition on
phase equilibrium.
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Figure 11: The chemical potential of nucleon as a function of temperature. The black
dotted curve is the result in a region of the convex in Fig. 7 and so is not realized.
Consequently, the black solid curve exposes a discontinuity marked by the vertical red
dotted line. The blue curve is the chemical potential in liquid-gas phase transition, which
satis�es the Gibbs condition on phase equilibrium.
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Figure 12: The same as Fig. 11 but for ��.
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Figure 13: The black curve is the ratio of liquid fl = 1 � fg as a function of the total
baryon density in the phase transition between �T = 0:01fm

�3 and 0:181fm�3. The red
and blue curves are the strangeness fractions of gas and liquid, f (g)S and f (l)S , in Eq. (27).
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Figure 14: The pressure-density isotherms of T = 10MeV for strangeness fractions from
fS = 0:3 to fS = 1:2. The solid curves from Eq. (30) are realized while the dashed curves
from Eq. (15) are spurious.
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Figure 15: The section of binodal surface at T = 10MeV.
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Figure 16: The ratio of liquid as a function of pressure for strangeness fraction fS = 1:57
at T = 10MeV.
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Figure 17: The boiling (blue) and condensed (red) curves of nuclear liquid and gas under
the constant pressure P = 0:05MeV=fm3. The dashed line show the boiling process in
SHM liquid of strangeness fraction fS = 0:5.
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