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Abstract

We derive the equation for the vorticity of the incompressible Oseen problem in a half plane with
homogeneous (no slip) boundary conditions. The resulting equation is a scalar Oseen equation with
certain Dirichlet boundary conditions which are determined by the incompressibility condition and
the boundary conditions of the original problem. We prove existence and uniqueness of solutions
for this equation in function spaces that provide detailed information on the asymptotic behavior
of the solution. We show that, in contrast to the Oseen problem in the whole space where the
vorticity decays exponentially fast outside the wake region, the vorticity only decays algebraically in
the present case. This algebraic decay is however faster than what one would expect for a generic
problem, since the dominant volume and boundary contributions cancel each other as a consequence
of the incompressibility and the no slip boundary conditions of the original problem.
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1 Introduction and main results

This is the �rst of a series of papers in which we develop the mathematical framework which is necessary
for the precise computation of the hydrodynamic forces that act on a body that moves at constant speed
parallel to a wall in an otherwise unbounded space �lled with a �uid.
A very important practical application of such a situation is the description of the motion of bubbles

rising in a liquid parallel to a nearby wall. Interesting recent experimental work is described in [12] and
in [16]. Numerical studies can be found in [2], [5], [11], and [14]. The computation of hydrodynamic
forces is reviewed in [10].
In what follows we consider the situation of a single bubble of �xed shape which rises with constant

velocity in a regime of Reynolds numbers less than about �fty. The resulting �uid �ow is then typically
laminar. The Stokes equations provide a good quantitative description (forces determined within an error
of one percent, say) only for Reynolds numbers less than one. For the larger Reynolds numbers under
consideration the Navier-Stokes equations need to be solved. The vertical speed of the bubble depends
on the drag, and the distance from the wall at which the bubble rises requires one to �nd the position
relative to the wall where the transverse force is zero. Since at low Reynolds numbers the transverse
forces are orders of magnitude smaller than the forces along the �ow, this turns out to be a very delicate
problem which needs to be solved numerically with the help of high precision computations. But, if
done by brute force, such computations are excessively costly even with today�s computers. In [3] we
have developed techniques that lead for similar problems to an overall gain of computational e¢ ciency
of typically several orders of magnitude. See also [4] and [10]. These techniques use as an input a precise
asymptotic description of the �ow. In all cases considered so far the basis of such an analysis is a detailed
description of an appropriate linear problem. The goal of the work that we start here is to extend this
technique to the case of motions close to a wall.
In what follows we consider the two dimensional case. In a frame attached to the body the Navier-

Stokes equations are

�u � ru� @xu+�u�rp = 0 ; (1.1)

r � u = 0 ; (1.2)

which have to be solved in the domain 
 = R2+ nB, subject to the boundary conditions

u(x; 0) = 0 ; x 2 R ; (1.3)

lim
x!1

u(x) = 0 ; (1.4)

uj@B = �e1 : (1.5)

Here, x = (x; y), R2+ = f(x; y) 2 R2 j y > 0g, B � R2+ is a compact set with smooth boundary @B, and
e1 = (1; 0).
Based on preliminary numerical studies we expect that the relevant linear problem for the asymptotic

analysis of (1.1)-(1.5) is given by the inhomogeneous stationary Oseen equation,

� @xu+�u�rp = f ; (1.6)
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in the domain R2+, subject to the incompressibility conditions (1.2), the boundary conditions (1.3) and
(1.4), and with f = (f1; f2) a smooth vector �eld with compact support. Note that for f in appropriate
function spaces the solution of equation (1.6) can also be used as a starting point for a proof of the
existence of solutions of the Navier-Stokes equations (1.1) based on the contraction mapping principle.
Solving the Oseen equation (1.6) turns out to be surprisingly complicated, since there exists no re�ection
principle like in the case of the Stokes equation (see for example [7]). We therefore discuss here in a �rst
step the vorticity of the vector �eld u, which is crucial for a detailed understanding of the asymptotic
behavior of solutions of (1.6). See [1] for an early publication that stresses the importance of analyzing
the vorticity. The reconstruction of the velocity �eld and the pressure, as well as the analysis of the
original Navier-Stokes problem (1.1), is the content of upcoming publications.
Let u = (u; v) and let

! = �@yu+ @xv (1.7)

be the vorticity. If we take the curl of equation (1.6) we see that ! has to satisfy the equation

� @x! +�! = ' ; (1.8)

with
' = �@yf1 + @xf2 : (1.9)

As we will show in Section 2, it follows from the incompressibility condition (1.2) and the boundary
condition (1.3), that we have to impose at y = 0 the Dirichlet boundary condition

!(x; 0) = !0(x) ; (1.10)

with !0 a certain function which depends on the data '. Let

� =
p
k2 � ik ; (1.11)

and

m0(k; �) = �
e��� � e�jkj�
�� jkj : (1.12)

Then, we �nd (see Section 2), that
!0 = Fm0

['] ; (1.13)

where Fm is the linear operator which, for a given function m : R2+ ! C, is formally de�ned by

Fm['](x) =
Z 1

0

�
F�1 (m F')

�
(x; �) d� : (1.14)

Here, F and F�1 are, respectively, the Fourier transform with respect to the �rst variable, and its inverse.
Explicitly, we use the following sign and normalization conventions for F ,

(F')(k; y) =
Z
R
eikx'(x; y) dx ; (1.15)

and �
F�1 (m F')

�
(x; �) =

1

2�

Z
R
e�ikxm(k; �)(F')(k; �) dk : (1.16)

The following two theorems summarize our main results.

Theorem 1 For all functions ' 2 C10 (R2+) the equation (1.8) subject to the boundary condition (1.10)
has a solution ! 2 C1(R2+)\ C(R2+). This solution is unique among functions decaying su¢ ciently rapidly
at in�nity.
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Theorem 2 Let f 2 C10 (R2+), and let, for i = 1; 2, !i be the solution of equation (1.8) with boundary
condition (1.10) and data ' = 'i, where '1 = @xf and '2 = @yf . Then, the functions ~!i de�ned by

e!i(x; y) = (1 + y)di�"!i(x; y) ;
with d1 = 4 and d2 = 3, are in Lp(R2+), for all 0 < " < 2 and all 3=" < p <1.

The remainder of the paper is organized as follows. In Section 2 we discuss the equation for the
vorticity and compute the function !0. In Section 3 we construct a solution for data with compact
support and discuss the asymptotic behavior of solutions on a heuristic level, in order to motivate the
choice of function spaces. Since, as has been mentioned earlier, the ultimate goal of the work that we start
here is to solve and analyze in detail the Navier-Stokes equations in the above setting, we are interested
in solving the Oseen problem and to study the properties of the mapping ' 7! !['] in a well-designed
functional framework. With this in mind we introduce in Section 4 appropriate function spaces, give
precise formulations of the above theorems, formulate a third theorem which describes the behavior of
solutions close to the boundary y = 0, and prove a uniqueness theorem. Section 5 contains the main
technical Lemmas on which the proofs of the theorems in Section 6 to Section 8 are based. As we will
see at the end of Section 4.3 and at the end of Section 4.2, respectively, Theorem 1 is a consequence
of Lemma 4 (existence) and Theorem 15 (uniqueness), and Theorem 1 is a consequence of Theorem 12,
Theorem 13, and Theorem 14. Appendices A and B, �nally, contain various technical details.

Notation
Throughout the paper we use the following conventions. First, the subsets R2+ and R2++ are de�ned

by R2+ = R�(0;1), and R2++ = R�(1;1). For most function spaces we use the names that are classical.
Notations that are particular to the present work are introduced in Section 4. Furthermore, given 
 � R2,
we de�ne C10 (
) to be the the set of smooth functions with compact support. Partial di¤erentiations
with respect to the �rst and second variable are denoted by @x and @y, respectively, and Lp(
) and
Lploc(
) stand for the usual Lebesgue spaces. Also, to simplify notation, we use the same expressions for
vector and scalar quantities. The norm on Lp(
) is denoted by j�jp, and whenever necessary in order to
avoid confusions, we indicate 
 either with a subscript (i.e., j�jp;
), or if more details on the space are
needed by j�jLp(
). Throughout the paper, F denotes the Fourier transform with respect to the variable
x. Finally, we will often write '̂ instead of F' for the Fourier transform of a function '.

2 The vorticity boundary condition

In this section we derive the expression (1.13) for !0 on a formal level. Taking partial derivatives of
equation (1.7) with respect to x and y, and using the incompressibility condition (1.2) and the boundary
condition (1.3), one �nds that the components of the vector �eld u = (u; v) have to satisfy the equations

�u = �@y! ;
u(x; 0) = 0 ; (2.1)

and

�v = @x! ;

v(x; 0) = 0 : (2.2)

Once the equation (1.8) for the vorticity is solved we can therefore a priori reconstruct the vector �eld
u = (u; v) using (2.1) and (2.2). But if we solve, for a given function !, the equations (2.1) and (2.2) for
u and v, then, in general, the corresponding vector �eld u = (u; v) will not be divergence free. Indeed,
unless the vorticity ! is chosen in a special way, the equations (2.1), and (2.2) only imply that

�(@xu+ @yv)(x; y) = 0 ; (2.3)

for (x; y) 2 R2+, and not necessarily (1.2). However, as we now show, for functions ! that are solution of
(1.8), we can enforce the divergence freeness (1.2) by an appropriate choice of the boundary condition in
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(1.10). First, since the Laplace equation in the half plane is well-posed (see for example [6]), (1.2) follows
from (2.3) provided that

@xu(x; 0) + @yv(x; 0) = 0 : (2.4)

Next, since u(x; 0) = 0 by (2.1), it follows that @xu(x; 0) = 0, and (2.4) therefore reduces to @yv(x; 0) = 0.
Taking the Fourier transform with respect to the variable x we get from (1.8) and (1.10) the equation

@2y !̂(k; y)� �2!̂(k; y) = '̂(k; y) ; (2.5)

!̂(k; 0) = !̂0(k) ; (2.6)

with, !̂ = F!, !̂0 = F!0, and '̂ = F', and where � is de�ned in (1.11). Similarly, we get from (2.2)
after Fourier transform with respect to x the equation

@2y v̂(k; y)� k2v̂(k; y) = �ik!̂(k; y) ; (2.7)

v̂(k; 0) = 0 : (2.8)

The solution of (2.7,2.8) is

v̂(k; y) = � 1

2 jkj

Z 1

0

�
e�jkjjy��j � e�jkj(y+�)

�
ik!̂(k; �) d� ; (2.9)

from which we get that @yv(x; 0) = 0 if and only if

@y v̂(k; 0) = �ik
Z 1

0

e�jkj�!̂(k; �) d� = 0 : (2.10)

Therefore, the vector �eld u = (u; v) is divergence free if and only if for all k 2 R n f0g,Z 1

0

e�jkj�!̂(k; �) d� = 0 : (2.11)

We now show that (2.11) implies (1.13). Equation (2.11) follows fromZ 1

0

�
e��� � e�jkj�

�
!̂(k; �) d� =

Z 1

0

e���!̂(k; �) d� : (2.12)

Multiplying (2.12) with �2 and using (2.5) we �nd that (2.12) is equivalent toZ 1

0

�
e��� � e�jkj�

� �
@2�!̂(k; �)� '̂(k; �)

�
d� =

Z 1

0

e����2!̂(k; �) d� : (2.13)

We now integrate in (2.13) the term containing @2�!̂ twice by parts. The boundary term of the �rst
integration by parts is zero. The integral that one obtains after the second integration by parts contains
a term which is equal to zero if (2.11) is satis�ed. The other term simpli�es with the right hand side in
(2.13), and one obtains from the remaining boundary term the following equation for !̂0,

!̂0(k) =

Z 1

0

m0(k; �)'̂(k; �) d� ; (2.14)

with m0 as de�ned in (1.12), and therefore

(F�1!̂0)(x) =
1

2�

Z
R
e�ikx!̂0(k) dk

=
1

2�

Z
R
dk e�ikx

Z 1

0

dy m0(k; y)'̂(k; y) : (2.15)

For functions ' of compact support we can exchange the integrals in (2.15) and we get (1.13). This
completes the formal construction of !0.
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3 Solution for data with compact support

For the case where the domain is R2 instead of R2+ the unique solution ~! of the scalar Oseen equation
(1.8) decaying su¢ ciently rapidly at in�nity is well known. It is given in terms of the Green�s function
K, which is de�ned for (x; y) 2 R2 n f(0; 0)g in terms of the modi�ed Bessel function K0 of the second
kind of order zero. Namely,

K(x; y) = �e
x
2

2�
K0(

r

2
) ; (3.1)

with
r =

p
x2 + y2 ; (3.2)

and

~!(x; y) = (K � ') (x; y) =
Z
R2
K(x� x0; y � y0)'(x0; y0) dx0dy0 : (3.3)

See for example [8], [9]. Properties of the Green�s function K that are needed in subsequent sections are
summarized in Appendix A, which also contains a proof of the following proposition.

Proposition 3 The function K de�ned in (3.1) has the following properties:

i) K 2 C1(R2 n f(0; 0)g) ;

ii) K is even as a function of y ;

iii) (K;rK;�K) 2 L1loc(R2) :

3.1 Construction of a solution !

The solution ! of the Oseen problem (1.8) in the domain R2+ can also be written in terms of the Green�s
function K in a standard way. It is the sum of two terms, a �volume term�obtained by the re�ection
principle which solves the inhomogeneous problem but is equal to zero at y = 0, and a �boundary term�
which adds a solution of the homogeneous problem satisfying the boundary condition (1.10). Namely,

! = !V + !B ; (3.4)

with !V = TV fKg['] and with !B = TBfKg[Fm0
[']], where

TV fKg['](x; y) =
Z
R2+
(K(x� x0; y � y0)�K(x� x0; y + y0)) '(x0; y0) dx0dy0 ; (3.5)

TBfKg[g](x; y) =
Z
R
K1(x0; y) g(x� x0) dx0 ; (3.6)

where K1 = 2@yK. From (3.1) one gets for K1 for (x; y) 2 R2 n f(0; 0)g the following explicit expression,

K1(x; y) =
ye

x
2

2�r
K1(

r

2
) ; (3.7)

with r as de�ned in (3.2) and with K1 the modi�ed Bessel function of the second kind of order one.
The following Lemma shows that for smooth data with compact support the function ! is well de�ned

and solves the Oseen equation (1.8) with boundary conditions (1.10).

Lemma 4 Let ' 2 C10 (R2+). Let !0 be as de�ned in (1.13) and let ! be as de�ned in (3.4). Then we
have:

(i) !0 2 C1(R), and !0 and all its derivatives converge to zero at in�nity.

(ii) ! 2 C1(R2+) \ C(R2+).

(iii) ! is a solution of (1.8), (1.10).
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Proof. The proof of this lemma follows standard ideas. We �rst show i). Since ' 2 C10 (R2+), '(x; y) is
in particular in C10 (R) as a function of x and of compact support as a function of y. Its Fourier transform
with respect to the �rst variable, '̂(k; y), decreases therefore faster than any polynomial in k, uniformly
in y, and so does m(k; y)'̂(k; y). Therefore, by the Riemann-Lebesgue lemma, the function !0 = Fm0

[']
as well as all its derivatives are continuous and converge to zero at in�nity. This completes the proof of
i). We now prove ii), and iii) with appropriate boundary conditions, separately for !V and !B . The
result then follows by the linearity of the equations. We �rst discuss the volume term !V . Instead of
(3.5), we can equivalently write !V as a convolution product over R2. Namely, if we extend the function
' from R2+ to R2 by anti-symmetry, i.e., if we de�ne e' by

e'(x; y) = � '(x; y) if y > 0 ;
�'(x; y) if y < 0 ;

(3.8)

then we have, for (x; y) 2 R2+, that !V = K � e'. Now, since by Proposition 3 K 2 L1loc(R2), and since e'
is smooth, and moreover K is an even function of y and e' is by de�nition an odd function of y it follows
that !V extends to an odd function in C1(R2). This in turn implies in particular that !V 2 C1(R2+), and
that !V (x; 0) = 0. Similarly, since by Proposition 3 @xK 2 L1loc(R2) and �K 2 L1loc(R2), it follows that
(�@x +�)!V = ((�@x +�)K) � ', which implies that (�@x +�)!V (x; y) = e'(x; y) for all (x; y) 2 R2,
and in particular that (�@x+�)!V (x; y) = '(x; y) for (x; y) 2 R2+. This completes the proof of ii) and of
iii) with homogeneous Dirichlet boundary conditions for the volume term. We now discuss the boundary
term. Standard results on parameter dependent convolutions imply that !B 2 C1(R2+) (see Proposition
39 for the uniform domination argument), and furthermore that for (x; y) 2 R2+,

(�@x +�)!B(x; y) = (@y [(�@x +�)K] �x !0) (x; y) ;

where �x means convolution with respect to the �rst variable. Since (�@x +�)K(x; y) = 0 for (x; y) in
R2 n f(0; 0)g, we get in particular that (�@x +�)!B = 0 for (x; y) in R2+. We still need to prove that
!B is continuous at the boundary, i.e., that !B 2 C1(R2+) and that lim

y!0
!B(x; y) = !0(x) for all x 2 R.

Since K1(z) = 1=z + o(1), asymptotically as z ! 0, and K1(z) = O(e
�z=

p
z) as z ! +1, we �nd that

there is a constant C1, such that for r < 1 and y 2 (0; 1),

jK1(x; y)�
y

�r2
j � C1

y

r
� C1

y

r3=2
; (3.9)

and that there is a non-negative decreasing function C2, such that, for arbitrary " > 0, r > ", and
y 2 (0; 1),

jK1(x; y)j � y
C2(")

r
3
2

: (3.10)

From (3.9) and (3.10) it follows in particular that for arbitrary r > 0 and y 2 (0; 1),

jK1(x; y)�
y

�r2
j � maxfC1; C2(1) + 1=�g

y

r3=2
: (3.11)

The function K1(�; y) is positive and in�nitely di¤erentiable for all y 2 (0; 1). Moreover, (3.11) implies
that

lim
y!0

Z
R
K1(x; y) dx = 1 ; (3.12)

since

lim
y!0

maxfC1; C2(1) + 1=�g
Z
R

y

r3=2
dx = 0 ; (3.13)

and (3.10) implies that, for arbitrary " > 0,

lim
y!0

Z
jxj>"

jK1(x; y)j dx � C2(") lim
y!0

Z
R

y

r3=2
dx = 0 : (3.14)

Consequently, (K1(�; y))y2(0;1) is a regularizing sequence, and therefore, since !0 = Fm0
['] is bounded

together with its �rst derivative we have that limy!0 !B ['](�; y) = Fm0
['] in (C(R); k�k1). This completes

the proof of Lemma 4.

We close this section with a proof that the boundary term TBfKg[Fm0 [']] can be written alternatively
in terms of Fourier transforms.
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Lemma 5 Let ' 2 C10 (R2+) and let � be as de�ned in (1.11). De�ne E : R2+ ! C by

E(k; y) = e��y ; (3.15)

and let TBfKg be as de�ned in (3.6). Then,

E � F [Fm0
[']] 2 L1(R) ; (3.16)

and
TBfKg[Fm0

[']] = F�1 [E � F [Fm0
[']] ] : (3.17)

Proof. By Proposition 39 @yK(�; y) 2 L1(R) \ L2(R) for all y > 0. Moreover, Fm0 ['] 2 L2(R) by
arguments similar to the ones given at the beginning of the proof of Lemma 4. Therefore, TBfKg[Fm0

[']]
is the convolution with respect to the variable x of @yK(�; y) 2 L1(R) with Fm0

['] 2 L2(R), and therefore
TBfKg[Fm0

[']](�; y) 2 L2(R), for all y > 0. We can therefore take the Fourier transform of equation (3.6)
and we get that

F [TBfKg[Fm0 [']](�; y)] = F [@yK(�; y)] � F [Fm0 [']] : (3.18)

From (3.18) it follows that F [TBfKg[Fm0 [']](�; y)] 2 L1(R). Finally, an explicit computation shows that

F [@yK(�; y)](k) = E(k; y) : (3.19)

This completes the proof of Lemma 5.

Explicitly we have for (3.17) the following expression,

TBfKg[Fm0 [']](x; y) = F�1
� Z 1

0

mB(�; �; y) F ['](�; �) d�
�
(x) : (3.20)

where, for all (k; �; y) 2 R� (0;1)2, mB is de�ned by

mB(k; �; y) = e
��ym0(k; �) ; (3.21)

with m0 as de�ned in (1.12). For functions ' of compact support we can exchange the integrals in (3.20)
with the integral of the Fourier transform, so that (3.20) can also be written as,

TBfKg[Fm0 [']](x; y) =

Z 1

0

F�1 [mB(�; �; y) F ['](�; �)] (x) d� : (3.22)

3.2 Expected asymptotic behavior

In order to motivate the choice of function spaces in the next section we brie�y discuss the expected
asymptotic behavior of solutions on a heuristic level. For the Navier-Stokes equation as well as for the
Oseen equation we expect the formation of a parabolic wake in the region downstream of the support
of f . Far enough downstream, this wake will interact with the border at y = 0 which will change its
behavior when compared to the case without boundary. The horizontal component u of the vector �eld
still satis�es asymptotically the heat equation �@xu + @2yu = 0 (see for example [10]), but with y in
R+ rather than in R, and with Dirichlet boundary conditions at y = 0. One therefore expects that
asymptotically, as x!1 for �xed z = y=x1=2

u(x; y) � @yK(x; y) � const :
1

x
ze�

z2

4 = const :
1

y2
z3e�

z2

4 : (3.23)

From (3.23) one concludes using the incompressibility condition, that the vertical component v is negli-
gible asymptotically when compared with u, and concludes that the vorticity ! should behave asymptot-
ically, as x!1 for �xed z = y=x1=2, like @yu, i.e.,

!(x; y) � @2yK(x; y) � const :
1

x3=2
e�

z2

4 = const :
1

y3
e�

z2

4 : (3.24)
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The asymptotic term in (3.24) corresponds to a �volume term�in the terminology of Section 3. Outside
the wake region such a term decays exponentially fast. As the following formal asymptotic expansion
shows there is however a second order term (a �boundary term� in the terminology of Section 3), with
a completely di¤erent behavior, and it is this term which dominates the large distance behavior of the
vorticity outside the wake region, and in particular as y ! 1 for �xed values of x. Namely, if we plug
the Ansatz

!(x; y) =
1

y3
f(x=y2) +

1

y4
g(x=y2) + : : : ; (3.25)

into equation (1.8) and expand in inverse powers of y at �xed values of � = x=y2, we get for f and g the
ordinary di¤erential equations

4�2f 00(�) + (18� � 1)f 0(�) + 12f(�) = 0 ; (3.26)

4z2g00(�) + (22� � 1)g0(�) + 20g(�) = 0 : (3.27)

The equations (3.26) and (3.27) have two parameter families of solutions, but, as we will see later on, the
relevant solution of (3.26) is

f(�) =

8<: c1
1�2�
�5=2

e�
1
4� � > 0

0 � � 0
(3.28)

with c1 6= 0. The second solution of (3.26) is absent from the asymptotics of ! due to the no slip boundary
conditions and the incompressibility condition of the original problem. The relevant solution for (3.27) is

g(�) =

8>>>><>>>>:
c2
1

96

�
�1=2

1� 6�
�7=2

e�
1
4� er�(

1

2�1=2
) +

8

�2
� 2

4�3

�
+ c3

1� 6�
�7=2

e�
1
4� � > 0

c2 � = 0

c2
1

96

�
�1=2

1� 6�
(��)7=2 e

� 1
4� erfc(

1

2(��)1=2 ) +
8

�2
� 2

�3

�
� < 0

(3.29)

with c2 6= 0, with er�(x) =
R x
0
et

2

dt, and with erfc(x) =
R1
x
e�t

2

dt. Note that the functions f and g are
continuous at � = 0, that f(�) � ��3=2 as � ! +1 and that g(�) � ��2 as � ! �1.
From (3.28) and (3.29) it is now easy to see that ! behaves within the wake, i.e., for x=y2 = � = const:,

asymptotically like f(�)=y3, whereas outside the wake, and in particular for x �xed and y going to in�nity,
! behaves asymptotically like g(0)=y4 = c2=y4. This implies in particular also that our results in Theorem
2 are optimal for the norms under consideration.

4 Formulation of results in function spaces

The formal discussion at the end of Section 3 motivates the introduction of the following weighted Sobolev
spaces.

De�nition 6 Let p � 1, � � 0, and let 
 = R2, R2+, or R2++. Then, we de�ne the sets Lp�(
) and
_W 1;p
� (
) by

Lp�(
) =

�
f 2 Lp(
) j jf jLp�(
) =

Z



[(1 + jyj)�jf(x; y)j]p dxdy <1
�
; (4.1)

where Lp(
) is the usual Lebesgue space, and where _W 1;p
� (
) is the completion of C10 (
) with respect to

the norm
jf j _W 1;p

� (
) = jrf jLp�(
) : (4.2)

The following remarks are elementary:

Remark 7 (i) Given f 2 Lp(
), then f 2 Lp�(
) if and only if there exists ef 2 Lp(
) for which
f(x; y) = (1 + jyj)�� ef(x; y) for all (x; y) 2 
.

(ii) For all p � 1 and � � 0 the sets Lp�(
) and _W 1;p
� (
) are Banach spaces when endowed with their

respective norms j�jLp�(
) and j�j _W 1;p
� (
).
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(iii) The set C10 (
) is dense in Lp�(
) and _W 1;p
� (
).

(iv) For all 0 � � < �0 the imbeddings Lp�0(
) � Lp�(
) and _W 1;p
�0 (
) � _W 1;p

� (
) are continuous.

As has already been mentioned in the introduction we use the notation j � jp;� as a shorthand for
j � jLp�(
), whenever no confusion concerning the domain 
 under consideration is possible. We should
emphasize that in the notation j � jp;� the �rst subscript stands for the exponent of a Lebesgue space
Lp(
) and the second one for the exponent of the weight function (1 + jyj)�. We note that no confusion
arises with the standard notation for Sobolev spaces, since we use here only the homogeneous Sobolev
spaces _W 1;p

0 , and for these spaces we always denote the norm of a function f by jrf jp.

4.1 The space _W 1;p
� (R2+)

In this section we analyze the basic properties of _W 1;p
� (R2+). The goal here is not necessarily to prove

optimal results, concerning the imbeddings in particular, but rather to establish with as little e¤ort as
possible those results which are needed in later sections. For the case 
 = R2+, a �rst important aspect
of the above spaces is that integration with respect to y is well behaved in the following sense:

Lemma 8 Let p 2 [1;1). Then, the following imbeddings are continuous:

(i) _W 1;p
� (R2+) � Lp(R� (0; 1)), for all � > 1� 1=p .

(ii) _W 1;p
� (R2+) � L

p
�0(R2+), for all � > 1 and 0 � �0 < � � 1 .

Proof. We �rst prove (i). Given f 2 C10 (R2+), we set ' = �@yf so that

f(x; y) =

Z 1

y

'(x; z) dz ; (4.3)

since ' is also a function with compact support. Denoting by q = (1� 1=p)�1 the conjugate exponent of
p, we get, for all � > 0, that

jf(x; y)jp �
�Z 1

0

1

(1 + z)�q

� p
q
Z 1

y

j(1 + z)�'(x; z)jp dz : (4.4)

The �rst integral in the right-hand side is �nite provided � > 1=q. For � > 1� 1=p we set � = � and we
get that

jf jp;R�(0;1) � C(�)j@yf jp;� ; (4.5)

which completes the proof of (i). We now prove (ii). Let � = � � �0. Using that � > 1 and �0 < � � 1,
we get that Z

R2+

h
(1 + y)�

0
jf(x; y)j

ip
dxdy

�
Z 1

0

 �Z 1

y

dz

(1 + z)�q

� p
q
Z
R

�Z 1

y

h
(1 + y)�

0
(1 + z)�j'(x; z)j

ip
dz

�
dx

!
dy : (4.6)

Because � > 1=q, and y < z in the z-integral, we get thatZ
R2+

h
(1 + y)�

0
jf(x; y)j

ip
dxdy

�
�Z 1

0

dy

(1 + y)p(�q�1)=q

� Z
R2+
[(1 + z)�j'(x; z)j]p dxdz

!
: (4.7)

This completes the proof of (ii), sinceZ 1

0

1

(1 + y)p(�q�1)=q
dy <1 ; (4.8)
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for � > 1 � 1=q.

Applying the above lemma we �nd that _W 1;p
� (R2+) �W 1;p(R� (0; 1)) for � > 1� 1=p. Consequently,

provided p > 1 and � > 1 � 1=p, the elements of _W 1;p
� (R2+) have a well de�ned trace at y = 0. We will

need this property when we discuss the boundary conditions of our problem.

De�nition 9 Let (p; �) 2 R2+ with p > 1 and � > 1� 1=p. Then, we de�ne D1;p
� (R2+) by

D1;p
� (R2+) =

n
u 2 _W 1;p

� (R2+) j u(x; 0) = 0 for all x 2 R
o
: (4.9)

Note that the set C10 (R2+) is dense in D1;p
� (R2+) for all p � 1 and � � 0. The spaces D1;p

� (R2+)
are inspired by the spaces D1;p

0 (R2+) in [8]. In particular, the spaces D1;p
� (R2+) imbed continuously in

D1;p
0 (R2+) for arbitrary values of � > 1� 1=p. We have:

Lemma 10 Let 1 < p < 2, � > 1� 1=p and let p� = 2p=(2� p). Then, D1;p
� (R2+) � Lp

�
(R2+).

Proof. Since D1;p
� (R2+) � D

1;p
0 (R2+), Lemma 10 is an immediate consequence of [8, Theorem 5.2], for the

case of functions that have zero trace at y = 0. By de�nition, this condition is satis�ed by elements of
D1;p
� (R2+).

Similarly, we have:

Lemma 11 Let p � 1 and � � 1. Then, D1;p
� (R2+) � Lp(R2+).

Proof. For u 2 C10 (R2+) and p � 1 we have thatZ
R2+
@y((1 + y)jujp(x; y)) dxdy = 0 ;

and therefore Z
R2+
jujp(x; y) dxdy = �

Z
R2+
(1 + y)@yjujp(x; y) dxdy ;

Applying Hölder�s inequality we see that for some constant C <1,Z
R2+
ju(x; y)jp dxdy � C

Z
R2+
j(1 + y)@yu(x; y)jp dxdy +

1

2

Z
R2+
ju(x; y)jp dxdy :

This completes the proof for � = 1. Since D1;p
� (R2+) � D

1;p
1 (R2+) for � > 1, the general result follows.

4.2 Exact formulation of main theorems

Now that the function spaces are introduced, we can formulate our results in detail. Concerning the
behavior of the solution close to the boundary we prove:

Theorem 12 Let f 2 C10 (R2+) and a 2 R2, and let ' = a � rf . Then, for all p 2 (3=2;1) the solution
! of Theorem 1 is in Lp(R� (0; 1)), and satis�es, for all q < 3p=(3 + p) and all � > 2� 1=p the bound

j!jp;R�(0;1) � C(a; p; q; �)(jf jq + j'jp;�) ; (4.10)

for a constant C(a; p; q; �) depending only on a and the choice of p, q and �. Similarly, @x! and @y! are
in Lp(R� (0; 1)) for all p 2 (1;1) and satisfy, for all q < p, all �x > 1� 1=p, and all �y > 2� 1=p the
bounds

j@x!jp;R�(0;1) � C(a; p; q; �x)(jf jq + j'jp;�x + j@y'jp;R�(0;1)) ; (4.11)

j@y!jp;R�(0;1) � C(a; p; q; �y)(jf jq + j'jp;�y + j@y'jp;R�(0;1)) ; (4.12)

for constants C(a; p; q; �x) and C(a; p; q; �y) depending only on a, and the choice of p, q and �x or �y,
respectively.
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We now formulate our results concerning the asymptotic behavior of !. We recall that (1.8), (1.10)
is obtained by taking the curl of (1.1). We can therefore restrict the study of the asymptotic behavior
of ! to the cases ' = @xf and ' = @yf . Since, as mentioned already in Theorem 2, the results are
considerably di¤erent in the two cases, we state the two results separately:

Theorem 13 Let f be a smooth function with compact support and let ' = @xf . Let (mx;my) 2 f0; 1g2
such that mx +my � 1, let (p; �) 2 [1;1)2, and let mxy = 2mx +my + 4. Then,

@mx
x @my

y ! 2 Lp�(R2++) ; (4.13)

provided � < mxy and p > 3=(mxy � �). Moreover we have, for all q with 1 � q < min(q�mx;my
; eq�mx;my

),
with q�mx;my

and eq�mx;my
as de�ned in (7.7) and (7.9) respectively, and for �0 > max(1+ �; 2� 1=q), that

j@mx
x @my

y !jp;�;R2++ � C(p; q; �)
�
j'jp;� + jf jq;�0

�
; (4.14)

where the constant C(p; q; �) depends only on p, � and the choice of q.

Theorem 14 Let f be a smooth function with compact support and let ' = @yf . Let (mx;my) 2 f0; 1g2
such that mx +my � 1, let (p; �) 2 [1;1), and let mxy = 2mx +my + 3. Then,

@mx
x @my

y ! 2 Lp�(R2++) ; (4.15)

provided � < mxy and p > 3=(mxy � �). Moreover we have, for all q with 1 � q < min(q�mx;my
; eq�mx;my

),
with q�mx;my

and eq�mx;my
as de�ned in (7.7) and (7.9) respectively, and all r such that 1 < r < 2eq�mx;my

=
(eq�mx;my

+ 2), and for all �0 > 2 + �, that

j@mx
x @my

y !jp;�;R2++ � C(p; q; r; �; �
0)
�
j'jp;� + jf jq;�0 + j'jr + jf jr;1

�
; (4.16)

where the constant C(p; q; r; �; �0) depends only on p, � and the choice for q, r and �0.

Proofs of the preceding three theorems are the content of the remaining sections of this paper. Note
that Theorem 2 follows from the above two theorems with mx = my = 0, using that a function f is
in Lp�(
) if and only if there exists a function ef in Lp(
) such that f(x; y) = (1 + y)�� ef(x; y) for all
(x; y) 2 
. See point (i) of Remark 7.

4.3 Uniqueness of solutions

Before going any further we now show that there is at most one solution of our problem in _W 1;p
� (R2+),

for all values of (p; �) 2 [4=3; 2] � [1;1). As a consequence, since for the cases ' = @xf and ' = @yf
Theorem 13 and Theorem 14 imply that the solution ! constructed in Section 3 is in each of the function
spaces under consideration, it follows that there is only one solution in the union of all these spaces.

Theorem 15 Given ' 2 C10 (R2+) and (p; �) 2 [4=3; 2)� [1;1), there exists at most one solution to (1.8)
and (1.13) in _W 1;p

� (R2+).

Proof. Let ' 2 C10 (R2+), p � 4=3 and � � 1, and assume !1 and !2 are two di¤erent solutions of
(1.8) and (1.13) in _W 1;p

� (R2+). By linearity the di¤erence ! = !1 � !2 is a solution to (1.8), (1.13)
with ' = 0. Therefore, ! 2 D1;p

� (R2+), and �! � @x! = 0 in R2+. Applying Lemma 10, we �nd
that ! 2 Lp(R2+) \ Lp

�
(R2+), and standard bootstrap techniques then imply that ! 2 C1(R2+). Let

r =
p
x2 + y2, and let � be a cut-o¤ function in C1(R2), i.e., �(x; y) = 1 for r � 1=2, and �(x; y) = 0

for r > 1, say, and let �R = �((x; y)=R). We now multiply the equation satis�ed by ! with �R! and
integrate over the half space. We get that (to simplify the notation we drop in what follows the arguments
x and y) Z

R2+
�! � �R! dxdy �

Z
R2+
@x! � �R! dxdy = 0 :
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We note that Z
R2+
�! � �R! dxdy = �

Z
R2+
�Rjr!j2 dxdy �

Z
R2+
!r�R � r! dxdy ;

and that Z
R2+
@x! � �R! dxdy = �

Z
R2+
!2@x�R dxdy :

Since 2 2 [p; p�] we have that ! 2 L2(R2+), and therefore, since jr�Rj1 = jr�j1=R, we �nd that

lim
R!1

Z
R2+
@x! � �R! dxdy = 0 :

Next, since p � 4=3, we have that 1=p + 1=p� � 1. Therefore, there exists q 2 [1;1) such that
1=q = 1� (1=p+ 1=p�). Using Hölder�s inequality we therefore get that�����

Z
R2+
!r�R � r!

����� dxdy � j!jp� jr!jp jr�Rjq ;
and therefore, since j�Rjq = R1=q�1j�j, we �nd that

lim
R!1

Z
R2+
!r�R � r! dxdy = 0 :

Finally, let BR = R2 n BR be the complement of a ball BR of radius R centered at the origin. Since
�R(R2) � [0; 1], we have that Z

BR\R2+
jr!j2 dxdy �

Z
R2+
�Rjr!j2 dxdy ;

and therefore

lim sup
R!1

Z
BR\R2+

jr!j2 dxdy = 0 :

It follows that r! is identically zero in R2+ and therefore ! is also identically zero in R2+, since ! is zero
at the boundary y = 0.

5 Technical lemmas

In the following two subsections we prove technical lemmas which will allow us to bound the volume term
(3.5) and the boundary term (3.6), respectively. In order to emphasize that the lemmas do not use the
detailed properties of the Green�s function K, we state the results for general (Green�s) functions G. See
Appendix A for a proof that the Green�s function K satis�es all the stated properties.

5.1 Volume terms

As has been explained in Section 3.1 TV fGg can be rewritten as a convolution product. Namely, let
' 2 C10 (R2+), and let e'(x; y) = '(x; y) for x 2 R, and y > 0 and e'(x; y) = �'(x;�y) for x 2 R, and
y < 0. Then, for (x; y) 2 R2 the convolution G � e' is well de�ned and we can write TV fGg['] as the
restriction of this convolution product to R2+. We have:

Lemma 16 Let (p; q; r) 2 [1;1)3 such that 1=r+1=q = 1+1=p. Let furthermore G 2 C1(R2 nf(0; 0)g)\
Lq(R2). Then, TV fGg['] 2 Lp(R2+), for all ' 2 Lr(R2+), and we have the bound

jTV fGg[']jp � C(p; q; r;G) j'jr : (5.1)

Proof. Lemma 16 is an immediate consequence of the Young inequality for convolutions, using that
je'jp;R2 = 2j'jp;R2+ for all p <1.
The next Lemma makes the compensation at large values of y that is inherent in the de�nition of

TV fGg explicit:
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Lemma 17 Let � 2 (0;1), and let (p; q; r) 2 [1;1)3 such that 1=r + 1=q = 1 + 1=p. Let furthermore
G 2 C1(R2 n f0g), with @yG 2 Lq�(R2). Then TV fGg['] 2 Lp�(R2+) for all ' 2 Lr�+1(R2+), and we have
the bound

jTV fGg[']jp;� � C(p; q; r; �;G) j'jr;�+1 : (5.2)

Proof. The proof relies on the following identity:

Proposition 18 For any smooth function ' with compact support in R2+, we have

TV fGg['](x; y) = �
Z 1

0

dt

(1� 2t)2
Z
R2+
2@yG(x� x0; y � y0) y0 '(x0;

y0
1� 2t ) dx0dy0 : (5.3)

Proof. Since

G(x� x0; y � y0)� G(x� x0; y + y0) = �2y0
Z 1

0

@yG(x� x0; y � (1� 2t)y0) dt ; (5.4)

we get for TV fGg,

TV fGg['](x; y) = �
Z 1

0

dt

Z
R2+
2@yG(x� x0; y � (1� 2t)y0)y0'(x0; y0) dx0dy0 ; (5.5)

and (5.3) follows by a change of variables.
Using the identity (5.3) we can now prove Lemma 17. We have that

j(1 + y)�TV fGg['](x; y)j � C(�)(T1(x; y) + T2(x; y)) ; (5.6)

with T1 and T2 de�ned by

T1(x; y) =

Z 1

0

dt

(1� 2t)2
Z
R2+
j(1 + jy � y0j)�@yG(x� x0; y � y0)j � jy0'(x0;

y0
1� 2t )j dx0dy0 ; (5.7)

and

T2(x; y) =

Z 1

0

dt

(1� 2t)2
Z
R2+
j@yG(x� x0; y � y0)j � jy0j1+�'(x0;

y0
1� 2t )j dx0dy0 : (5.8)

We �rst bound T1. Let 0 < 2� < 1� 1=p, and let q � 1 such that 1=p+ 1=q = 1. Then, we have that

jT1(x; y)jp �
�Z 1

0

dt

j1� 2tj2�q

� p
q
Z 1

0

j�t(x; y)jp
j1� 2tj2(1��)p dt ; (5.9)

where, for any (x; y) 2 R2+ and t 2 [0; 1], �t is de�ned by

�t(x; y) =

Z
R2+
j(1 + jy � y0j)�@yG(x� x0; y � y0)j � jy0'(x0;

y0
1� 2t )j dx0dy0 : (5.10)

Note that the �rst integral in (5.9) is �nite since 2� < 1=q. Hence, by Tonelli�s theorem,

jT1jp � C
�Z 1

0

j�tjpp
j1� 2tj2(1��)p dt

� 1
p

: (5.11)

Now, since 1 + 1=p = 1=q + 1=r, we can apply Young�s inequality for convolutions. We get

j�tjp � j@yGjq;�

 Z
R+2

�
y0'(x0;

y0
1� 2t )

�r
dx0dy0

! 1
r

; (5.12)

and therefore, using a scaling argument,Z
R+2

�
y0'(x0;

y0
1� 2t )

�r
dx0dy0 = j1� 2tjr+1 j'jrr;1 : (5.13)
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Therefore,

jT1jp � j@yGjq;� j'jp;1
�Z 1

0

j1� 2tjp(1=r+1�2(1��)) dt
� 1

p

: (5.14)

Let p0 = p(1=r + 1 � 2(1 � �)). Then, the integral in (5.14) is �nite, provided p0 > �1. Since 1=r =
1+1=p� 1=q, this is equivalent to 2=p > 1=q� 2�. Therefore, the integral in (5.14) is �nite, provided 2�
is chosen su¢ ciently close to 1=q.
We now bound T2.Following exactly the same strategy as for the case of T1 we get that

jT2jp � j@yGjq j'jp;1+�
�Z 1

0

j1� 2tjp(1=r+�+1�2(1��)) dt
� 1

p

; (5.15)

and the integral in (5.15) is �nite, provided p (1=r + � + 1 � 2(1 � �)) � p (1=r + 1 � 2(1 � �)) > �1.
The bound on TV fGg ['] now follows from the bounds on T1 and T2 by the triangle inequality. This
completes the proof of Lemma 17.

5.2 Boundary terms

The following lemma gives bounds on TBfGg which will be useful for the case y > 1.

Lemma 19 Let (p; q; r; �) 2 [1;1)3 � [0;1), such that 1 + 1=r = 1=p + 1=q. Let g 2 Lp(R) and let
G 2 C1(R2 n f(0; 0)g) with Z 1

1

(1 + jyj�)r
�Z 1

�1
j@yG(t; y)jq dt

� r
q

dy <1 : (5.16)

Then, TBfGg[g] 2 Lr�(R� (1;1)), and we have the bound

jTBfGg[g]jr;� � C(p; q; r; �;G) jgjp : (5.17)

Proof. Since, for �xed y > 0, TBfGg[g] is a convolution product with respect to the �rst variable, i.e.,

g �x @yG(�; y) ;

we can apply Young�s inequality and the result follows.

In order to prove detailed bounds for TBfGg, we use the expressions (1.13) and (3.17) for !0 and TB
respectively. These expressions are based on the Fourier transform. We proceed in several steps. Our
starting point is the following classical result in Fourier-multiplier theory [15, Theorem 3, p.96]:

Theorem 20 Let 1 < p <1 and let � 2 C1(R n f0g) such that j�jM <1, where

j�jM = sup
�2Rnf0g

fj�(�)j+ j��0(�)jg : (5.18)

Then, the application F�, de�ned by

F�[f ] = F�1[� F [f ] ] ; (5.19)

maps Lp(R) into Lp(R). Moreover, there exists a constant C(p) <1, depending only on p, such that for
all f 2 Lp(R),

jF�[f ]jp;R � C(p) j�jM jf jp;R : (5.20)

In view of Theorem 20, the expressions (1.13) and (3.17) for !0 and TB can be considered multiplier
transformations, but with a multiplier depending on two or three variables. For our purposes we therefore
now generalize the de�nition (5.19) to the case of multipliers � which depend on several variables. The
Fourier transform is however always with respect to the �rst argument only.

The following lemma will allow us to analyze the function !0:
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Lemma 21 Let (p; r; s) 2 (1;1) � R2, � > 1 � (1=p + s), � 2 C1((R n f0g) � (0;1)), and de�ne the
norm j � jM;r;s by

j�jM;r;s = sup
��0

fsr(1 + �)sjm(�; �)jMg : (5.21)

Let F� be de�ned by

F�[f ] =
Z 1

0

F�1[�(�; �) F [f ](�; �) ] d� : (5.22)

Then,

(i) for all f 2 C10 (R2+) we have that F�[f ] 2 Lp(R), and there exists a constant C(p; �) such that

jF�[f ]jp � C(p; �)jf jp;� ; (5.23)

provided
j�jM;0;s <1 : (5.24)

(ii) for all ' 2 C10 (R2+) we have that F�['] 2 Lp(R), and there exists a constant C(p; �) such that

jF�[']jp � C(p; �)
�
j@y'jp;R�(0;1) + j'jp;��1

�
; (5.25)

provided
j�jM;1;s <1 : (5.26)

Proof. We �rst prove (i). Let � = s+ �. Applying Hölder�s inequality, we get from (5.22) that

jF�[f ](x)jp �
�Z 1

0

d�

(1 + �)�q

� p
q
Z 1

0

��F�1[(1 + �)��(�; �)F [f ](�; �)](x)��p d� ; (5.27)

with q the conjugate exponent of p, i.e., 1=p+1=q = 1. The �rst integral on the right-hand side of (5.27)
is �nite because � > 1=q. Therefore,

jF�[f ]jpp � C
Z
R2+

��F�1[(1 + �)��(�; �)F [f ](�; �)](x)��p dxd� : (5.28)

Using that � = s+ �, we get from Theorem 20, that

jF�[f ]jpp � C
Z 1

0

(1 + �)spj�(�; �)jpM j(1 + �)�f(�; �)jpp;R d� ; (5.29)

and, applying again Hölder�s inequality we get that

jF�[f ]jpp � C j�jM;0;s jf jpp;� ; (5.30)

as required. Wen now prove (ii). Applying the same technique as in the proof of (i) we get that

jF�[']jpp � C j�j
p
M;1;s

Z
R2+

�
(1 + �)�j'(x; �)j

�

�p
dxd� ; (5.31)

and (ii) now follows using that, by a straightforward generalization of Hardy�s inequality,Z
R2+

�
(1 + �)�

�
j'(x; y)j

�p
dxdy � C

�
j@y'jpp;R�(0;1) + j'j

p
p;��1

�
; (5.32)

This completes the proof of Lemma 21.

The following lemma will allow us to analyze the function !B :
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Lemma 22 Let (p; r; s) 2 (1;1) � R2, � > 1 � (1=p + s), � 2 C1((R n f0g) � (0;1)2), and de�ne the
norm j � jM;r;s;p by

j�jM;r;s;p =

Z 1

0

[j�(�; �; y)jM;r;s]
p
dy : (5.33)

Let F� be de�ned by

F�[f ] =
Z 1

0

F�1[�(�; �; �) F [f ](�; �) ] d� : (5.34)

Then,

(i) for all f 2 C10 (R2+) we have that F�[f ] 2 Lp(R � (0; 1)), and there exists a constant C(p; �) such
that

jF�[f ]jp;R�(0;1) � C(p; �)jf jp;� ; (5.35)

provided
j�jM;0;s;p <1 : (5.36)

(ii) for all ' 2 C10 (R2+) we have that F�['] 2 Lp(R � (0; 1)), and there exists a constant C(p; �) such
that

jF�[']jp;R�(0;1) � C(p; �)
�
j@y'jp;R�(0;1) + j'jp;��1

�
; (5.37)

provided
j�jM;1;s;p <1 : (5.38)

Proof. Proceeding exactly as in the proof of Lemma 21 we obtain for (i),

jF�[f ]jpp;R�(0;1) � C
Z 1

0

Z 1

0

(1 + �)spj�(�; �; y)jpMj(1 + �)
�f(�; �)jpp;R d�dy ; (5.39)

and equation (5.36) follows using Hölder�s inequality. To prove (ii) we combine Hölder�s inequality with
the inequality (5.32).

6 Proof of Theorem 12

In the following two Lemmas we present our results for !V = TV fKg['] and !B = TBfKg[Fm0
[']]. From

these lemmas the Theorem 12 then follows using the triangle inequality.

Lemma 23 Let f be a smooth function with compact support and let ' = a � rf , with a 2 R2. Then,

(i) !V 2 Lp(R� (0; 1)), for all p 2 (3=2;1), and for all q < 3p=(3 + p),

j!V jp;R�(0;1) � C(a; p; q) (j'jp + jf jq) : (6.1)

(ii) r!V 2 Lp(R� (0; 1)), for all p 2 (1;1), and for all q < p,

jr!V jp;R�(0;1) � C(a; p; q) (jf jq + j'jp) : (6.2)

In principle we can establish, instead of (6.1), (6.2), bounds that only involve the function ', instead
of ' and f . The price to be paid is that the constants in the bounds then also depend on the support of
'. Since the ultimate goal of the work that we start here is to use the present results for a proof of the
existence of solutions to the Navier-Stokes equations, we have chosen to systematically establish bounds
that are independent of the support of ', in order to be able to generalize to functions ' of non compact
support in a straightforward way.

Lemma 24 Let ' be a smooth function with compact support. Then,
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(i) !B 2 Lp(R� (0; 1)), for all p 2 (1;1), and for arbitrary � > 2� 1=p,

j!B jp;R�(0;1) � C(p; �) j'jp;� : (6.3)

(ii) r!B 2 Lp(R� (0; 1)), for all p 2 (1;1), and for arbitrary �x > 1� 1=p and �y > 2� 1=p, and

j@x!B jp;R�(0;1) � C(p; �x)
�
j'jp;�x + j@y'jp;R�(0;1)

�
; (6.4)

j@y!B jp;R�(0;1) � C(p; �y)
�
j'jp;�y + j@y'jp;R�(0;1)

�
: (6.5)

In the remainder of this section we give a proof of these two lemmas.

6.1 Proof of Lemma 23.

Let r =
p
x2 + y2, and let � be a cut-o¤ function in C1(R2), i.e., �(x; y) = 1 for r � 1=2, and �(x; y) = 0

for r > 1, say. We then set,
!V = TV fKg['] = !cV + !ncV ; (6.6)

with !cV = TV f�Kg['] and with !ncV = TV f(1� �)Kg[']. From Proposition 3 we have that

�K 2 L1(R2) ; and r(�K) 2 L1(R2) : (6.7)

Therefore, we get from Lemma 16 with q = 1, that

!cV 2 Lp(R2+) ; and r!cV = TV fr(�K)g['] 2 Lp(R2+) ; (6.8)

and that
j!cV jp � C j'jp ; and jr!cV jp � C j'jp : (6.9)

For the second term in (6.6) we use that ' = a � rf , and obtain that

!ncV (x; y) =

Z
R2+
a � r0 [(1� �)K(x� x0; y � y0)� (1� �)K(x� x0; y + y0)] f(x0; y0) dx0dy0 ; (6.10)

where r0 = (@x0 ; @y0). We get that

TV f(1� �)Kg['] = TV fa1@x(1� �)Kg[f ] + TV;+fa2@y(1� �)Kg[f ] ; (6.11)

where a = (a1; a2) and TV;+ is de�ned as TV , but with a plus sign instead of a minus sign between the two
terms. Indeed, the integration by parts introduces a change of sign for the y0-derivative. We therefore
do not get any cancellation at large values of y, and it is therefore su¢ cient to estimate the two terms
separately in a straightforward way. Applying Proposition 41, we get that, for all � > 0,

r [(1� �)K] 2 L3=2+�(R2) ; and r2[(1� �)K] 2 L1+�(R2) : (6.12)

Proceeding as in the proof of Lemma 16 we therefore get that !ncV 2 Lp(R2+) for all p > 3
2 and q <

3p=(3 + p), and that
j!ncV jp � C(p; q)jf jq : (6.13)

Similarly, we �nd that r!ncV = TV fr((1� �)K)g['] 2 Lp(R2+), for all p > 1 and q < p, and that

jr!ncV jp � C(p; q)jf jp : (6.14)

Combining (6.8,6.9) and (6.13,6.14), we obtain Lemma 23. This completes the proof of Lemma 23.

6.2 Proof of Lemma 24.

In order to study the behavior of !B in the strip 0 � y � 1 we use the representation (3.22) for !B ,
which allows us to apply Lemma 22 in order to bound !B and r!B . We treat the two cases separately.
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Bounds on !B. For all (k; �) 2 R� (0;1) we have that

jm0(k; �)j � �e�jkj� ; (6.15)

and therefore we �nd that mB , as de�ned by (3.21), satis�es for all (k; �; y) 2 R� (0;1)� (0; 1),

jmB(k; �; y)j � C�e�jkj(�+y) : (6.16)

Now, let _� = d�=dk = (k � i=2)=�. Then,

@kmB(k; �; y) = �y _�e��ym0(k; �)

+ e��y
�
� _�� sign(k)

�� jkj m0(k; �) + �
_�e��� � sign(k)e�jkj�

�� jkj

�
: (6.17)

Using Lemma 42 we get that there is a constant C,

j@kmB(k; �; y)j � C
"
�y

 
1 +

1p
jkj

!
+

�

min(1;
p
jkj)

 
1 +

1p
jkj

!#
e�jkj(�+y) : (6.18)

For a constant C <1. We therefore �nd that for all (k; �; y) 2 R� (0;1)� (0; 1),

jk@kmB(k; �; y)j � C�(jkj+ 1)e�jkj� ; (6.19)

and that for all (�; y) 2 (0;1)� (0; 1),

jmB(�; �; y)jM � C (� + 1) : (6.20)

This shows that the function mB is a multiplier in the sense of Lemma 22 with s = �1, r = 0, and
arbitrary p 2 (1;1). Thus, applying (i) of Lemma 22, we obtain that !B 2 Lp(R� (0; 1)) for arbitrary
p 2 (1;1), and that, for all � > 2� 1=p,

j!B jp;R�(0;1) � j'jp;� : (6.21)

Bounds on r!B. Like !B , the functions @y!B , and @x!B are associated with multipliers m
y
B and m

x
B

respectively, which are de�ned by,

my
B(k; �; y) = ��mB(k; �; y) ; (6.22)

mx
B(k; �; y) = �ikmB(k; �; y) : (6.23)

For mx
B we apply, for �xed (�; y) 2 (0;1)� (0; 1), the equation (6.16), and obtain that

jmx
B(k; �; y)j � Cjkj�e�jkj� : (6.24)

We can therefore use a scaling argument to show that there exists a constant C < 1 such that
jmx

B(k; �; y)j � C for all (k; �) 2 R� (0;1). For @kmx
B we get that for all (k; �; y) 2 R� (0;1)� (0; 1),

jk@kmx
B(k; �; y)j � jkmB(k; �; y)j+ jk2@kmB(k; �; y)j ; (6.25)

and we can apply (6.16) and (6.18) and we get that for all (k; �; y) 2 R� (0;1)� (0; 1),

jk@kmx
B(k; �; y)j � Cjkj�(1 + jkj)e�jkj(�+y) : (6.26)

Using again a scaling argument we �nd that for all (�; y) 2 (0;1)� (0; 1),

sup
k2R

jk@kmx
B(k; �; y)j �

�

� + y

�
1 +

1

� + y

�
; (6.27)

and we therefore get that for all (�; y) 2 (0;1)� (0; 1),

jmx
B(�; �; y)jM � C 1 + �

�
: (6.28)
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This shows that the function mx
B satis�es the assumptions of Lemma 22 with s = �1, r = 1 and arbitrary

p 2 (1;1). Thus, applying (ii) of Lemma 22, we get that @x!B 2 Lp(R� (0; 1)) for arbitrary p > 1, and
for all � > 1� 1=p,

j@x!B jp;r;R�(0;1) � C (j'jp;� + j@y'jp;R�(0;1)) : (6.29)

For my
B we apply, for �xed (�; y) 2 (0;1) � (0; 1), (6.16) and (B.1), and obtain that for �xed (�; y) 2

(0;1)� (0; 1), and arbitrary k 2 R,

jmy
B(k; �; y)j � C �

p
jkj(1 +

p
jkj)e�jkj� : (6.30)

As before, a scaling argument now implies that for all (�; y) 2 (0;1)� (0; 1),

sup
k2R

jmy
B(k; �; y)j � (1 +

p
�) : (6.31)

Therefore, by de�nition of � and _�, see (B.1) and (B.2), respectively, we get that for all (k; �; y) 2
R� (0;1)� (0; 1),

j@kmy
B(k; �; y)j � C (

p
jkj(1 +

p
jkj)j@kmB(k; �; y)j+

 
1 +

1p
jkj

!
jmB(k; �; y)j) : (6.32)

Using (6.16) and (6.18), we therefore get that

jk@kmy
B(k; �; y)j � C (�

p
jkj(1 +

p
jkj)(1 + jkj))e�jkj(�+y) ; (6.33)

and using again a scaling argument we get that for all (�; y) 2 (0;1)� (0; 1),

sup
k2R

jk@kmy
B(k; �; y)j � C

(1 + �)
3
2

p
�

: (6.34)

Therefore, we �nally get that for all (�; y) 2 (0;1)� (0; 1),

jmy
B(�; �; y)jM � C (1 + �)

3
2

p
�

; (6.35)

and my
B therefore satis�es the assumptions of Lemma 22 with s = �2, r = 1 and all p > 1. Thus,

applying (ii) of this very lemma @y!B 2 Lp(R � (0; 1)) for arbitrary p > 1, and for all � > 2 � 1=p, we
have that

j@y!B jp;r;R�(0;1) � C (j'jp;� + j@y'jp;R�(0;1)) : (6.36)

This concludes the proof of Lemma 24.

7 Proof of Theorem 13

In this section we discuss the case of ' = @xf . We again set

!V = TV fKg['] = !cV + !ncV ; (7.1)

with

!cV = TV f�Kg['] ; (7.2)

!ncV = TV f(1� �)Kg['] ; (7.3)

so that
! = !cV + !

nc
V + !B : (7.4)

We now proceed as in the previous section and estimate all the components in the decomposition (7.4)
independently. Theorem 13 then follows by the triangle inequality.

Lemma 25 Let f be a smooth function with compact support, and let (p; �) 2 [1;1)� [0;1). Then,
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(i) !cV 2 Lp�(R2++), and there exists a constant C(�) such that

j!cV jp;�;R2++ � C(�) j'jp;� : (7.5)

(ii) r!cV 2 Lp�(R2++), and there exists a constant C(�) such that

jr!cV jp;�;R2++ � C(�) j'jp;� : (7.6)

Lemma 26 Let f be a smooth function with compact support and let ' = @xf . Let (mx;my) 2 N2 and
(p; �) 2 [1;1)� [0;1), and let mxy = 2mx +my + 4. Then,

(i) @mx
x @

my
y !ncV 2 Lp�(R2++), provided � < mxy and p > 3=(mxy � �).

(ii) for all 1 � q < q�mx;my
, with

q�mx;my
=

�
max

�
1 +

1

p
� mxy � �

3
; 0

���1
2 [1;1] ; (7.7)

there exists a constant C(p; q; �) <1 such that��@mx
x @my

y !ncV
��
p;�;R2++

� C(p; q; �) jf jq;1+� : (7.8)

Lemma 27 Let f be a smooth function with compact support and let ' = @xf . Let (mx;my) 2 N2 and
(p; �) 2 [1;1)� [0;1), and let mxy = 2mx +my + 4. Then,

(i) @mx
x @

my
y !B 2 Lp�(R2++), provided � < mxy and p > 3=(mxy � �).

(ii) for all 1 � q < eq�mx;my
, with

eq�mx;my
=

�
1�min

�
1;
mxy � � � 3=p

2

���1
2 [1;1] ; (7.9)

there exists a constant C(p; q; �) <1 such that��@mx
x @my

y !B
��
p;�;R2++

� C(p; q; �) jf jq;2�1=q : (7.10)

The remainder of this section is devoted to the proof of these lemmas.

7.1 Proof of Lemma 25

Again we write !cV as a convolution, i.e., !cV = (�K) � e', with e'(x; y) = '(x; y) for x 2 R, and y � 0
and e'(x; y) = �'(x;�y) for x 2 R, and y < 0. Therefore, there exists a constant C(�) <1 such that

j(1 + y)�!cV j � C(�) (j(1 + y)��Kj � je'j+ j�Kj � j(1 + y)� e'j) : (7.11)

Using Proposition 3, we see that �K 2 L1�(R2) for all � 2 [0;1), and, using Young�s inequality for
convolution, we get that

!cV 2 Lp�(R2+) ; and that j!cV jp;� � C(�) j'jp;� : (7.12)

Similarly, using again Proposition 3, we get that r(�K) 2 L1�(R2) for all � 2 [0;1), and therefore we
get, using again Young�s inequality, that

r!cV 2 Lp�(R2+) ; and that jr!cV jp;� � C(�) j'jp;� : (7.13)
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7.2 Proof of Lemma 26

Using that ' = @xf , we �nd that !ncV = TV f@x[(1��)K]g[f ], and therefore we have for arbitrary integers
(mx;my) 2 N2, that

@mx
x @my

y !ncV = TV f@mx+1
x @my

y [(1� �)K]g[f ] : (7.14)

Now, given p > 3=(mxy � �), and q�mx;my
as de�ned in (7.7), and given q satisfying 1 � q < q�mx;my

, we
de�ne r by the equation 1=r = 1=p+ 1� 1=q. Since

r � (2(mx + 1) + (my + 1)� �) > 3 ; (7.15)

and since 1� � truncates away from zero, Proposition 41 implies that

@mx+1
x @my+1

y [(1� �)K] 2 Lr�(R2) : (7.16)

We can now apply Lemma 17 with p, q, r as de�ned above and with G =@mx+1
x @

my
y [(1 � �)K], and we

get that
@mx
x @my

y !ncV 2 Lp�(R2+) ; with
��@mx
x @my

y !ncV
��
p;�
� C jf jq;�+1 : (7.17)

7.3 Proof of Lemma 27

Since ' = @xf , we have the following representation for !0 :

Lemma 28 There exists a function 
0 2 C1(R), such that:

(i) for all 1 < p <1, there exists a constant C(p) <1 depending only on p such that

j
0[f ]jp � C(p) jf jp;2�1=p : (7.18)

(ii) !0 = @x
0.

Proof. Since ' = @xf , we have F ['] = �ikF [f ]. Therefore. we have for all k 2 R, that

F [!0](k) = �ikF [
0](k) ; (7.19)

where


0 =

Z 1

0

F�1 [m0(�; �) Ff(�; �)] d� ; (7.20)

with m0 as de�ned in (1.12). Proceeding exactly as in the proof of Lemma 4, we obtain that 
0 is
smooth with all derivatives tending to zero at in�nity, and (7.19) implies that !0 = @x
0. The function

0 satis�es the assumptions of Lemma 21 with multiplier m0. Namely, using Proposition 43 for all �xed
� 2 (0;1), we get that jm0(k; �)j � �e�jkj�, for all k 2 R. Therefore, we �nd that supk jm0(k; �)j � � for
� > 0, and we conclude that, for k 6= 0,

@km0(k; �) = �
_�e��� � sign(k)e�jkj�

�� jkj � _�� sign(k)
�� jkj m0(k; �) : (7.21)

Therefore we get, using Lemma 42, that

jk@km0(k; �)j � C � (1 + jkj) e�jkj� ; (7.22)

from which we get using a scaling argument that

sup
k2Rnf0g

jk@km0(k; �)j � C (1 + �) : (7.23)

From (7.23) the bound (7.18) on 
0 now follows using Theorem 21 with s = �1 and r = 0.

Using Lemma 28 we can now prove Lemma 27. First, we note that for arbitrary integers (mx;my) 2
N2,

!B = TB
�
@mx+1
x @my

y K
	
[
0] : (7.24)
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This shows that !B satis�es the assumptions of Lemma 19. Namely, let � < mxy, p > 3=(mxy � �), and
q such that 1 � q < eq�mx;my

, and de�ne r by the equation 1=r = 1=p+ 1� 1=q. By de�nition of eq�mx;my
,

we have for all q < eq�mx;my
, that

1� 1
q
<
1

2

�
mxy � � �

3

p

�
; (7.25)

since the de�nition of p implies that mxy � � � 3=p > 0. Combining the above inequalities, we get that

mxy � � > 2
�
1

p
+ 1� 1

q

�
+
1

p
; (7.26)

so that �nally

p

�
� �

�
2(mx + 1) + (my + 1) + 4�

2

r

��
< �1 : (7.27)

Hence, Proposition 40 implies thatZ 1

1

(1 + y�)p
�Z 1

�1
j@mx
x @my

y K(x; y)jr dx
� p
r

dy <1 : (7.28)

We can therefore apply Lemma 19 with p, q, r as de�ned above and with G = @mx+1
x @

my
y [(1� �)K], and

we get that
@mx
x @my

y !B 2 Lp�(R2++) ; and that
��@mx
x @my

y !B
��
p;�;R2++

� C j
0jq : (7.29)

Since by Lemma 28 j
0jq � C jf jq;2�1=q we get the stated result.

8 Proof of Theorem 14

In this section we treat the case of ' = @yf . We again set

!V = TV fKg['] = !cV + !ncV ; (8.1)

with !cV and !ncV as de�ned in (7.2), (7.3). The �rst term on the right-hand side of (8.1) has compact
support and its properties as a function in Lp�(R2++) have already been studied in Lemma 25. It is
therefore su¢ cient to discuss the second term. Using that ' = @yf , integration by parts leads to

!ncV (x; y) =

Z
R2+
(@y[(1� �)K](x� x0; y � y0) + @y[(1� �)K](x� x0; y + y0)) f(x0; y0) dx0dy0 : (8.2)

When comparing with the case of ' = @xf (see (7.14)) we see that the two terms below the integral in
(8.2) are added and not subtracted and we therefore loose one power of decay in y at large values of y,
when compared to the case of ' = @xf . Moreover, since @yK already decays one power less fast in y
than @xK (see Proposition 41), we expect that !ncV decays two powers of y less fast than for the case
of ' = @xf , i.e., only like 1=y2 instead of 1=y4. This is in contradiction with our expectations which
were motivated in Section 3.2, and which stipulated a decay like 1=y3. The reason for this apparent
contradiction is that there is a compensation between !B and !ncV , i.e., both terms decay like 1=y

2, and
we therefore have to use a di¤erent splitting if we want to prove a decay like 1=y3.

8.1 New splitting

Since the function f is of compact support, we can de�ne a function F by

F (x; y) =

Z 1

y

f(x; z) dz ; (8.3)

and in the remainder of this section we reserve the symbol F for this function. By de�nition f = �@yF ,
F is of compact support in R2+, and, in particular, we have that F 2 Lp�(R2+). Moreover, by Lemma 8,
we have that for all (p; �) 2 [1;1)� [0;1), and for all �0 > � + 1,

jF jp;� � C(p; �; �0)jf jp;�0 : (8.4)

23



We now use that f = �@yF in order to integrate once more by parts in (8.2). Namely, using in addition
that by (1.14) and (8.3),

F (�; 0) =
Z 1

0

f(�; z) dz =F1[f ] ; (8.5)

with 1 standing for the function identically equal to one. We get that

!ncV = �e!ncV + !ncB ; (8.6)

where

e!ncV = TV f@yy[(1� �)K]g[F ] ; (8.7)

!ncB = TBf(1� �)Kg[F1[f ]] : (8.8)

The new volume term e!ncV is now again an expression in terms of TV for which we have a compensation at
large values of y. Moreover, the corresponding Green�s function @2yK behaves at large values of y like the
Green�s function @xK. Therefore, as we prove below, the new volume term behaves at large values of y
like 1=y4. The term !ncB is the above mentioned term which behaves for large y like 1=y2. We now isolate
the compensating term in !B . Since �(x; y) = 0, for all y > 1 and x 2 R, we have that, for (x; y) 2 R2++,

TBf(1� �)Kg[F (�; 0)] = TBfKg[F (�; 0)] : (8.9)

Also, since ' = @yf we have by (3.6) that !B = TBfKg[Fm0
[@yf ]]. Integration by parts gives that

Fm0 [@yf ] = �F@�m0 [f ] : (8.10)

Therefore we have, for (x; y) 2 R2++, that !B = �!ncB + e!B , where e!B = TBfKg[Fem0
[f ]], with

em0(k; �) = 1� @�m0(k; �) : (8.11)

In order to analyze the behavior of the new boundary term e!B we split it into two parts, an explicit parte!explB which shows the expected behavior like 1=y3 and a remainder e!restB which decays again like 1=y4.
Explicitly, we set e!B = e!explB + e!restB , with e!explB = TBfKg[Femexpl

0
[f ]] and e!restB = TBfKg[Femrest

0
[f ]], where

emexpl
0 (k; �) = ��e��� ; (8.12)emrest
0 (k; �) = em0(k; �)� emexpl

0 (k; �) : (8.13)

8.2 Formulation of main lemmas

With the above notation, we have that, in R2++,

! = !cV � e!ncV + e!explB + e!restB :

We now prove bounds for each of these terms separately. The required result then follows using the
triangle inequality. The term !cV has already been estimated in the previous sections, see Lemma 25.
To bound e!ncV , we use that the bounds in Proposition 41 on @2yK are the same as the bounds on @xK.
Therefore, the proof in Lemma 26 can be repeated, and using Lemma 8 to bound F we get:

Lemma 29 Let f be a smooth function of compact support and let ' = @yf . Let (mx;my) 2 N2,
mxy = 2mx +my + 4, and let (p; �) 2 [1;1)� [0;1). Then,

(i) @mx
x @

my
y e!ncV 2 Lp�(R2++), provided � < mxy and p > 3=(mxy � �).

(ii) for all q, 1 � q < q�mx;my
and q�mx;my

as in (7.7), and all �0 > 2 + �, there exists a constant
C(p; q; �; �0) <1, such that

je!ncV jp;�;R2++ � C(p; q; �; �0) jf jq;�0 : (8.14)

The boundary terms e!ncV can be dealt with as in the preceding section. We get:
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Lemma 30 Let f be a smooth function of compact support and let ' = @yf . Let (mx;my) 2 N2,
mxy = 2mx +my + 4, and let (p; �) 2 [1;1)� [0;1). Then,

(i) @mx
x @

my
y e!restB 2 Lp�(R2++), provided � < mxy and p > 3=(mxy � �).

(ii) for all q, 1 � q < eq�mx;my
, with eq�mx;my

as in (7.9), there exists a constant C(p; q; �) <1, such that

je!restB jp;�;R2++ � C(p; q; �) jf jq;2�1=q : (8.15)

The term e!explB , �nally, is the term decaying only like 1=y3 at in�nity:

Lemma 31 Let f be a smooth function of compact support and let ' = @yf . Let (mx;my) 2 N2,
mxy = 2mx +my + 4, and let (p; �) 2 [1;1)� [0;1). Then,

(i) @mx
x @

my
y e!explB 2 Lp�(R2++), provided � < mxy � 1 and p > 3=(mxy � 1� �).

(ii) for all r, 1 � r < 2eq�mx;my
=(eq�mx;my

+2), with eq�mx;my
as in (7.9), there exists a constant C(p; q; �) <

1, such that
je!explB jp;�;R2++ � C(p; r; �)

�
jf jr;1 + j'jr

�
: (8.16)

The remainder of this section is devoted to the proof of Lemmas 30 and 31.

8.3 Proof of Lemma 30

We prove that e!restB satis�es a lemma equivalent to 28. Lemma 30 then follows using the same arguments
as in the proof for Lemma 27. With this idea in mind, we de�ne for (k; �) 2 R � (0;1), the multiplierfM rest
0 by fM rest

0 (k; �) = � emrest
0 (k; �)

ik
: (8.17)

We have the following technical result:

Proposition 32 The multiplier fM rest
0 satis�es:

(i) fM rest
0 2 C1(R n f0g � (0;1)).

(ii) for all � > 0

sup
k 6=0

jfM rest
0 (k; �)j+ sup

k 6=0
jk@kfM rest

0 (k; �)j � C
�
1 + �3

�
�

: (8.18)

Proof. We �rst prove (i). By de�nition, we have that

emrest
0 (k; �) = ��(e

��� � 1)� jkj(e�jkj� � 1)
�� jkj � �e��� :

Consequently fM rest
0 (k; �) =

�(e��� � 1 + �(�� jkj)e���)� jkj(e�jkj� � 1)
ik(�� jkj) :

Since � is smooth away from k = 0, we �nd that fM rest
0 2 C1(R n f0g � (0;1)). To prove (ii) we setfM rest

0 = fM rest
0;1 � fM rest

0;2 , where

fM rest
0;1 (k; �) =

�(e��� � 1 + ��e���)
ik(�� jkj) ;

fM rest
0;2 (k; �) =

sign(k)(��e��� + (e�jkj� � 1))
i(�� jkj) :
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and prove (ii) for fM rest
0;1 and fM rest

0;2 separately. For fM rest
0;1 we obtain by Lemma 42, that for all (k; �) 2 R2+,

jfM rest
0;1 (k; �)j � C

 
1 +

1p
jkj

!
1

j�� jkjj
�
e��� � 1 + ��e���

�
;

� C
 
1 +

1p
jkj

!
1

j�� jkjj

(���e�jkj� � 1 + �jkje�jkj����
+
���e��� � e�jkj� + ��e��� � �jkje�jkj����) :

Since 1=j�� jkjj � C (1 + 1=
p
jkj) we have that 
1 +

1p
jkj

!
1

j�� jkjj � C
�
1 +

1

jkj

�
:

Since furthermore
��e�jkj� � 1 + �jkje�jkj��� vanishes like jkj2 at k = 0 and is bounded at in�nity, we get

that, for all � > 0,

sup
k 6=0

 
1 +

1p
jkj

!
1

j�� jkjj

���e�jkj� � 1 + �jkje�jkj���� <1 :

Using a scaling argument, we therefore �nd that there exists a constant C independent of � for which for
all � > 0,

sup
k 6=0

 
1 +

1p
jkj

!
1

j�� jkjj

���e�jkj� � 1 + �jkje�jkj���� < C(1 + �) :
We also have that ���e��� � e�jkj� + ��e��� � �jkje�jkj���� � �2j�� jkjj j�j e�jkj� :
Therefore we get, using the bound in (B.1), that 

1 +
1p
jkj

!
1

j�� jkjj

���e��� � e�jkj� + ��e��� � �jkje�jkj���� � C�2 (1 + jkj)2 e�jkj� :
Using again a scaling argument we �nd that for all � > 0,

sup
k 6=0

 
1 +

1p
jkj

!
1

j�� jkjj

���e��� � e�jkj� + ��e��� � �jkje�jkj���� � C(1 + �)2 :
As a consequence,���@kfM rest

0;1 (k; �)
��� � ���� j _�� sign(k)jj�� jkjj +

1

jkj

���� ���fM rest
0;1 (k; �)

���+ ���� _�(e��� � 1 + ��e���)k(�� jkj)

����+ �����2 _��2e���k(�� jkj)

���� :
By Lemma 42 we have that

jkj
���� j _�� sign(k)jj�� jkjj +

1

jkj

���� � C �
1 + min

�
jkj; 1jkj

��
;

jkj
�����2 _��2e���k(�� jkj)

���� � C�2jkj(1 + jkj)2e�jkj� :
Therefore, we �nd that, for all � > 0,

sup
k 6=0
jkj
���� j _�� sign(k)jj�� jkjj +

1

jkj

���� ���fM rest
0;1 (k; �)

��� � sup
k 6=0

jfM rest
0;1 (k; �)j ;
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and that

sup
k 6=0
jkj
�����2 _��2e���k(�� jkj)

���� � C (1 + �)2�
:

Finally, we use that

jkj
���� _�(e��� � 1 + ��e���)k(�� jkj)

���� � C �
1 +

1

jkj

�
je��� � 1 + ��e���j ;

and get by a scaling argument that

sup
k 6=0

jkj
���� _�(e��� � 1 + ��e���)k(�� jkj)

���� � C (1 + �) :
Collecting all the bounds we �nd that we have proved that

sup
k 6=0

jk@kfM rest
0;1 (k; �)j � C

(1 + �)3

�
:

For fM rest
0;2 , we obtain by Lemma 42, that for all (k; �) 2 R2+,

jfM rest
0;2 (k; �)j � C

"
(1 + jkj)e�jkj� +

 
1 +

1p
jkj

!
je�jkj� � 1j

#
: (8.19)

The last term in (8.19) is bounded, since e�jkj� � 1 vanishes like jkj at k = 0. Therefore, we �nd by a
scaling argument, that for all � > 0,

sup
k 6=0

jfM rest
0;2 (k; �)j � C

�
1

�
+
p
�

�
:

Next,

j@kfM rest
0;2 (k; �)j �

���� _�� sign(k)�� jkj

���� jfM rest
0;2 (k; �)j+

���� _��e��� � _���2e��� � sign(k)�e�jkj�
(�� jkj)

���� :
As before we therefore �nd that

sup
k 6=0

jkj
���� _�� sign(k)�� jkj

���� jfM rest
0;2 (k; �)j � C sup

k 6=0
jfM rest

0;2 (k; �)j ;

and that

jkj
���� _��e��� � _���2e��� � sign(k)�e�jkj�

(�� jkj)

���� � C �� (1 + jkj) + �2(1 + jkj)2� e�jkj� :
Therefore, using again a scaling argument, we �nally get that for all � > 0,

sup
k 6=0

jk@kfM rest
0;2 (k; �)j � C (1 + �)

2
:

With these technical results at hand we can now prove the following lemma.

Lemma 33 Let f be a smooth function with compact support and let


rest0 =

Z 1

0

F�1
hfM rest

0 (�; �)Ff(�; �)
i
d� : (8.20)

Then,

(i) 
rest0 2 C1(R);
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(ii) for all p > 1 there exists a constant C(p) <1 such that j
rest0 jp � C(p) jf jp;2�1=p.

(iii) Femrest
0
['] = @x


rest
0 .

Proof. (i) follows because f is a smooth function with compact support, and since by de�nition
F [
rest0 ](k) = �ikFemrest

0
['], for all k 2 R, we get (iii). To prove (ii) we apply Lemma 32. The multiplierfM rest

0 satis�es the assumptions of Theorem 21 with s = 3, r = 1 and any p. Therefore, 
rest0 2 Lp(R),
for all p 2 (1;1), and ��
rest0

��
p
� C

�
j'jp + jf jp;2�1=p

�
: (8.21)

This completes the proof of Lemma 33.

The remainder of the proof of Lemma 30 is identical to the proof in Section 7.3.

8.4 Proof of Lemma 31

For e!explB the multiplier technique does not give su¢ cient information. We therefore �rst �nd a new
representation for e!explB .

Lemma 34 Let e!explB be as above. Then,

(i) e!explB = @x

expl
0 , where for x 2 R,


expl0 (x) =

Z
R2+
(@xK(x� x0; �)�K(x� x0; �))f(x0; �) d� : (8.22)

(ii) 
expl0 2 Lp(R) for all p > 2.

(iii) for all p > 2 there exists C(p) <1 such that for r < 2p=(2 + p)

j
expl0 jp � C(q)
�
jf jr;1 + j'jr

�
: (8.23)

Proof. To prove (i) we �rst note that

F [K](k; y) = �e
��y

�
: (8.24)

Therefore, we have for all x 2 R,


expl0 (x) =

Z
R2+
@yyK(x� x0; y)f(x0; y) dx0dy : (8.25)

But, by de�nition, we have that away from x = y = 0, @yyK = @xK � @xxK. Substituting this identity
into the integral (8.25) and using standard properties of convolution and parameter integrals we get the
result. To prove (ii) we set 
expl0 = 
expl0;1 +
expl0;2 , where


expl0;1 (x) =

Z 1

0

Z 1

�1
(@xK(x� x0; �)�K(x� x0; �))f(x0; �) dx0d� ; (8.26)


expl0;2 (x) =

Z 1

1

Z 1

�1
(@xK(x� x0; �)�K(x� x0; �))f(x0; �) dx0d� : (8.27)

We have that

j
expl0;1 jpp �
Z 1

�1

����Z 1

0

Z 1

�1
j@xK(x� x0; �)�K(x� x0; �)j jf(x0; �)j dx0d�

����p dx : (8.28)
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Since, for all (x; �) 2 R� (0;1),

j@xK(x; �)�K(x; �)j �
Cp
x2 + �2

; (8.29)

we �nd that for all 0 < � < 1 and x 2 R

�j@xK(x; �)�K(x; �)j �
Cp
x2 + 1

: (8.30)

Therefore,

j
expl0;1 jpp �
Z 1

�1

�����Z 1

�1

1p
x2 + 1

����Z 1

0

jf(x0; �)j
�

d�

���� dx0�����p dx : (8.31)

Applying Young�s inequality, with (p; q; r) satisfying p > 2, r < 2p=(2 + p) and 1=q + 1=r = 1 + 1=p, we
get, since x 7! 1=

p
x2 + 1 2 Lq(R), that

j
expl0;1 jpp � C
"Z 1

�1

�Z 1

0

jf(x; �)j
�

d�

�r
dx

# p
r

; (8.32)

where r > 1. Therefore, Jensen�s inequality implies that

j
expl0;1 jpp � C
�Z 1

�1

Z 1

0

����f(x; �)�

����r d� dx�
p
r

: (8.33)

Applying Poincaré�s inequality, and using that f vanishes a y = 0 and that @yf = ', we �nally obtain
that

j
expl0;1 jp � C j'jr :

For 
expl0;2 we have, for � > 1, that j@xK(x; �)�K(x; �)j � Cp
x2+1

. Consequently,

j
expl0;2 jpp �
Z 1

�1

�����Z 1

�1

1p
x2 + 1

����Z 1

1

jf(x0; �)j d�
���� dx0�����p dx : (8.34)

Therefore, we �nd as above that

j
expl0;2 jpp � C
�Z 1

�1

�Z 1

1

jf(x; �)jd�
�r
dx

� p
r

: (8.35)

By Hölder�s inequality we haveZ 1

1

jf(t; y)j dy �
�Z 1

1

1

(1 + �)r0
d�

�1=r0 �Z 1

1

(1 + �)rjf(t; �)jr dy dt
�1=r

; (8.36)

with r0 > 1 such that 1=r0 + 1=r = 1. Therefore, we �nally get that
���
expl0;2

���
p
� C jf jr;1. This completes

the proof.

Using Lemma 34, the proof of Lemma 27 can now be repeated to prove Lemma 31, provided we choose
q such that 2 < q � eq�mx;my

. This is possible, provided eq�mx;my
> 2, which is equivalent to requiring that

its conjugate exponent is smaller than two, i.e., that

2

mxy � � � 3=p
< 2 : (8.37)

The condition (8.37) is satis�ed in particular if � < mxy � 1, and if p < (mxy � 1 � �)=3. Now, given
1 < r < 2eq�mx;my

=(2 + eq�mx;my
) let q be de�ned by 1=q = 1=r � 1=2, hence, 2 < q < eq�mx;my

. Therefore,
applying the method of proof of Lemma 27 we get that

j@mx
x @my

y TBfKg[e!explB ]jp;� � C j
expl0 jq ; (8.38)

and, with the above lemma that

j@mx
x @my

y TBfKg[e!explB ]jp;� � C (jf jr;1 + j'jr) : (8.39)

This completes the proof.
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A The Green�s function K
We start by recalling some well known properties of the Bessel functions K0 and K1 = �K 0

0 (the prime
denotes the derivative). See for example [13], sections 5.6 to 5.11, for more details. We have:

(i) the function K0 is in�nitely di¤erentiable on (0;1),

(ii) for small values of z > 0 we have that K0(z) = � log(z) +O(1), and K1(z) = 1=z +O(z),

(iii) for large values of z > 0 we have that

K0(z) =

r
�

2z
e�z(1 + o(1)) and K1(z) =

r
�

2z
e�z(1 + o(1)) : (A.1)

Let now K be as de�ned in (3.1). We divide the analysis of K into an analysis of the behavior close
to the origin and an analysis far away from the origin.

A.1 Behavior close to the origin

We �rst prove the Proposition 3:
Proof. Let BR � R2 be the ball of radius R centered at zero and let r =

p
x2 + y2. Using the properties

of K0 we have by de�nition that K 2 C1(R2 n f(0; 0)g) and that K 2 L1(BR) for all R <1. For @xK we
have

@xK(x; y) = �
e
x
2

4�

�
K0(

r

2
)� x

r
K1(

r

2
)
�
; (A.2)

and an explicit expression for @yK is given in (3.9). Using the properties of the functions K0 and K1, we
�nd that for all R <1,

j@xK(x; y)j+ j@yK(x; y)j � C
y

x2 + y2
; (A.3)

and therefore @xK and @yK are in L1(BR). Finally, since, by de�nition of K, �K(x; y) = @xK(x; y) for
all (x; y) 2 R2 n f(0; 0)g, the bound on @xK implies the bound on �K.

A.2 Asymptotic behavior

We analyze separately the pointwise behavior and the behavior in the mean.

A.2.1 Pointwise decay at in�nity

In order to state our results we use the following conventions concerning asymptotic expansions:

De�nition 35 Given r0 > 0 and " 2 C1((r0;1)� (0; �)) we say that

(i) " admits an asymptotic expansion of order p, as � ! 1, if there exist trigonometric polynomials
(
0; : : : ; 
p�1) and a bounded function � 2 C1((r0;1)� (0; �)) such that

"(�; �) =

p�1X
k=0


k(�)

�k
+
�(�; �)

�p
: (A.4)

(ii) " admits an in�nite asymptotic expansion, if it admits asymptotic expansions of arbitrary order
p � 1.

Note that we require in our de�nition polynomial coe¢ cients 
i. This is for technical convenience
only. Some straightforward properties of functions admitting in�nite asymptotic expansions are:

(a) the set of functions admitting in�nite asymptotic expansions is stable under sum, multiplication
and multiplication by trigonometric polynomials.

(b) if " and @�" admit in�nite asymptotic expansions then, the �rst order term 
0 in the asymptotic
expansion of @�" vanishes.
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(c) if "; @�"; @�" admit in�nite asymptotic expansions, and if there is a trigonometric polynomial 
0 and
a remainder �, such that for all (�; �) 2 (r0;1)� (0; �)

"(�; �) = 
0(�) +
�(�; �)

�
; (A.5)

then (�; @��; @��) also admit in�nite asymptotic expansions.

For @mx K we have:

Lemma 36 Let m � 0. Then, there exists rm > 0, a family (�mn )n<m 2 [C1(0; �)]m, and functions
"m 2 C1((rm;1)� (0; �)) such that:

(i) �mn is a trigonometric polynomial for all n 2 f0; : : : ;m� 1g.

(ii) there exists �m > 0 and (cmn )n�m 2 (0;1) such that j�mn (�)j � cmn �2(m�n) for all � 2 (0; �m).

(iii) "m and all its derivatives admit in�nite asymptotic expansions.

(iv)

@mx K(x; y) =
e�(cos(�)�1)=2

p
�

"
m�1X
n=0

�mn (�)

�n
+
"m(�; �)

�m

#
: (A.6)

Proof. We prove the lemma by induction over m. First, we have that K0(�=2) = e
��=2"0(�)=

p
�, with "0

admitting an in�nite asymptotic expansion, and K1(�=2) = e
��=2e"0(�)=p�, with e"1 admitting an in�nite

asymptotic expansion (see [13, (5.11.9) p.123]). Therefore, the derivative "00, which is given by

"00(�) = 2e"0(�) + 12"0(�) + "0(�)2�
;

also admits an in�nite asymptotic expansions. We have that K 0
1(z) = �(K0(z)+K1(z)=z), and therefore

"000 admit in�nite asymptotic expansions. Iterating this process, we get that all derivatives of "0 admit
in�nite asymptotic expansion. Consequently.

K(�; �) = e� cos(�)

2�
K0(�=2) =

e�(cos(�)�1)

2�
p
�

"0(�) ;

satis�es the statement for m = 0 with "0 independent of �. Assuming now that the assertion is satis�ed
by @mx K, we have that

@mx K(x; y) = e� cos(�)=2F (�; �) :
with

F (�; �) = e��=2

"
m�1X
n=0

�mn (�)

�n+1=2
+
"m(�; �)

�m+1=2

#
:

Using polar coordinates, we get that

@m+1x K(x; y) = e� cos(�)=2
�
F (�; �)

2
+ cos(�)@�F (�; �)�

sin(�)

�
@�F (�; �)

�
:

Substituting F yields

@m+1x K(x; y) = e�(cos(�)�1)=2
p
�

(
m�1X
n=0

�m+1n

�n+
1
2

+
1

�m+
1
2

�
(1� cos(�))"m(�; �)

2
� cos(�)

�
m� 1

2

�
�mm�1(�)� sin(�)@��mm�1(�) + cos(�)@�"m(�; �)

�
� 1

�m+
3
2

��
m+

1

2

�
cos(�)"m(�; �) + sin(�)@�"m(�; �)

��
;

31



where8>><>>:
�m+10 (�) =

(1� cos(�))�m0 (�)
2

;

�m+1n (�) =
(1� cos(�))�mn (�)

2
�
�
n� 1

2

�
cos(�)�mn�1(�)� sin(�)@��mn�1(�) ; 8 0 < n < m

Using now that "m and @�"m admit asymptotic expansions of order one, and applying the above property
(b) to @�"m, we �nd that there exists a trigonometric polynomial 
 and (e"m; e"0m) 2 [C1((rm+1;1) �
(0; �))]2 (for some rm+1 > 0) such that for all r > rm+1,

"m(�; �) = 
(�) +
e"m(�; �)
�

; and @�"m(�; �) =
e"0m(�; �)
�

:

We therefore get that @m+1x K has the form (A.6) with8>>>>>>>>>>><>>>>>>>>>>>:

�m+10 (�) =
(1� cos(�))�m0 (�)

2
;

�m+1n (�) =
(1� cos(�))�mn (�)

2
�
�
n� 1

2

�
cos(�)�mn�1(�)� sin(�)@��mn�1(�) ;

�m+1m (�) =
(1� cos(�))
(�)

2
� cos(�)

�
m� 1

2

�
�mm�1(�)� sin(�)@��mm�1(�) ;

"m+1(�; �) =
(1� cos(�))e"m(�; �)

2
+ cos(�)

�e"0m(�)� �m+ 1
2

�
"m(�; �)

�
� sin(�)@�"m(�; �) :

From these expressions, and using that (�mn )0�n�m�1 and 
 are trigonometric polynomials, we obtain
that (�m+1n )0�n�m are also trigonometric polynomials. This proves (i). Next, we have, applying the
induction hypothesis, that there exists �m > 0 for which for all � 2 (0; �m),

j�m+10 (�)j � j1� cos(�)jc0m�2m=2 � c0m+1�2(m+1) :

Then, for n � 1, we have that

j�m+1n (�)j �
���� (1� cos(�))�mn (�)2

����+ �����n� 12
�
�mn�1(�)

����+ ���� sin(�)@��mn�1(�)2

���� :
Using the induction hypothesis, we can �nd constants ĉnm+1 for which for all � 2 (0; �m)���� (1� cos(�))�mn (�)2

���� � ĉnm+1�2(m+1�n) ;
and �����n� 12

�
�mn�1(�)

���� � ĉnm+1�2(m�(n�1)) � ĉnm+1�2(m+1�n) :
Finally, since �mn�1 is polynomial in cos(�) and sin(�), it can be written as a a power series in �. Using
again the induction hypothesis we �nd that the �rst 2(m � (n � 1)) terms in this power series vanish.
Consequently, we get, that there exists a family of coe¢ cients 
p for which

@��
m
n�1(�) =

X
p�2(m�(n�1))

p
p�
p�1 ;

and therefore there exist cnm+1, for which, for � su¢ ciently small,

j sin(�)@��mn�1(�)j � ĉnm+1�2(m�(n�1)) :

Combining these inequalities, there exists �m+1 su¢ ciently small for which for all � 2 (0; �m+1)

j�m+1n (�)j � cm+1n �2(m+1�n) :
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Similarly, we obtain that

j�m+1m (�)j � cm+1n �2(m+1�n); 8 � 2 (0; �m+1) :

This proves (ii). Finally, applying the above property (c) to "m, we get that e"m; e"0m; @�"m and their
derivatives admit also in�nite asymptotic expansion. Consequently, the above property (a) implies that
"m+1 and its derivatives admit in�nite asymptotic expansion, and therefore we get (iii). Finally, (iv)
follows by construction. The stated result now follows by induction.

Using that "m in (A.6) admits an asymptotic expansion of order 0, we get that it is bounded and we
have:

Proposition 37 For all m 2 N, there exists rm > 0, such that:

(i) there exists a constant C > 0, such that

j@mx K(x; y)j � Ce�(cos(�)�1)=2 ; 8 (�; �) 2 (rm;1)� (0; �) : (A.7)

(ii) there exists �m > 0 and 0 < cm < Cm <1, such that

j@mx K(x; y)j � Cme�cm��
2
mX
n=0

�2(m�n)

�n+
1
2

; 8 (�; �) 2 (rm;1)� (0; �m) : (A.8)

In Lemma 36 we have already shown that @mx K(x; y) = e� cos(�)=2F (�; �), with

F (�; �) = Ce��=2
X
n�0

�mn (�)

�n+1=2
: (A.9)

Using again polar coordinates, we get that

@y@
m
x K(x; y) = Ce� cos(�)=2

�
sin(�)@�F (�; �) +

cos(�)

�
@�F (�; �)

�
; (A.10)

and substituting F we get that

@y@
m
x K(x; y) = Ce�(cos(�)�1)=2

"
mX
n=0

�mn (�)

�n+1=2
+
�m(�; �)

�m+
3
2

#
: (A.11)

It therefore follows from Lemma 36 that there exists �m > 0 and (cn)n�m 2 (0;1) such that j�mn (�)j �
cn�

2(m�n)+1, for all � 2 (0; �m),and furthermore that �m is uniformly bounded. We have therefore proved
the following proposition:

Proposition 38 For all m 2 N, there exists rm > 0, such that:

(i) there exists a constant C > 0, such that

j@y@mx K(x; y)j � Ce�(cos(�)�1)=2 ; 8 (�; �) 2 (rm;1)� (0; �) : (A.12)

(ii) there exists �m > 0 and 0 < cm < Cm <1, such that

j@y@mx K(x; y)j � Cme�cm��
2
mX
n=0

�2(m�n)+1

�n+
1
2

; 8 (�; �) 2 (rm;1)� (0; �m) : (A.13)
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A.2.2 Mean decay at in�nity

With the above pointwise informations, we can now analyze the asymptotic decay for �xed y as x goes
to in�nity. We have:

Proposition 39 Given integers (mx;my) 2 N2, and 0 < ym < yM < 1, there exists a dominating
function Fmx;my such that for all x 2 R and all y 2 (ym; yM ),

(i)
��@mx
x @

my
y K(x; y)

�� � Fmx;my (x).

(ii) Fmx;my 2 Lq(R) for all q such that

q >
1

mx +my + 1=2
: (A.14)

Note that it follows in particular that Fmx;my
2 L1(R) provided mx � 1.

Proof. We begin with the case my = 0 and we set mx = m. We parametrize lines y = const: by
� 2 (0; �), so that

� =
y

sin(�)
; x = y

cos(�)

sin(�)
: (A.15)

Then, we have, for arbitrary ym < y < yM that ym sin(�) < � < yM sin(�). Replacing in (A.7,A.8), we get
that, restricting the size of �m if needed, there exists 0 < km < Km <1 for which, for all y 2 (ym; yM ),
j@mx K(x; y)j � Fm;0(x), where, in polar coordinates,

Fm;0(x) =

8>><>>:
Km�

m+1=2e�km� ; 8 � 2 (0; �m) ;

Km ; 8 � 2 (�m; � � �m) ;

Kme
�km= sin(���) ; 8 � 2 (� � �m; �) :

(A.16)

Consequently, we have in polar coordinates, that

jFm;0jqq = Kq
m

"
�

(sin(�m))2
+

Z �m

0

�q(m+1=2)e�qkm�
d�

sin(�)2
+

Z �

���m
e�qkm= sin(���)

d�

sin(� � �)2

#
:

(A.17)
Since the integrand is a bounded function, the last integral is �nite. In the �rst integral we change
variables and set � = 1=t. We get thatZ �m

0

�q(m+1=2)e�qcm�
d�

�2
�
Z 1

1=�m

dt

tq(m+1=2)
: (A.18)

The last integral is �nite provided q > 1=(m+ 1=2). This completes the proof for this case.
For my 6= 0, we consider two cases. First, if my is even, we have that my = 2ny, and, using that

@2xK + @2yK � @xK = 0 away from f(0; 0)g we �nd that there exists a family of coe¢ cients �p such that

@my
y @mx

x K =
nyX
p=0

�p@
mx+ny+k
x K : (A.19)

Therefore we �nd that for all (x; y) 2 R� (ym; yM ),

j@my
y @mx

x K(x; y)j �
nyX
p=0

�pFmx+ny+k;0(x) : (A.20)

The condition (A.14) is �decreasing in mx �the most restrictive term being Fmx+ny . Consequently, this
term �xes the condition that q must satisfy in order to get that the dominating function satis�es (A.23).
At the same time we get that the assertion for even my is true and it therefore su¢ ces to check the
assertion for my = 1. We proceed as in the �rst case. Substituting (A.15) into (A.12, A.13), yields, that
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there exists 0 < km < Km < 1 for which j@mx @yK(x; y)j � Fm;1(x) for all y 2 (ym; yM ), where in polar
coordinates,

Fm;1(x) �

8>><>>:
Km�

m+3=2e�km� ; 8 � 2 (0; �m) ;

Km ; 8 � 2 (�m; � � �m) ;

Kme
�km= sin(���) ; 8 � 2 (� � �m; �) :

(A.21)

With the same computation as above, we �nd the condition q > 1=(m+ 3=2), which is the stated result
for my = 1.

Finally, concerning the asymptotic decay when y goes to in�nity, we have:

Proposition 40 Let (mx;my) 2 N2, and (r; q; �) 2 [1;1)2 � [0;1). Then,Z 1

1

(1 + y)�r
�Z 1

�1
j@mx
x @my

y K(x; y)jq dx
� r
q

dy ; (A.22)

provided

r

�
� �

�
2mx +my + 1�

2

q

��
< �1 and q

�
mx +my +

1

2

�
> 1 : (A.23)

Proof. As above, we do only need to check the cases my 2 f0; 1g. We begin with the case my = 0 and
we set mx = m. In polar coordinates we haveZ 1

1

�
(1 + y)�

Z 1

�1
j@mx K(�; �)jq dx

� r
q

dy =

Z 1

1

�
(1 + y)�

Z �

0

����@mx K� y

sin(�)
; �

�����q y d�

sin(�)2

� r
q

dy :

(A.24)
First, we compute the function I,

I(y) =

Z �

0

����@mx K� y

sin(�)
; �

�����q y d�

sin(�)2
: (A.25)

Using the previous lemma we see that we can assume without further restriction that rm as given by
Proposition 37 is less than one. The bounds (A.7), (A.8) are therefore valid for arbitrary (x; y) 2 R2++.
We now set I(y) = I�(y) + I+(y), where, with the same notation as in Proposition 37,

I�(y) =

Z �

�m

����@mx K� y

sin(�)
; �

�����q y d�

sin(�)2
; (A.26)

I+(y) =

Z �m

0

����@mx K� y

sin(�)
; �

�����q y d�

sin(�)2
: (A.27)

From (A.7), we get the bound

I�(y) � C
Z �

�m

eqy(cos(�)�1)= sin(�)

sin(�)2
y d� � 1

(1� cos(�m))

Z �

�m

y(1� cos(�))
sin(�)2

eqy(cos(�)�1)= sin(�) d� ;

where we use that
d

d�

�
cos(�)� 1
sin(�)

�
=
cos(�)� 1
sin(�)2

:

Therefore,

I�(y) �
eq(cos(�m)�1)= sin(�m)

q(1� cos(�m))
:

For I+, the bound (A.8) implies that

I+(y) � Cy
Z �m

0

mX
n=0

�q(2m�n+
1
2 )�2

yq(n+1=2)
d� ;
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and the last integral is �nite provided q(m+ 1=2) > 1. We therefore get that

I+(y) � Cy
mX
n=0

�
q(2m�n+ 1

2 )�1
m

yq(n+1=2)
:

By de�nition we have thatZ 1

1

(1 + y)�rjI(y)j
r
q dy �

Z 1

1

(1 + y)�rjI+(y)j
r
q dy +

Z 1

1

(1 + y)�rjI�(y)j
r
q dy :

We have that Z 1

1

(1 + y)�rjI+(y)j
r
q dy � C

"Z 1

1

yr(�+1=q)
mX
n=0

�
r(2m�n+1=2)�r=q
m

yr(n+1=2)
dy

#
:

If we assume that

r

�
� �

�
2m+

�
1� 2

q

���
< �1 ;

then there exists � < 1 su¢ ciently large, for which for all n < m,

r

�
� +

1

q
� �

�
2m� n+ 1

2
� 1
q

�
�
�
n+

1

2

��
< �1 :

Note that, provided �m is smaller than the choice made in Proposition 37, we could even make �m depend
on y in the above arguments without any changes. Consequently, if we set �m = y�� for y su¢ ciently
large, we get thatZ 1

1

(1 + y)�rjI+(y)j
r
q dy � C

Z 1

1

yr(�+1=q��[2m�n+1=2�1=q]�(n+1=2) dy :

This integral is �nite because of our choice for �. With the choice �m = y�� we also get that

I�(y) � C
e�q

y1��
2

y2�
; as y !1 ;

and since � < 1, the y-integral with I� is also �nite. This concludes the case my = 0.
@y@

m
x K, we apply the same splitting of I(y) as for @mx K and use the bound (A.12, A.13). Since the

bound outside [0; �m] is the same in all cases, we also get thatZ 1

1

(1 + jyj�)rjI�(y)j
r
q dy <1 ;

for all q, � > 0 and �m = y�� with � < 1. Finally, we note that the bounds (A.13) imply that we gain
one factor of � when compared with @mx K. Therefore, we have

I+(y) � Cy
mX
n=0

�
q(2m�n+ 3

2 )�1
m

yq(n+1=2)
;

provided q(m+ 3=2)� 1 > 0. Thus, the same analysis as for @mx K implies that the integralZ 1

1

(1 + y�)rjI+(y)j
q
r dy

is �nite, provided

r

�
� �

�
2m+ 1 +

�
1� 2

q

���
< �1 ;

and if we chose �m = y�� with � su¢ ciently close to 1. This completes the proof.

Note that for the case q = r we obtain the following result:

Proposition 41 Given (mx;my) 2 N2, and (q; �) 2 [1;1)� [0;1), we have that @mx
x @

my
y K 2 Lq�(BR),

for all R > 0, provided q((2mx +my + 1)� �) > 3.
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B Fourier multipliers

In this section we prove some properties of � =
p
k2 � ik, where the square root is always to be taken

with a non negative real part. We denote the di¤erentiation with respect to k with a dot.

Lemma 42 There exists a constant C <1 for which, for all k 2 R n f0g,

j�j � C
�p

jkj+ jkj
�
; Re(�)j � Cmax(jkj;

p
jkj=2) ; j�� jkjj � Cmin(

p
jkj; 1) ; (B.1)

j _�j � C
�
1 +

1p
k

�
; and j _�� sign(k)j � Cmin

�
1

jkj ; 1
��

1 +
1p
k

�
: (B.2)

Proof. We consider the case k > 0 only. The case with negative k follows by symmetry. Note that
j�j = (k4+ k2) 14 . Thus, (B.1) follows from bounds on both terms using the triangle inequality. Similarly,
we �nd that for all k > 0

jRe(�)j =

sp
k4 + k2 + k2

2
�

8<:
q
(
p
k4 + k2)=2 = jkj;qp
k2=2 =

p
jkj=2 :

(B.3)

Next we note that

j�� jkjj � j Im(�)j ; where j Im(�)j =

sp
k4 + k2 � k2

2
; (B.4)

and j Im(�)j > 0 for arbitrary k > 0. Therefore, there exists a constant C(";M) > 0 such that for all k
with jkj 2 [";M ],

j�� jkjj > C(";M) :
Therefore we have for jkj < 1=2, that

p
k4 + k2 � k2 � jkj=2. Consequently, we get j� � jkjj >

p
jkj=2.

For large values of k, i.e., jkj > M , say, we have thatp
k4 + k2 = k2

r
1 +

1

k2
� k2

�
1 +

1

3k2

�
� k2 + 1

3
:

Substituting this bound into Im(�) we obtain that j�� jkjj �
p
1=6. For _�, we have that

_� =
2k + i

2
p
k2 � ik

; and that j _�j =
p
4k2 + 1

2(k4 + k2)
1
4

:

Using that
p
4k2 + 1 � 2jkj+ 1 and replacing in _�, we obtain the stated result. Finally, straightforward

computations, lead to

j _�� jkjj � C(1 + 1p
jkj
) :

Finally, as for the case of j _�j, we use that �2 � jkj2 = ik. Consequently, we have for all k > 0, that

( _�� sign(k))(�+ jkj) + ( _�+ sign(k))(�� jkj) = i=2 :

Thus,

j _�� sign(k)j � 1

j�+ jkjj

�
1

2
+ j _�+ sign(k)j j�� jkjj

�
:

With this bound we obtain that

j _�� sign(k)j � 1

jkj

 
1

2
+

"
1 +

1p
jkj

#
j�� jkj j

!
:

Moreover, there exists a constant C < 1 such that j� � jkjj � C for all k > 0. This is obvious for
k 2 [0;M ], since the function k 7! j� � jkjj is continuous, and for large values jkj we can use the
asymptotic expansion of Re(�) and Im(�) and �nd that

Re(�)� jkj = O(1=jkj) ; and Im(�) =
1

4
+ o(1) :
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We therefore �nally have that

j _�� sign(k)j � C

jkj

"
1 +

1p
jkj

#
:

As an immediate corollary, we get:

Proposition 43 Given t > 0, and k 2 R, we have that����e��t � e�jkjt�� jkj

���� � te�jkjt : (B.5)
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