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Abstract

We consider a 2D Schrödinger operator H0 with constant magnetic field, on a
strip of finite width. The spectrum of H0 is absolutely continuous, and contains a
discrete set of thresholds. We perturb H0 by an electric potential V which decays
in a suitable sense at infinity, and study the spectral properties of the perturbed
operator H = H0 + V . First, we establish a Mourre estimate, and as a corollary
prove that the singular continuous spectrum of H is empty, and any compact
subset of the complement of the threshold set may contain at most a finite set
of eigenvalues of H, each of them having a finite multiplicity. Next, we intro-
duce the Krein spectral shift function (SSF) for the operator pair (H,H0). We
show that this SSF is bounded on any compact subset of the complement of the
threshold set, and is continuous away from the threshold set and the eigenvalues
of H. The main results of the article concern the asymptotic behaviour of the
SSF at th thresholds, which is described in terms of the SSF for a pair of effective
Hamiltonians.
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1 Introduction

In the present article we consider the 2D Schrödinger operator H0 with constant mag-
netic field b > 0 defined in a strip SL of width 2L. The spectrum of H0 is absolutely
continuous, coincides with the interval [E1,∞) with E1 > 0, and contains a countable
set of thresholds Z. This model is related to some aspects of the quantum Hall effect
(see e.g. [2], [10]). We perturb H0 by an electric potential V which decays in a suitable
sense at infinity, and study some basic spectral properties of the perturbed operator H.
First we establish a Mourre estimate (see [20]) with an appropriate conjugate operator,
and as a consequence we show that the singular continuous spectrum of H is empty, and
any compact subset of R \ Z may contain at most a finite number of eigenvalues of H,
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each of them having a finite multiplicity. Similar Mourre estimates for other magnetic
Hamiltonians have been obtained in [7] and [12].
Further, we introduce the Krein spectral shift function (SSF) for the operator pair
(H,H0) and prove that it is bounded on every compact subset of R \Z, and is continu-
ous on R\ (Z ∪σp(H)) where σp(H) is the set of the eigenvalues of H. The main results
of the article concern the asymptotic behaviour of the SSF near the thresholds of the
spectrum of H0. We show that this asymptotic behaviour is similar to the asymptotics
near the origin of the SSF for a pair of effective Hamiltonians which are 1D Schrödinger
operators. As a corollary we show that if the decay rate α of V is on the interval (1, 2),
then the SSF has a singularity at each threshold, and describe explicitly the leading
term of this singularity; if α > 2, then the SSF remains bounded at the thresholds. The
threshold behaviour of the SSF for a pair of 3D Schrödinger operators with constant
magnetic fields has been investigated in [9] (see also [23]). In that case the thresholds
coincide with the Landau levels, and the threshold singularities of the SSF have different
nature, related to the spectral properties of compact Berezin-Toeplitz operators.
The paper is organized as follows. In Section 2 we introduce some basic notations,
describe the operators H0 and H, formulate our main results, and briefly comment on
them. Section 3 contains the proof of our results related to the Mourre estimates, while
the proofs of the results concerning the SSF can be found in Section 4.

2 Main Results

2.1. In this subsection we introduce some basic notations used throughout the section.
Let X1, X2 be two separable Hilbert spaces. We denote by B(X1, X2) (resp., by
S∞(X1, X2)) the class of bounded (resp., compact) operators T : X1 → X2. Fur-
ther, we denote by Sp(X1, X2), p ∈ [1,∞), the Schatten-von Neumann class of compact

operators T : X1 → X2 for which the norm ‖T‖p : = (Tr |T |p)1/p is finite (see e.g. [25]).
In this paper we will use only the trace class S1 and the Hilbert-Schmidt class S2. If
X1 = X2 = X we write B(X) or Sp(X) instead of B(X,X) or Sp(X,X), p ∈ [1,∞].
Also, if the indication of the Hilbert space where the corresponding operators act is
irrelevant, we omit it in the notations of the classes B and Sp, p ∈ [1,∞].
Let T = T ∗. We denote by PO(T ) the spectral projection of T associated with the Borel
set O ⊂ R.
Finally, if T ∈ B, we define the self-adjoint operators Re T := 1

2
(T + T ∗) and Im T :=

1
2i

(T − T ∗).
2.2. In this subsection we introduce the operators H0 and H, and summarize some of
their spectral properties which will play a crucial role in the sequel.
For L > 0 put IL = (−L,L), S = IL × R. Let

H0 := − ∂2

∂x2
+

(
−i ∂
∂y

− bx

)2
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be the 2D Schrödinger operator with constant scalar magnetic field b > 0, defined on
{u ∈ H2(SL) | u|∂SL

= 0} where H2(SL) denotes the corresponding second-order Sobolev
space. Then we have

FH0F∗ =

∫ ⊕

R
Ĥ(k)dk,

where F is the partial Fourier transform with respect to y, i.e.

(Fu)(x, k) :=
1√
2π

∫
R
e−iyku(x, y)dy, (x, k) ∈ SL,

and

Ĥ(k) := − d2

dx2
+ (bx− k)2, k ∈ R,

is the operator defined on D(Ĥ) := {w ∈ H2(IL)|w(−L) = w(L) = 0}. In what follows,
we will consider D(Ĥ) as a Hilbert space equipped with the standard scalar product of
H2(IL).
The spectrum σ(Ĥ(k)) of the operator Ĥ(k), k ∈ R, is discrete and simple. Let
{Ej(k)}∞j=1 be the increasing sequence of the eigenvalues of Ĥ(k), which are even real
analytic functions of k ∈ R (see [15]). Further, the minimax principle easily implies

Ej(k) = k2(1 + o(1)), k → ±∞. (2.1)

Finally, by [10, Theorem 2] we have

kE ′
j(k) > 0, k 6= 0, (2.2)

Ej(k) = Ej + µjk
2 +O(k4), k → 0, (2.3)

with

Ej = Ej(0) > (2j − 1)b, µj =
1

2
E ′′
j (0) > 0. (2.4)

Thus σ(H0) = σac(H0) = [E1,∞), and Ej, j ∈ N := {1, 2, . . .}, are thresholds in σ(H0).
Set Z :=

⋃
j∈N {Ej}.

Let V : SL → R be the electric potential such that the operator |V |1/2H−1/2
0 is compact.

We define the perturbed operator H := H0 + V as a sum in the sense of the quadratic
forms. Then we have σess(H) = σess(H0) = σ(H0) = [E1,∞).
2.3 In this subsection we formulate our result concerning the absence of singular con-
tinuous spectrum of H, and some generic properties of its eigenvalues.

Theorem 2.1. (i) Assume
V H−1

0 ∈ S∞, (2.5)

H−1
0 y

∂V

∂y
H−1

0 ∈ S∞. (2.6)
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Then any compact subinterval of R \ Z may contain at most a finite number of eigen-
values, each of them having a finite multiplicity.
(ii) Suppose moreover

H
−1/2
0 y

∂V

∂y
H−1

0 ∈ B, (2.7)

H−1
0 y2∂

2V

∂y2
H−1

0 ∈ B. (2.8)

Then σsc(H) = ∅.

The proof of Theorem 2.1 is contained in Section 3.
Remark: Let U : SL → [0,∞), and let ∆D be the Dirichlet Laplacian on SL. The Sobolev
embedding theorems imply that the inclusion U1/2(−∆D)−1/2 ∈ B (resp., U1/2(−∆D)−1/2

∈ S∞) is ensured by U ∈ Lq(SL) + L∞(SL) (resp., U ∈ Lq(SL) + L∞ε (SL)), q > 1.
Similarly, the condition U∆−1

D ∈ B (resp., U∆−1
D ∈ S∞) follows from U ∈ L2(SL) +

L∞(SL) (resp., U ∈ L2(SL)+L∞ε (SL)). On the other hand, by the diamagnetic inequality
(see e.g. [25, Chapter 2]), we have ‖UγH−γ

0 ‖ ≤ ‖Uγ(−∆D)−γ‖, γ > 0, and, moreover,
Uγ(−∆D)−γ ∈ S∞ entails UγH−γ

0 ∈ S∞. These facts could be used in order to deduce
sufficient conditions which guarantee the validity of the hypotheses of Theorem 2.1.
2.4. This subsection contains our results on the threshold behaviour of the spectral shift
function for the operator pair (H,H0). Let us recall the abstract setting for the SSF.
Let H0 and H be two lower-bounded self-adjoint operators acting in the same Hilbert
space. Assume that for some γ > 0, and E0 < inf σ(H0) ∪ σ(H), we have

(H− E0)
−γ − (H0 − E0)

−γ ∈ S1. (2.9)

Then there exists a unique ξ(·;H,H0) ∈ L1(R; 〈E〉−γ−1dE) which vanishes identically
on (−∞, E0) such that the Lifshits-Krein formula

Tr(f(H)− f(H0)) =

∫
R
ξ(E;H,H0)f

′(E)dE (2.10)

holds for each f ∈ C∞
0 (R) (see [18] and [17]). The function ξ(.;H,H0) is called the SSF

for the pair of the operators (H,H0). If E < inf σ(H0), then the spectrum of H below
E could be at most discrete, and for almost every E < inf σ(H0) we have

ξ(E;H,H0) = −N(E;H) (2.11)

where N(E;H) := rank P(−∞,E)(H). On the other hand, for almost every E ∈ σac(H0),
the SSF ξ(E;H,H0) is related to the scattering determinant det S(E;H,H0) for the
pair (H,H0) by the Birman-Krein formula

det S(E;H,H0) = e−2πiξ(E;H,H0)
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(see [4]).
Next, we define the SSF for the pair (H,H0). We will say that V satisfies condition Dα,
α ∈ R, if

|V (x, y)| ≤ c〈y〉−α, c > 0, (x, y) ∈ SL,
where, as usual, 〈y〉 := (1 + y2)1/2. Assume that V satisfies condition Dα with α > 1.
Then (2.9) holds for H = H, H0 = H0, and γ = 1, and hence the SSF ξ(·;H,H0) is
well defined as an element of L1(R; 〈E〉−2dE). In the present article we will identify this
SSF with a representative of the corresponding class of equivalence described explicitly
in Section 4.3 below.

Proposition 2.1. Assume that V satisfies Dα with α > 1. Then the SSF ξ(·;H,H0) is
bounded on every compact subset of R \ Z and continuous on R \ (Z ∪ σp(H)).

The proof of Proposition 2.1 can be found in Subsection 4.6 below.
Set

J(x, y) :=

{
1 if V (x, y) ≥ 0,
−1 if V (x, y) < 0,

Fix j ∈ N. Let ψj(·; k) : IL → R, k ∈ R, be the real-valued normalized in L2(IL)

eigenfunction of the operator Ĥ(k) corresponding to the eigenvalue Ej(k). For ε ∈
(−1, 1) introduce the effective potential

wj,ε(y) :=

∫
IL

|V (x, y)|(J(x, y)− ε)−1ψj(x; 0)
2dx, y ∈ R,

and the effective Hamiltonians

h0,j := −µj
d2

dy2
, hj(ε) := h0,j + wj,ε,

the number µj being defined in (2.1). Note if V satisfies Dα with α > 1, then (2.9)
holds for H = hj(ε), H0 = h0,j, and γ = 1, and hence the SSFs ξ(·;hj(ε), h0,j), j ∈ N,
ε ∈ (−1, 1), are well defined.
For λ > 0 set

θβ(λ) :=


1 if β > 1/2,
| lnλ| if β = 1/2,

λ−
1
2
+β if 0 < β < 1/2.

(2.12)

If λ < 0, then
θβ(λ) := 1 (2.13)

for all β > 0.

Theorem 2.2. Assume that V satisfies Dα with α > 1. Fix q ∈ N. Then for each
ε ∈ (0, 1) we have

ξ(λ;hq(−ε), h0,q) +O(θ2γ(λ)) ≤ ξ(Eq + λ;H,H0) ≤ ξ(λ;hq(ε), h0,q) +O(θ2γ(λ)), (2.14)

as λ→ 0, for any γ ∈ (0, (α− 1)/2), γ ≤ 1.

5



The proof of Theorem 2.2 can be found in Subsection 4.7.
Assume now that α ∈ (1, 2). Then we have θ2γ(λ) = o(|λ| 12− 1

α ) as λ→ 0. Hence, using
well-known results concerning the asymptotic behaviour of the SSF ξ(λ;hj(ε), h0,j) as
λ→ 0 (see e.g. [24] in the case λ ↑ 0, and [26] in the case λ ↓ 0), we obtain the following

Corollary 2.1. Let V satisfy Dα with α ∈ (1, 2). Fix q ∈ N. Suppose that for each
ε ∈ (−ε0, ε0) and some ε0 ∈ (0, 1) there exist real numbers ωq,±(ε) such that

lim
y→±∞

|y|αwq,ε(y) = ωq,±(ε) (2.15)

uniformly with respect to ε. Then we have

lim
λ↓0

λ
1
α
− 1

2 ξ(Eq − λ;H,H0) = −µ−1/2
q CαΩ−

q , (2.16)

lim
λ↓0

λ
1
α
− 1

2 ξ(Eq + λ;H,H0) = −µ−1/2
q Cα

(
csc (π/α)Ω−

q + cot (π/α)Ω+
q

)
,

where Cα := 1
π

∫ 1

0
(t−α − 1)1/2dt, and Ω±

q :=
∑

ς=+,− ωq,ς(0)
1/α
± .

Remark: If q = 1 and λ > 0, we have ξ(E1 − λ;H,H0) = −N(E1 − λ;H) (cf. (2.11)).
Note that the spectrum of H below E1 is discrete if V satisfies Dα with any α > 0, and
as in (2.16) we have

lim
λ↓0

λ
1
α
− 1

2N(E1 − λ;H) = µ−1/2
q CαΩ−

1 (2.17)

for all α ∈ (0, 2).
Similarly, using well known results on the asymptotic behaviour as λ ↑ 0 of the SSF
ξ(λ;hj(ε), h0,j) in the case α = 2 (see [16]), we obtain the following

Corollary 2.2. Assume the hypotheses of Corollary 2.1 with α = 2. Fix q ∈ N. Then
we have

lim
λ↓0

| lnλ|−1ξ(Eq − λ;H,H0) = − 1

2π

∑
ς=+,−

(
ωq,ς(0)

µq
+

1

4

)1/2

−
.

Moreover, if ωq,±(0) > −µq/4, then ξ(Eq − λ;H,H0) = O(1) as λ ↓ 0.

Remark: In the case α = 2, the analysis of the asymptotic behaviour of ξ(λ;hj(ε), h0,j)
as λ ↓ 0 requires some additional estimates similar to those obtained in [26]. In order
to avoid the inadequate increase of the size of the article, we omit these results.
Finally, in Subsection 4.8 we prove

Corollary 2.3. Let V satisfy Dα with α > 2. Then for each q ∈ N we have

ξ(Eq + λ;H,H0) = O(1), λ→ 0. (2.18)
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3 Mourre estimates

In this section we prove Theorem 2.1 using an appropriate Mourre estimate established
in Proposition 3.1. Similar Mourre estimates have been obtained in [7] for a 2D magnetic
Schrödinger operator defined on the half-plane, and in [12] for a 3D one, defined in the
whole space.

Lemma 3.1. Let n ∈ N, E ∈ (En, En+1). Then there exists δ = δ(E) ∈ (0, dist (E,Z))
such that the interval ∆E = [E − δ, E + δ] satisfies

E−1
r (∆E) = ∅, r ≥ n+ 1, (3.1)

and, if n ≥ 2,

E−1
r (∆E) ∩ E−1

s (∆E) = ∅, r 6= s, r, s = 1, . . . , n. (3.2)

Proof. First, (3.1) follows trivially from ∆E ∩ [En+1,∞) = ∅.
Set Br := E−1

r (∆E) ∩ [0,∞), r = 1, . . . , n. Since Er are even functions of k, it suffices
to show that

Br ∩Bs = ∅, r 6= s, r, s = 1, . . . , n, (3.3)

instead of (3.2). Denote by E−1
r , r ∈ N, the function inverse to Er : [0,∞) → R. Since

∆E ⊂ (En,∞), this interval is in the domain of all the functions E−1
r , r = 1, . . . , n, and

we have
Br = [E−1

r (E − δ), E−1
r (E + δ)], r = 1, . . . , n.

Therefore, in order to prove that there exists δ ∈ (0, dist (E,Z)) such that (3.3) holds
true, it suffices to show that there exists δ ∈ (0, dist (E,Z)) such that

E−1
r+1(E + δ) < E−1

r (E − δ), r = 1, . . . , n− 1,

which is evident since E−1
r+1(E) < E−1

r (E), the functions E−1
r are continuous, and n− 1

is finite.

Lemma 3.2. Assume (2.5). Let χ ∈ C∞
0 (R). Then χ(H)− χ(H0) ∈ S∞.

Proof. By the Helffer-Sjöstrand formula, we have

χ(H)− χ(H0) = − 1

π

∫
R2

∂χ̃

∂z̄
(H − z)−1V (H0 − z)−1dxdy

where z = x+ iy, z̄ = x− iy, χ̃ is the quasi-analytic extension of χ, and the convergence
of the the integral is understood in the operator-norm sense (see e.g. [8, Chapter 8]).
Since the support of χ̃ is compact in R2, and the operator ∂χ̃

∂z̄
(H − z)−1V (H0 − z)−1 is

compact for every (x, y) ∈ R2 with y 6= 0, and is uniformly norm-bounded on R2, we
have χ(H)− χ(H0) ∈ S∞.
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Introduce the operator

A = A∗ = − i
2

(
y
∂

∂y
+

∂

∂y
y

)
defined originally on C∞

0 (Ry;D(Ĥ)) and then closed in L2(SL). Note that

(eitAf)(x, y) = et/2f(x, ety), t ∈ R, f ∈ L2(SL),

and the unitary group eitA preserves D(H0). In what follows, we will consider D(Hγ
0 ),

γ > 0, as a Hilbert space equipped with the scalar product 〈Hγ
0 u,H

γ
0 v〉L2(SL), u, v ∈

D(Hγ
0 ). Denote by D(Hγ

0 )∗, γ > 0, the completion of L2(SL) with respect to the norm
‖H−γ

0 u‖L2(SL), u ∈ L2(SL).

Note that C∞
0 (Ry;D(Ĥ)) is dense in D(H0), and, hence, D(A) ∩ D(H0) is dense in

D(H0).

Proposition 3.1. Assume (2.5) – (2.6). Let n ∈ N, E ∈ (En, En+1). Assume that
δ ∈ (0, dist(E,Z)) is chosen to satisfy (3.1) and (3.2) according to Lemma 3.1. Let
χ ∈ C∞

0 (R), suppχ = [E − δ, E + δ]. Then there exists K ∈ S∞ and a constant C > 0
such that

χ(H)[H, iA]χ(H) ≥ Cχ(H)2 +K (3.4)

where the commutator [H, iA] is understood as a bounded operator from D(H0) into
D(H0)

∗.

Proof. A straightforward calculation yields

[H, iA] = [H0, iA] + [V, iA] (3.5)

where

[H0, iA] = −2
∂2

∂y2
+ 2ibx

∂

∂y
, (3.6)

and

[V, iA] = −y∂V (x, y)

∂y
. (3.7)

Evidently, [H0, iA] is a bounded operator from D(H0) into L2(SL), and, hence, is a
bounded operator from D(H0) into D(H0)

∗. On the other hand, [V, iA] is a compact
operator from D(H0) into D(H0)

∗. Hence, [H, iA] is a bounded operator from D(H0)
into D(H0)

∗. Further, for χ ∈ C∞
0 (R) we have

χ(H0)[H0, iA]χ(H0) = F∗

(
2

∞∑
r,s=1

∫ ⊕

R
χ(Er(k))χ(Es(k))kpr(k)(k − bx)ps(k)dk

)
F ,

(3.8)
where

pr(k) := 〈·, ψr(·; k)〉ψr(·; k), k ∈ R, r ∈ N. (3.9)
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Using (3.1) and (3.2), we find that (3.8) reduces to

χ(H0)[H0, iA]χ(H0) = 2F∗

(
n∑
r=1

∫ ⊕

R
χ(Er(k))

2k〈(k − bx)ψr(k), ψr(k)〉pr(k)dk

)
F .

(3.10)
This, combined with the Feynman-Hellmann formula

E ′
r(k) = 2〈(k − bx)ψr(k), ψr(k)〉, (3.11)

yields

χ(H0)[H0, iA]χ(H0) = F∗

(
n∑
r=1

∫ ⊕

R
kE ′

k(p)χ(Er(k))
2pr(k)dk

)
F . (3.12)

Moreover, by (2.2), we have

kE ′
r(k)χ(Ej(k))

2 ≥ Crχ(Er(k))
2,

with Cr = mink∈[E−δ,E+δ] kE
′
r(k) > 0, r = 1, . . . , n. Therefore,

χ(H0)[H0, iA]χ(H0) ≥ CF∗

(
n∑
r=1

∫ ⊕

R
χ(Ej(k))

2pr(k)

)
F = Cχ(H0)

2, (3.13)

where C := minr=1,...,nCr > 0. By (3.5),

χ(H)[H, iA]χ(H) = χ(H0)[H0, iA]χ(H0) +K0, (3.14)

where

K0 = χ(H0)[H0, iA] (χ(H)− χ(H0))+(χ(H)− χ(H0)) [H0, iA]χ(H)−χ(H)y
∂V

∂y
χ(H) :=

K1 +K2 +K3.

We have
K1 = χ(H0)H0H

−1
0 [H0, iA] (χ(H)− χ(H0)) ,

and the operators χ(H0)H0 and H−1
0 [H0, iA] extend to bounded operators in L2(SL)

(see (3.6)). Since the operator χ(H) − χ(H0) is compact by Lemma 3.2, we conclude
that K1 ∈ S∞(L2(SL)). Similarly, taking into account that χ(H) − χ(H0) is compact,
and the operators [H0, iA]H−1

0 and H0χ(H) = Hχ(H)− V χ(H) are bounded, we get

K2 = (χ(H)− χ(H0)) [H0, iA]H−1
0 H0χ(H) ∈ S∞(L2(SL)).

Finally, the operator

K3 = χ(H)y
∂V

∂y
χ(H) = χ(H)H0H

−1
0 y

∂V

∂y
H−1

0 H0χ(H)

9



is compact in L2(SL) since H−1
0 y ∂V

∂y
H−1

0 is compact by (2.6), and χ(H)H0 = (H0χ(H))∗

is bounded in L2(SL). Therefore, K0 = K1 + K2 + K3 ∈ S∞. Combining (3.13) and
(3.14), we get

χ(H)[H, iA]χ(H) ≥ Cχ(H0)
2 +K0 = Cχ(H)2 +K0 +K4, (3.15)

where K4 := C (χ(H0)
2 − χ(H)2) ∈ S∞ by Lemma 3.2. Hence (3.15) implies (3.4) with

K = K0 +K4.

For E ∈ R and δ > 0 set ∆E(δ) := (E − δ/2, E + δ/2).

Corollary 3.1. Assume (2.5) – (2.6). Fix E ∈ (En, En+1), n ∈ N. Let δ ∈ (0, dist (E,Z))
be chosen as in Proposition 3.1.
(i) We have

P∆E(δ)(H)[H, iA]P∆E(δ)(H) ≥ CP∆E(δ)(H) + K̃ (3.16)

where K̃ := P∆E(δ)(H)KP∆E(δ)(H) ∈ S∞, C and K being the same as in (3.4).

(ii) Suppose moreover that E 6∈ σp(H). Then for δ′ ∈ (0, δ) small enough we have

P∆E(δ′)(H)[H, iA]P∆E(δ′)(H) ≥ 1

2
CP∆E(δ′)(H). (3.17)

Proof. Choose χ in (3.4) to be equal to one on ∆E(δ), and multiply (3.4) from the left
and the right by P∆E(δ)(H). Thus we get (3.16). In order to obtain (3.17), we repeat
the argument of the proof of [6, Lemma 4.8]. Pick δ′ ∈ (0, δ) and multiply (3.16) from
the right and the left by P∆E(δ′)(H). We get

P∆E(δ′)(H)[H, iA]P∆E(δ′)(H) ≥ CP∆E(δ′)(H) + P∆E(δ′)(H)K̃P∆E(δ′)(H). (3.18)

Since E 6∈ σp(H) and, hence, s − limδ′↓0 P∆E(δ′)(H) = 0, while K̃ is compact, we have

n− limδ′↓0 P∆E(δ′)(H)K̃P∆E(δ′)(H) = 0. Choose δ′ ∈ (0, δ) so small that

‖P∆E(δ′)(H)K̃P∆E(δ′)(H)‖ ≤ C/2

which implies

P∆E(δ′)(H)K̃P∆E(δ′)(H) ≥ −1

2
CP∆E(δ′)(H). (3.19)

Combining (3.18) with (3.19), we obtain (3.17).

Since the unitary group eitA preserves D(H0), and [H, iA] : D(H0) → D(H0)
∗ is a

bounded operator, the Mourre estimate (3.16) entails the following

Corollary 3.2. [20], [6, Theorem 4.6], [11] Assume (2.5) – (2.6). Let E, δ, and ∆E(δ)
be as in Corollary 3.1. Then ∆E(δ) contains at most finitely many eigenvalues of H,
each of them having a finite multiplicity.
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Now we are in position to prove Theorem 2.1. Let ∆ ⊂ R \ Z be a compact interval.
If ∆ ⊂ (−∞, E1), then ∆ ∩ σess(H) = ∅ and ∆ may contain at most a finite number of
eigenvalues, each having a finite multiplicity. Assume ∆ ⊂ (En, En+1), n ∈ N. For each
E ∈ ∆ choose δ = δ(E) as in Proposition 3.1. Then we have ∆ ⊂ ∪E∈∆∆E(δ). Since ∆
is compact, there exists a finite set {Ej}Nj=1 of energies Ej ∈ ∆ such that

∆ ⊂ ∪Nj=1∆Ej
(δ). (3.20)

Assume (2.5) – (2.6). Then (3.20) and Corollary 3.2 imply that ∆ may contain at most
a finite number of eigenvalues, each having a finite multiplicity. Hence, the first part of
Theorem 2.1 is proved.
Assume moreover (2.7) – (2.8). It follows from (2.7) that [H, iA] extends to a bounded

operator from D(H0) to D(H
1/2
0 )∗, while (2.8) combined with (2.6), implies that the

second commutator [[H, iA], iA] extends to a bounded operator from D(H0) to D(H0)
∗.

Then Corollary 3.1 ii) together with the results of [6, Theorem 4.10] and [11] (see also

[20]) imply that σsc(H) ∩
(
(En, En+1) \ σp(H)

)
= ∅, n ∈ N. Since the set (En, En+1) ∩

σp(H) is at most discrete, we get σsc(H) ∩ (En, En+1) = ∅, n ∈ N. Finally, since E1 =
inf σess(H) we have σsc(H) ∩ (−∞, E1) = ∅. Therefore, σsc(H) ∩ (R \ Z) = ∅. Since Z
is discrete, σsc(H) = ∅. The second part of Theorem 2.1 is now proved too.
Remark: Mourre estimates and their corollaries concerning the spectrum of H could be
also deduced from the general scheme for analytically fibered operators developed in
[13]. The advantage of our approach is that it relies on an explicit and simple conjugate
operator A, and offers an explicit description of the “exceptional set” Z.

4 Analysis of the Spectral Shift Function

4.1. In this subsection we summarize some simple properties of compact operators
which will be systematically used in the sequel. For s > 0 and T ∗ = T ∈ S∞ set

n±(s;T ) := rank P(s,∞)(±T ).

For an arbitrary (not necessarily self-adjoint) operator T ∈ S∞ put

n∗(s;T ) := n+(s2;T ∗T ), s > 0. (4.1)

If T = T ∗, then evidently

n∗(s;T ) = n+(s, T ) + n−(s;T ), s > 0. (4.2)

If T1, T2 ∈ S∞, and s1 > 0, s2 > 0, then the well known Weyl – Ky Fan inequalities

n∗(s1 + s2;T1 + T2) ≤ n∗(s1;T1) + n∗(s2;T2) (4.3)
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hold true. Moreover, if Tj = T ∗j , T1 ∈ S∞, and rankT2 <∞, we have

n±(s;T1)− rankT2 ≤ n±(s;T1 + T2) ≤ n±(s;T1) + rankT2, s > 0. (4.4)

If T ∈ Sp, p ∈ [1,∞), then the following elementary Chebyshev-type inequality

n∗(s;T ) ≤ s−p‖T‖pp (4.5)

holds for every s > 0.
4.2. In this subsection we introduce the concepts of index of a Fredholm pair of orthog-
onal projections, and index for a pair of selfadjoint operators, and discuss some of their
properties. More details can be found in [1] and [5].
A pair of orthogonal projections (P,Q) is said to be Fredholm if

{−1, 1} ∩ σess(P −Q) = ∅.

In particular, if P −Q ∈ S∞, then the pair (P,Q) is Fredholm.
Assume that the pair of orthogonal projections (P,Q) is Fredholm. Set

index(P,Q) := dim Ker (P −Q− I)− dim Ker (P −Q+ I).

Let M̃ , M , be bounded self-adjoint operators. If the spectral projections P(−∞,0)(M̃)
and P(−∞,0)(M) form a Fredholm pair, we will use the notation

ind(M̃,M) := index(P(−∞,0)(M̃),P(−∞,0)(M)).

A sufficient condition that the pair P(−∞,0)(M̃),P(−∞,0)(M) be Fredholm, is M̃ = M+A
where M is a bounded self-adjoint operator such that 0 6∈ σess(M), and A = A∗ ∈ S∞.

Lemma 4.1. [5, Subsection 3.2] Let M be a bounded self-adjoint operator such that
0 6∈ σ(M). Let A and B be compact self-adjoint operators. Then for s ∈ (0,∞) such
that [−s, s] ∩ σ(M) = ∅ we have

ind(M+s+B,M+s)−n+(s;A) ≤ ind(M+A+B,M) ≤ ind(M−s+B,M−s)+n−(s;A).
(4.6)

Assume, moreover, that the rank of A is finite. Then we have

ind(M +B,M)− rankA ≤ ind(M + A+B,M) ≤ ind(M +B,M) + rankA. (4.7)

Remark: Note that in the case B = 0, estimates (4.6) imply

|ind(M + A,M)| ≤ n∗(s;A) (4.8)

for any s > 0 such that [−s, s] ∩ σ(M) = ∅.
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Lemma 4.2. [21, Lemma 2.1], [5, Subsection 3.3] Let M be a bounded self-adjoint
operator such that 0 6∈ σ(M). Let T1 = T ∗1 ∈ S∞ and T2 = T ∗2 ∈ S1. Then for each
s1 > 0, s2 > 0 such that [−s, s] ∩ σ(M) = ∅ with s = s1 + s2, we have∫

R
|ind(M + T1 + t T2,M)| dµ(t) ≤ n∗(s1;T1) +

1

πs2

‖T2‖1 (4.9)

where dµ(t) := 1
π

dt
1+t2

.

4.3. In this subsection we describe a representation of the SSF ξ(E;H,H0) which is a
special case of the general representation of the SSF due to F. Gesztesy, K. Makarov,
and A. Pushnitski (see [21], [14], [22]).
Let X1 and X2 be two separable Hilbert spaces. Let H and H0 be two lower bounded
self-adjoint operators acting in X1. Assume that (2.9) holds for some γ > 0. Next
suppose that

V := H−H0 = K∗JK (4.10)

where K ∈ B(X1, X2), J = J ∗ ∈ B(X2), and 0 6∈ σ(J ). Finally, assume that

K(H0 − E0)
−1/2 ∈ S∞(X1, X2), (4.11)

K(H0 − E0)
−γ′ ∈ S2(X1, X2), (4.12)

for some E0 < inf σ(H) ∪ σ(H0) and γ′ > 0. For z ∈ C+ := {ζ ∈ C | Im ζ > 0} set

T (z) := K(H0 − z)−1K∗.

Evidently, T (z) ∈ S∞(X2).

Lemma 4.3. [3] Let (4.10) – (4.12) hold true. Then for almost every E ∈ R the
operator-norm limit T (E) := n− limδ↓0 T (E + iδ) exists and by (4.12) we have T (E) ∈
S∞(X2). Moreover, 0 ≤ Im T (E) ∈ S1(X2).

Theorem 4.1. [21], [14], [22] Let (2.9) and (4.10) – (4.12) hold true. Then for almost
every E ∈ R we have

ξ(E;H,H0) =

∫
R

ind(J −1 + Re T (E) + t Im T (E),J −1) dµ(t). (4.13)

Note that the convergence of the integral in (4.13) is guaranteed by Lemma 4.2.
Now suppose that the electric potential V satisfies Dα with α > 1. Then relations (2.9)
and (4.10) – (4.12) hold true with X1 = X2 = L2(SL), H0 = H0, H = H, V = V ,
K = |V |1/2, J = J = signV , and γ = γ′ = 1. For z ∈ C+ set

T (z) := |V |1/2(H0 − z)−1|V |1/2.
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By Lemma 4.3 for almost every E ∈ R the operator-norm limit

T (E) := n− lim
δ↓0

T (E + iδ) (4.14)

exists, and
0 ≤ ImT (E) ∈ S1. (4.15)

In Corollary 4.1 below we will show that the limit (4.14) exists, and relation (4.15) holds
true for every E ∈ R \ Z. Then Theorem 4.1 implies that for almost every E ∈ R we
have

ξ(E;H,H0) =

∫
R

ind(J + ReT (E) + t ImT (E), J) dµ(t), (4.16)

the right-hand-side being well defined for every E ∈ R \ Z. In this article we identify
the SSF ξ(E;H,H0) for energies E 6∈ Z with the r.h.s. of (4.16).
4.4. Fix j ∈ N. Denote by ϕj : [0,∞) → [0,∞) the function inverse to Ej − Ej. In the
following lemma we describe some properties of ϕj which will be used in the sequel.
Let β and η be two functions with values in [0,∞), and O ⊆ D(β) ∩ D(η). We will
write β(s) � η(s), s ∈ O, if there exist two constants c± > 0 such that for each s ∈ O
we have c−η(s) ≤ ξ(s) ≤ c+η(s).

Lemma 4.4. Let j ∈ N. We have

ϕj(s) � s1/2, s ∈ [0,∞), (4.17)

ϕ′j(s) � s−1/2, s ∈ (0,∞). (4.18)

Moreover,
ϕj(s) =

√
sΦ(s), s ∈ [0,∞), (4.19)

where Φ ∈ C∞([0,∞)), and

Φ(0) = µ
−1/2
j , (4.20)

the number µj being defined in (2.4). In particular, we have

|ϕ′′j (s)| = O(s−3/2), s ∈ (0, s0), s0 ∈ (0,∞). (4.21)

Proof. By (2.1) and (2.3) we have

Ej(k)− Ej � k2, k ∈ R, (4.22)

which implies immediately (4.17). On the other hand, (3.11) and (2.2) easily yield

E ′
j(k) � k, k ∈ [0,∞). (4.23)

Bearing in mind the formula for the derivative of an inverse function, we find that (4.17)
and (4.23) imply (4.18).
Further, for t ≥ 0 introduce the function Ej(

√
t)−Ej, and denote by Ψ = Ψj : [0,∞) →

[0,∞) its inverse. By (4.18) we have Ψ′(s) � 1, s ∈ [0,∞). Since Ej is analytic, we find

that Ψ ∈ C∞([0,∞)). Moreover, Ψ(0) = 0 and Ψ′(0) = µ−1
j . Since ϕ(s) =

√
Ψ(s), we

get (4.19) with Φ(s) =
√

Ψ(s)/s, which on its turn implies (4.20).
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For j ∈ N set

Pj := F∗
∫ ⊕

R
pj(k)dkF ,

the orthogonal projections pj(k), k ∈ R, being defined in (3.9). For z ∈ C+ and j ∈ N
put

Tj(z) := |V |1/2Pj(H0 − z)−1|V |1/2.

Lemma 4.5. Assume that V satisfies Dα with α > 1. Fix j ∈ N. Then for each
z ∈ C+ we have Tj(z) ∈ S1 and the operator-valued function Tj : C+ → S1 is analytic.
Moreover, for E ∈ R \ {Ej} the limit

Tj(E) = lim
δ↓0

Tj(E + iδ) (4.24)

exists in S1, and Tj : R\{Ej} → S1 is continuous. Next, if E−Ej < 0, then the operator
Tj(E) is self-adjoint, and if E − Ej > 0, we have

0 ≤ ImTj(E), rank ImTj(E) ≤ 2. (4.25)

Finally, for each λ0 > 0 there exists Cj = Cj(λ0) such that for 0 < |E − Ej| < λ0 we
have

‖Tj(E)‖1 ≤ Cj|E − Ej|−1/2; (4.26)

if E − Ej < 0, then Cj could be chosen independent of λ0.

Proof. Let G = Gj : R → S2(L
2(SL),C) be the operator-valued function given for k ∈ R

by

G(k)u :=
1√
2π

∫
R

∫
IL

e−iky|V (x, y)|1/2ψj(x; k)u(x, y)dxdy, u ∈ L2(SL).

Evidently,

‖G(k)∗G(k)‖1 = ‖G(k)‖2
2 ≤ c1 :=

1

2π
sup
x∈IL

∫
R
|V (x, y)|dy (4.27)

for any k ∈ R. Next,

‖G(k1)−G(k2)‖2
2 =

1

2π

∫
R

∫
IL

|V (x, y)||e−ik1yψj(x; k1)− e−ik2yψj(x; k2)|2dxdy ≤

22(1−γ)

π
sup
x∈IL

∫
R
|V (x, y)||y|2γdy|k1 − k2|2γ + 2c1

∫
IL

|ψ(x; k1)− ψ(x; k2)|2dx

for k1, k2 ∈ R, and γ ∈ (0, (α− 1)/2), γ ≤ 1. Since ψ ∈ C∞(Rk;L
2(IL)), we have∫

IL

|ψ(x; k1)− ψ(x; k2)|2dx = O(|k1 − k2|2)
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for k1, k2 ∈ (−k0, k0) with k0 ∈ (0,∞). Therefore,

‖G(k1)−G(k2)‖2 = O(|k1 − k2|γ) (4.28)

for k1, k2 ∈ (−k0, k0), k0 ∈ (0,∞), and γ ∈ (0, (α − 1)/2), γ ≤ 1. Taking into account
(4.27) and (2.1), we find that if z ∈ C+, then

‖G∗
jGj(Ej − z)−1‖1 ∈ L1(R). (4.29)

Then the spectral theorem implies

Tj(z) =

∫
R

Gj(k)
∗Gj(k)

Ej(k)− z
dk, z ∈ C+, (4.30)

where, due to (4.29) and the continuity of the functions Gj : R → S2(L
2(SL),C) and

Ej : R → R, the integral admits an interpretation as a Bochner integral in the Banach
space S1 (see e.g. [19]), and it is easy to see that Tj : C+ → S1 is analytic.
Let F = Fj : (0,∞) → S2(L

2(SL),C2) be the operator-valued function defined for
s ∈ (0,∞) by

F (s)u :=
√
ϕ′(s)(G(ϕ(s))u,G(−ϕ(s))u), u ∈ L2(SL),

where, as above, ϕ = ϕj denotes the function inverse to Ej − Ej. Then we have

Tj(z) =

∫ ∞

0

Fj(s)
∗Fj(s)

s− λ− iδ
ds, z = Ej + λ+ iδ ∈ C+.

Further, if λ := E − Ej < 0, set

Tj(E) =

∫ ∞

0

Fj(s)
∗Fj(s)

s− λ
ds. (4.31)

Evidently, the operator Tj(E) is self-adjoint. Also, it is easy to check that (4.24) holds
true, and the function Tj : (−∞, Ej) → S1 is continuous. By (4.27) and (4.18),

‖Tj(E)‖1 ≤ 2c1

∫ ∞

0

ϕ′(s)

s+ |λ|
ds = O

(∫ ∞

0

ds

s1/2(s+ |λ|)

)
= O(|λ|−1/2), λ < 0,

so that (4.26) holds in this case as well.
Let now λ = E − Ej > 0. For E = Ej + λ put

ReTj(E) := v.p.

∫ ∞

0

Fj(s)
∗Fj(s)

s− λ
ds, (4.32)

ImTj(E) := πFj(λ)∗Fj(λ), (4.33)

Tj(E) := ReTj(E) + iImTj(E).
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Note that (4.33) immediately implies (4.25). Moreover,

v.p.

∫ ∞

0

F (s)∗F (s)

s− λ
ds =

∫ λ/2

0

F (s)∗F (s)

s− λ
ds+

∫ ∞

3λ/2

F (s)∗F (s)

s− λ
ds+

∫ λ/2

0

(F (λ+ ν)∗F (λ+ ν)− F (λ− ν)∗F (λ− ν))
dν

ν
. (4.34)

By (4.18) and (4.21),

|ϕ(λ+ ν)− ϕ(λ− ν)| = O
(
(λ+ ν)1/2 − (λ− ν)1/2

)
, (4.35)

|ϕ′(λ+ ν)− ϕ′(λ− ν)| = O
(
(λ− ν)−1/2 − (λ+ ν)−1/2

)
, (4.36)

for ν ∈ (0, λ/2), λ ∈ (0, λ0).
Taking into account (4.27) - (4.28), (4.18), and (4.32) - (4.36) we find that the operator
Tj(E) is well defined, that (4.24) holds true again, and

‖F (λ)∗F (λ)‖1 = O(λ−1/2), λ > 0,∥∥∥∥∥
∫ λ/2

0

F (s)∗F (s)

s− λ
ds

∥∥∥∥∥
1

= O(λ−1/2),

∥∥∥∥∫ ∞

3λ/2

F (s)∗F (s)

s− λ
ds

∥∥∥∥
1

= O(λ−1/2), λ > 0,

∥∥∥∥∥
∫ λ/2

0

(F (λ+ ν)∗F (λ+ ν)− F (λ− ν)∗F (λ− ν))
dν

ν

∥∥∥∥∥
1

= O(λ−1/2), λ ∈ (0, λ0),

which yields again (4.26).

4.4. Let j ∈ N. Set P+
j :=

∑∞
m=j Pm where the convergence of the infinite sum is

understood in the strong sense. For z ∈ C+, Re z < Ej, put

T+
j (z) := |V |1/2P+

j (H0 − z)−1|V |1/2.

Lemma 4.6. Fix j ∈ N. Let E ∈ (−∞, Ej). Then the limit

T+
j (E) = T+

j (E)∗ = n− lim
δ↓0

T+
j (E + iδ) (4.37)

exists. Moreover, for any z ∈ C+ \ [Ej,∞) we have T+
j (z) ∈ S2, and the operator-valued

function T+
j : C+\ [Ej,∞) → S2 is continuous. Finally, there exists a constant C+ which

depends on V , but is independent of E and j, such that

‖T+
j (E)‖2 ≤ C+Ej(Ej − E)−1, E ∈ (−∞, Ej). (4.38)
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Proof. We have
P+
j (H0 − z)−1 = P+

j P[Ej ,∞)(H0)(H0 − z)−1 (4.39)

and the operator valued function P[Ej ,∞)(H0)(H0 − z)−1 is analytic even on C \ [Ej,∞).

Since P+
j and |V |1/2 are bounded operators, this analyticity implies, in particular, the

existence of the limit in (4.37) and the continuity of T+
j : C+ \ [Ej,∞) → B. Further,

‖|V |1/2P+
j (H0 − E)−1|V |1/2‖2 ≤ sup

(x,y)∈SL

|V (x, y)|1/2‖P+
j (H0 − E)−1H0‖ ‖H−1

0 |V |1/2‖2.

(4.40)
By (4.39),

‖P+
j (H0−E)−1H0‖ ≤ ‖P[Ej ,∞)(H0)(H0−E)−1H0‖ ≤ sup

λ∈[Ej ,∞)

λ(λ−E)−1 = Ej(Ej−E)−1.

(4.41)
On the other hand, the diamagnetic inequality for Hilbert-Schmidt operators (see e.g.
[25, Theorem 2.13]) implies

‖H−1
0 |V |1/2‖2 ≤ ‖∆−1

D |V |1/2‖2 (4.42)

where, as above, ∆D is the Dirichlet Laplacian defined on SL. The integral kernel of
∆D is explicitly known, and we easily find

‖∆−1
D |V |1/2‖2

2 ≤ 16c1
L3

π3

∞∑
n=1

n−3

∫ ∞

0

dξ

(ξ2 + 1)2
. (4.43)

Putting together (4.40) - (4.43), we obtain (4.38).
Finally, an estimate similar to (4.40) of the Hilbert-Schmidt norm of the difference
|V |1/2P+

j (H0 − z1)
−1|V |1/2 − |V |1/2P+

j (H0 − z2)
−1|V |1/2, z1, z2 ∈ C+ \ [Ej,∞) easily

implies the continuity of T+
j : C+ \ [Ej,∞) → S2.

4.6. In this subsection we prove (4.14) - (4.15) as well as Proposition 2.1.
Let E ∈ R \ Z. If E has one nearest element from Z, let q = q(E) be the number of
this neighbour; if E has two nearest elements from Z, for definiteness let q(E) be the
number of the greater of these elements. Set

T (E) :=

q(E)∑
j=1

Tj(E) + T+
q(E)+1(E). (4.44)

Corollary 4.1. Let V satisfy Dα with α > 1, and let E ∈ R \ Z. Then (4.14) - (4.15)
hold true, the limiting operator T (E) being defined in (4.44). Moreover,

rank ImT (E) ≤ 2q(E). (4.45)
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Proof. In order to prove the existence of the limit (4.14), we just have to write

T (E + iδ) :=

q(E)∑
j=1

Tj(E + iδ) + T+
q(E)+1(E + iδ), δ > 0,

and to apply (4.24) and (4.37). In order to prove (4.15) and (4.45), it suffices to apply

(4.25), bearing in mind that ImT (E) =
∑q(E)

j=1 ImTj(E).

Next we prove Proposition 2.1. The proof of the continuity of the SSF repeats word by
word the proof of the continuity part of [5, Proposition 2.5]. Let us show that the SSF
is locally bounded, i.e. that it is bounded on every compact subset of R \ Z.
Let E ∈ R \ Z. Applying (4.16), (4.8), and (4.7), we get

|ξ(E;H,H0)| ≤ n∗(s; ReT (E)) + rank ImT (E), s ∈ (0, 1). (4.46)

By (4.3),

n∗(s; ReT (E)) ≤ n∗(s/2;

q(E)∑
j=1

ReTj(E)) + n∗(s/2;T+
q(E)+1(E)). (4.47)

Using (4.5) with p = 1 and p = 2, as well as (4.26) and (4.25), we get

n∗(s/2;

q(E)∑
j=1

ReTj(E)) ≤ 2

s

q(E)∑
j=1

‖Tj(E)‖1 ≤
2

s

q(E)∑
j=1

Cj|E − Ej|−1/2, (4.48)

n∗(s/2;T+
q(E)+1(E)) ≤ 4

s2
‖T+

q(E)+1(E)‖2
2 ≤

4

s2
C2

+E2
q(E)+1(Eq(E)+1 − E)−2. (4.49)

Now the combination of (4.46), (4.25), and (4.47) - (4.49) implies the local boundedness
of the SSF.
4.7. In this subsection we prove Theorem 2.2.

Proposition 4.1. Assume that V satisfies Dα with α > 1. Pick q ∈ N and λ 6= 0 such
that E := Eq + λ 6∈ Z. Then we have

ind (J+ε+ReTq(E), J+ε)+O(1) ≤ ξ(E;H,H0) ≤ ind (J−ε+ReTq(E), J−ε)+O(1)
(4.50)

as λ→ 0 for each ε ∈ (0, 1).

Proof. Applying (4.16), (4.7), and (4.45), we get

|ξ(E;H,H0)− ind(J + ReT (E), J)| ≤ 2q(E). (4.51)

Write ReT (E) = ReTq(E) + T̃ (E) where T̃ (E) :=
∑

j<q ReTj(E) + T+
q+1(E). By (4.6),

ind (J + ε+ ReTq(E), J + ε)− n∗(ε; T̃ (E)) ≤ ind(J + ReT (E), J) ≤

19



ind (J − ε+ ReTq(E), J − ε) + n∗(ε; T̃ (E)). (4.52)

Using (4.3) and arguing as in the derivation of (4.48), (4.49), we get

n∗(ε; T̃ (E)) ≤ 2

ε

∑
j:j<q

Cj|Eq −Ej + λ|−1/2 +
4

ε2
C2

+E2
q+1(Eq+1 −Eq − λ)−2 = O(1), λ→ 0.

(4.53)
Now the combination of (4.51) – (4.53) yields (4.50).

Fix j ∈ N. Let g = gj : S2(L
2(SL),C) be the operator-valued function given for k ∈ R

by

gj(k)u =
1√
2π

∫
R

∫
IL

e−iky|V (x, y)|1/2ψj(x; 0)u(x, y)dxdy, u ∈ L2(SL).

Similarly to (4.27) and (4.28) we have

‖g(k)‖2
2 ≤ c1, k ∈ R, (4.54)

‖g(k1)− g(k2)‖2 = O(|k1 − k2|γ), k1, k2 ∈ R, (4.55)

for any γ ∈ (0, (α− 1)/2) such that γ ≤ 1. By analogy with (4.30) set

τ̃j(z) :=

∫
R

gj(k)
∗gj(k)

Ej(k)− z
dk, z ∈ C+. (4.56)

As in the case of the operator Tj(z) (see Lemma 4.5) we can show that in S1 there exists
a limit

τ̃j(E) = lim
δ↓0

τ̃j(E + iδ), E ∈ R \ {Ej}.

Proposition 4.2. Let V satisfy Dα with α > 1. Fix q ∈ N, and let E = Eq + λ 6∈ Z.
Then for each ε ∈ (0, 1/2) we have

ind (J + 2ε+ Re τ̃q(E), J + 2ε) +O(1) ≤ ind (J + ε+ ReTq(E), J + ε), (4.57)

ind (J − 2ε+ Re τ̃q(E), J − 2ε) +O(1) ≥ ind (J − ε+ ReTq(E), J − ε), (4.58)

as λ ↓ 0.

Proof. Using (4.6) and (4.8), we obtain

ind (J+2ε+Re τ̃q(E), J+2ε)−n∗(ε; ReTq(E)−Re τ̃q(E)) ≤ ind (J+ε+ReTq(E), J+ε),

ind (J−2ε+Re τ̃q(E), J−2ε)+n∗(ε; ReTq(E)−Re τ̃q(E)) ≥ ind (J−ε+ReTq(E), J−ε).

Hence, in order to prove (4.57) – (4.58), it suffices to show that for each ε > 0 we have

n∗(ε; ReTq(E)− Re τ̃q(E)) = O(1), λ→ 0. (4.59)
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Let again ϕ = ϕq be the function inverse to Eq − Eq. Denote by f = fq : (0,∞) →
S2(L

2(SL),C2) the operator-valued function defined for s ∈ (0,∞) by

f(s)u :=
√
ϕ′(s)(g(ϕ(s))u, g(−ϕ(s))u), u ∈ L2(SL).

Then similarly to (4.31), (4.32), and (4.34), we have

τ̃q(Eq + λ) = τ̃q(Eq + λ)∗ =

∫ ∞

0

fq(s)
∗fq(s)

s− λ
ds

if λ < 0, and

Re τ̃q(Eq + λ) =

∫ λ/2

0

fq(s)
∗fq(s)

s− λ
ds+

∫ ∞

3λ/2

fq(s)
∗fq(s)

s− λ
ds+

∫ λ/2

0

(fq(λ+ ν)∗fq(λ+ ν)− fq(λ− ν)∗fq(λ− ν))
dν

ν

if λ > 0. Further, we have
G(k) = g(k) + k%(k)

where % : R → L2(L2(SL),C) is the operator-valued function given for k ∈ R by

%(k)u =
1√
2π

∫
R

∫
IL

e−iky|V (x, y)|1/2ψ̃(x; k)u(x, y)dxdy, u ∈ L2(SL),

where ψ̃(x; k) := ψq(x;k)−ψq(x;0)

k
. Evidently,

‖%(k)‖2
2 ≤ c1

∫
IL

ψ̃(x; k)2dx, k ∈ R, (4.60)

‖%(k1)− %(k2)‖2 = O(|k1 − k2|γ) (4.61)

for k1, k2 ∈ (−k0, k0) with k0 ∈ (0,∞), and γ ∈ (0, (α− 1)/2), γ ≤ 1. Next, we have

F (s) = f(s) + ϕ(s)r(s)

where r : (0,∞) → S2(L
2(SL),C2) is the operator-valued function defined for s ∈ (0,∞)

by
r(s)u :=

√
ϕ′(s)(%(ϕ(s))u,−%(−ϕ(s))u), u ∈ L2(SL).

Therefore,

F (s)∗F (s) = f(s)∗f(s) + 2ϕ(s)Re f(s)∗r(s) + ϕ(s)2r(s)∗r(s). (4.62)

By (4.17) – (4.18), (4.54) – (4.55), and (4.60) – (4.61), we have

ϕ(s)‖f(s)∗r(s)‖1 = O(sγ/2), γ ∈ (0, (α− 1)/2), γ ≤ 1, (4.63)
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ϕ(s)2‖r(s)∗r(s)‖1 = O(s1/2) (4.64)

for s ∈ (0, s0) and s0 ∈ (0,∞). By (4.62), for a fixed s0 > 0 we have

ReTq(Eq + λ)− Re τ̃q(Eq + λ) = Tq(Eq + λ)− τ̃q(Eq + λ) =∫ ∞

s0

F (s)∗F (s)

s− λ
ds−

∫ ∞

s0

f(s)∗f(s)

s− λ
ds+

∫ s0

0

2ϕ(s)Re f(s)∗r(s) + ϕ(s)2r(s)∗r(s)

s− λ
ds

if λ < 0, and

ReTq(Eq + λ)− Re τ̃q(Eq + λ) =

∫ ∞

s0

F (s)∗F (s)

s− λ
ds−

∫ ∞

s0

f(s)∗f(s)

s− λ
ds+

∫ s0

3λ/2

2ϕ(s)Re f(s)∗r(s) + ϕ(s)2r(s)∗r(s)

s− λ
ds+

∫ λ/2

0

2ϕ(s)Re f(s)∗r(s) + ϕ(s)2r(s)∗r(s)

s− λ
ds+

2

∫ λ/2

0

(ϕ(λ+ ν)Re f(λ+ ν)∗r(λ+ ν)− ϕ(λ− ν)Re f(λ− ν)∗r(λ− ν))
dν

ν
+∫ λ/2

0

(ϕ(λ+ ν)2r(λ+ ν)∗r(λ+ ν)− ϕ(λ− ν)2r(λ− ν)∗r(λ− ν))
dν

ν

if λ is positive and small enough (say, λ ∈ (0, s0/2)). Using estimates (4.35) - (4.36) as
well as (4.54) - (4.55), (4.60) - (4.61), and (4.63) - (4.64), we obtain

‖ReTq(Eq + λ)− Re τ̃q(Eq + λ)‖1 = O(1), λ→ 0,

which combined with (4.5) for p = 1 yields (4.59), and hence (4.57) - (4.58).

Fix j ∈ N. By analogy with (4.30) and (4.56) set

τj(z) :=

∫
R

g(k)∗g(k)

µjk2 − z
dk, z ∈ C+.

As in the case of the operators Tj(z) and τ̃(z), in S1 there exists a limit

τj(E) = lim
δ↓0

τj(E + iδ), E ∈ R \ {0}.

Proposition 4.3. Let V satisfy Dα with α > 1. Fix q ∈ N. Then for each ε ∈ (0, 1/2)
and γ ∈ (0, (α− 1)/2), γ ≤ 1, we have

ind (J + 2ε+ Reτq(λ), J + 2ε) +O(θ2γ(λ)) ≤ ind (J + ε+ Reτ̃q(Eq + λ), J + ε), (4.65)

ind (J − 2ε+ Reτq(λ), J − 2ε) +O(θ2γ(λ)) ≥ ind (J − ε+ Reτ̃q(Eq + λ), J − ε), (4.66)

as λ→ 0, the functions θβ being defined in (2.12) – (2.13).
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Proof. Similarly to the proof of Proposition 4.2 (see (4.59)), it suffices to show that for
each ε > 0 we have

n∗(ε; Re τ̃q(Eq + λ)− Re τq(λ)) = O(θ2γ(λ)), λ→ 0. (4.67)

Let at first λ < 0. In this case we have

Re τ̃q(Eq + λ)− Re τq(λ) = τ̃q(Eq + λ)− τq(λ) =∫
R
gq(k)

∗gq(k)
µqk

2 − Eq(k) + Eq
(Eq(k)− Eq − λ)(µqk2 − λ)

dk

and

‖τ̃(Eq + λ)− τq(λ)‖1 ≤
c1
µq

∫
R

|Eq(k)− Eq − µqk
2|

k2(Eq(k)− Eq)
dk = O(1), λ ↑ 0,

which combined with (4.5) for p = 1 yields (4.67) in the case λ < 0.
Let now λ > 0. As above, let ϕ = ϕq be the function inverse to Eq − Eq. Set

φ(s) = φq(s) := µ−1/2
q s1/2, s > 0.

By (4.19) - (4.20),
ϕ(s)− φ(s) = O(s3/2), (4.68)

ϕ′(s)− φ′(s) = O(s1/2), (4.69)

for s ∈ (0, s0) and s0 ∈ (0,∞). Fix s0 ∈ (0,∞) and assume λ < s0/2. For η = ϕ or
η = φ define the operator-valued function Γη : (0,∞) → S2(L

2(SL),C2) by

Γη(s)u := (g(η(s))u, g(−η(s))u), s > 0, u ∈ L2(SL),

and

Mη,1(λ) :=

∫ ∞

s0

η′(s)
Γη(s)

∗Γη(s)

s− λ
ds,

Mη,2(λ) := v.p.

∫ s0

0

η′(s)
2Re Γη(s)

∗Γη(λ)− Γη(λ)∗Γη(λ)

s− λ
ds,

Mη,3(λ) :=

∫ s0

0

η′(s)
(Γη(s)− Γη(λ))∗(Γη(s)− Γη(λ))

s− λ
ds.

Then we have

τ̃q(Eq + λ) =
∑
l=1,2,3

Mϕ,l(λ), τq(λ) =
∑
l=1,2,3

Mφ,l(λ).

It is easy to see that

‖Mη,1(λ)‖1 = O(1), λ ↓ 0, η = ϕ, φ, (4.70)
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rankMη,2(λ) ≤ 6, λ > 0, η = ϕ, φ, (4.71)

‖Mη,3(λ)‖1 = O(θγ(λ)), λ ↓ 0, η = ϕ, φ. (4.72)

Let us show that
‖Mϕ,3(λ)−Mφ,3(λ)‖1 = O(θ2γ(λ)), λ ↓ 0. (4.73)

We have
Mϕ,3(λ)−Mφ,3(λ) =∫ s0

0

(ϕ′(s)− φ′(s))
(Γϕ(s)− Γϕ(λ))∗(Γϕ(s)− Γϕ(λ))

s− λ
ds+∫ s0

0

φ′(s)
(Γϕ(s)− Γφ(s)− Γϕ(λ) + Γφ(λ))∗(Γϕ(s)− Γϕ(λ))

s− λ
ds+∫ s0

0

φ′(s)
(Γφ(s)− Γφ(λ))∗(Γϕ(s)− Γφ(s)− Γϕ(λ) + Γφ(λ))

s− λ
ds :=

I1 + I2 + I3.

Using (4.69), (4.55), and (4.18) (which implies |ϕ(s)−ϕ(λ)| = O(|
√
s−

√
λ|), s ∈ (0, s0),

we get

‖I1‖1 = O

(∫ s0

0

s1/2 |
√
s−

√
λ|2γ

|s− λ|
ds

)
= O(1), λ ↓ 0. (4.74)

Further, for s, λ > 0, and γ ∈ (0, (α− 1)/2), γ ≤ 1, we have

‖Γϕ(s)− Γφ(s)− Γϕ(λ) + Γφ(λ)‖2
2 ≤

1

π
sup

(x,y)∈SL

〈y〉α|V (x, y)|
∫

R
|eiϕ(s)y − eiφ(s)y − eiϕ(λ)y + eiφ(λ)y|2〈y〉−αdy ≤

23−2γ

π
sup

(x,y)∈SL

〈y〉α|V (x, y)|
∫

R
|y|2γ〈y〉−αdy

(
|ϕ(s)− φ(s)|2γ + |ϕ(λ)− φ(λ)|2γ

)
.

Using (4.68), we get

‖Ij‖1 = O

(∫ s0

0

s−1/2 (s3γ + λ3γ)1/2|
√
s−

√
λ|γ

|s− λ|
ds

)
= O(θ2γ(λ)), λ ↓ 0, j = 2, 3.

(4.75)
Putting together (4.74) and (4.75), we obtain (4.73). Now the combination of (4.70) –
(4.73) with (4.4) and (4.5) for p = 1 yields (4.67) in the case λ > 0.

Next, we note that for each λ > 0 and q ∈ N we have rank Imτq(λ) ≤ 2, while Imτq(λ) =
0 if λ < 0. Therefore,

ind (J−ε+Re τq(λ), J−ε) =

∫
R

ind (J−ε+Re τq(λ)+tIm τq(λ), J−ε)dµ(t)+O(1), λ→ 0,

(4.76)
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for each ε ∈ (−1, 1). On the other hand, we have

wq,ε = κ∗(J − ε)−1κ, ε ∈ (−1, 1),

τq(z) = κ(h0,q − z)−1κ∗, z ∈ C+ \ {0},

where κ : L2(R) → L2(SL) is the operator defined by

(κu)(x, y) := ψ(x, 0)|V (x, y)|1/2u(y), u ∈ L2(R).

By Theorem 4.1 we have∫
R

ind (J − ε+ Re τq(λ) + tIm τq(λ), J − ε)dµ(t) = ξ(λ;hq(ε), h0,q), λ 6= 0. (4.77)

Combining (4.50), (4.57) – (4.58), (4.65) – (4.66), (4.76), and (4.77), we obtain (2.14).
4.8. Finally, we assume that α > 2 and prove Corollary 2.3. If λ < 0, then (2.18) is an
immediate consequence of Theorem 2.2 and the well-known fact that the 1D Schrödinger
operator − d2

dy2
+ w(y), y ∈ R, has a most a finite number of of negative eigenvalues if

w(y) = o(|y|−2) as |y| → ∞ (see e.g. [24]). Assume λ > 0. Combining (4.8), (4.7),
(4.4), and (4.5) with p = 1, we obtain

|ind (J − ε+ Re τq(λ), J − ε)| ≤ n∗(1− |ε|; Re τq(λ)) ≤

(1− |ε|)−1‖Mφ,1(λ)‖1 + rankMφ,2(λ) + (1− |ε|)−1‖Mφ,3(λ)‖1, ε ∈ (−1, 1). (4.78)

Pick γ < (α − 1)/2, γ ≤ 1, γ > 1/2. Using (4.70) – (4.72), we find that the r.h.s. of
(4.78) remains bounded as λ ↓ 0.
Putting together (4.50), (4.57) – (4.58), (4.65) – (4.66), and (4.78), we obtain (2.18) in
the case λ > 0.
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