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Abstract

The set of common numerical and analytical problems is introduced
in the form of the generalized multidimensional discrete Poisson equation.
It is shown that its solutions with square-summable discrete derivatives
are unique up to a constant. The proof uses the Fourier transform as the
main tool. The necessary condition for the existence of the solution is
provided.

1 Introduction

The motivation for this paper comes from an attempt to construct (a discrete
version of) the quantum field theory interacting with a non-trivial gravitational
field. Such a theory would describe a quantum mechanical system with infinitely
many degrees of freedom, assigned to the points of an infinite lattice Zd [4, 3, 2].
The multidimentional discrete Poisson equation arises as a natural tool of such
a theory. In this paper we present a proof of the uniqueness (up to an additive
constant) of a class of its solutions. The existence proof will be the subject of
further research.

The equation we deal with may be derived from the variational principle:

δW (f, f) = 0 , (1)

where

W (f, f) :=
∑
n∈Zd

d∑
k=1

d∑
l=1

bn,kl(fn − fn−ek
)(fn − fn−el

) .

Here, f is our unknown function, a complex sequence defined on the lattice Zd

(f : Zd 7→ C), whereas b : Zd 7→ Cd×d is a sequence of d× d positive Hermitian
matrices bn whose spectra σ(bn) have common bounds,

∀n∈Zd σ(bn) ∈ (b1, b2] , 0 ≤ b1 ≤ b2 < ∞ . (2)
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We assume that f fulfills the following condition:

∀1≤k≤d

∑
n∈Zd

|fn − fn−ek
|2 < ∞ . (3)

This makes W (f, f) finite, since

b1

d∑
k=1

|fn − fn−ek
|2 <

d∑
k=1

d∑
l=1

bn,kl(fn − fn−ek
)(fn−fn−el

) ≤ b2

d∑
k=1

|fn − fn−ek
|2 .

Varying W (f, f) over fn, we derive the following homogeneous equation for f :
d∑

k=1

d∑
l=1

[bn+ek,kl(fn+ek
− fn+ek−el

)− bn,kl(fn − fn−el
)] = 0 .

In the present paper, we consider a general, non-homogeneous case
d∑

k=1

d∑
l=1

[bn+ek,kl(fn+ek
− fn+ek−el

)− bn,kl(fn − fn−el
)] = gn , (4)

which we call the generalized multidimensional discrete Poisson equation. The
simplest example is provided by the standard multidimensional discrete Poisson
equation, corresponding to bn,kl = δk,l:

d∑
k=1

(fn+ek
+ fn−ek

− 2fn) = gn .

Of course, adding a constant to a solution f of (4) we again obtain a solution.
Within the class of functions fulfilling (3), we prove that any two solutions of
equation (4) are equal up to an additive constant.

Contrary to the case of ordinary differential equations, there is no gen-
eral theorem on the existence and uniqueness of solutions of discrete equa-
tions, neither in one nor in many dimensions. Only partial results exist, see
for example [1, 5]. In [5], the uniqueness of solutions vanishing at infinity
(lim‖n‖→∞ fn = 0) has been proved for a wide class of multidimensional dis-
crete equations. Unfortunately, this is not sufficient for purposes of the quantum
field theory. Our result presented here is valid for solutions fulfilling a different
condition, namely (3).

Given two solutions of (4), f and f ′, satisfying condition (3), their difference
xn := fn − f ′n fulfills (3) and solves the homogeneous equation with g = 0:

d∑
k=1

d∑
l=1

[bn+ek,kl(xn+ek
− xn+ek−el

)− bn,kl(xn − xn−el
)] = 0 . (5)

It is, therefore, sufficient to prove that, within the class of functions fulfill-
ing (3), any solution of (5) is constant.

For the non-homogeneous equation (4), the existence of a solution depends
very much upon the properties of the right-hand side g and will be analyzed
elsewhere.
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2 Uniqueness theorem

Theorem 1 Let x : Zd 7→ C be a solution of the homogeneous generalized
discrete Poisson equation (5) in d dimensions. Let us assume that x has the
property (3),

∀1≤k≤d

∑
n∈Zd

|xn − xn−ek
|2 < ∞ . (6)

Then
xn = const .

Observe that the uniqueness within the class of square-summable functions:∑
n∈Zd

|xn|2 < ∞ ,

follows easily from the following, standard argument. We multiply both sides
of (5) by xn and sum over n ∈ Zd, obtaining

∑
n∈Zd

xn

d∑
k=1

d∑
l=1

[bn+ek,kl(xn+ek
− xn+ek−el

)− bn,kl(xn − xn−el
)] = 0 .

Changing the order of summation in this expression we get:

∑
n∈Zd

d∑
k=1

d∑
l=1

bn,kl(xn − xn−ek
) (xn − xn−el

) = 0 .

Due to (2), this implies xn = const. However, we consider solutions which are
not necessarily square-summable, and the above argument does not work.
Proof Consider the following auxiliary quantity v : Zd⊗ [1, d] 7→ C, defined as

vn,k := xn − xn−ek
. (7)

From (6) and (7), we have that for each k, (vn,k) is a square-summable
sequence, ∑

n∈Zd

|vn,k|2 < ∞ . (8)

The fact that v is square-summable allows us to define another auxiliary
quantity ṽ : [1, d]⊗ [−π, π]d 7→ C as the Fourier transform of v,

ṽk(s) :=
1

(2π)d/2

∑
n∈Zd

vn,ke−in·s , s ∈ [−π, π]d . (9)

Additionally, (8) leads to ṽk being square-integrable,∫
[−π,π]d

|ṽk(s)|2 dds < ∞ .
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Due to (7), we have for each pair 1 ≤ k1, k2 ≤ d and each n ∈ Zd

vn,k1 − vn−ek2 ,k1 = vn,k2 − vn−ek1 ,k2 .

The Fourier transform of this equation goes as follows:

ṽk1(s)
(
1− e−isk2

)
= ṽk2(s)

(
1− e−isk1

)
.

Therefore, the following equality is valid for sk2 6= 0: ṽk1(s) = ṽk2(s)
(
1− e−isk1

)(
1− e−isk2

)−1. The set {s ∈ [−π, π]d : sk2 = 0} has measure zero (in the mea-
sure

∏d
j=1 dsj = dds). We rewrite the equality as

ṽk1(s)=̊ṽk2(s)
1− e−isk1

1− e−isk2
, (10)

where =̊ means ‘equal everywhere in [−π, π]d except for a set with measure
zero’.

It is be convenient for us to introduce another pair of auxiliary quantities.
Let us define y : Zd ⊗ [1, d]2 7→ C as

yn,kl := bn,klvn,l . (11)

Due to the bounds (2) on bn and the fact that it is a Hermitian matrix, we have
|bn,kl| ≤ b2. Inserting this into

∑
n∈Zd |yn,kl|2, we get∑

n∈Zd

|yn,kl|2 ≤ b2

∑
n∈Zd

|vn,k|2 < ∞ (12)

for each 1 ≤ k, l ≤ d. Because of (12), we can define another quantity, ỹ :
[1, d]2 ⊗ [−π, π]d 7→ C, as the Fourier transform of yn,kl,

ỹkl(s) :=
1

(2π)d/2

∑
n∈Zd

yn,kle
−in·s , (13)

ỹkl is a square-integrable function on the domain [−π, π]d,∫
[−π,π]d

|ỹkl(s)|2 dds < ∞ .

With the help of (7) and (11), we write (5) as

d∑
k=1

d∑
l=1

(yn,kl − yn+ek,kl) = 0 . (14)

Using the definition of ỹ, we can calculate the Fourier transform of (14),

d∑
k=1

d∑
l=1

ỹkl(s)
(
1− eisk

)
= 0 .
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Multiplying both sides by ṽ1(s)(1− eis1)−1 and using (10), we obtain

d∑
k=1

(
d∑

l=1

ỹkl(s)

)
ṽk(s)=̊0 .

Recalling the definition of =̊, we can integrate this formula over s, obtaining

d∑
k=1

∫
[−π,π]d

ṽk(s)

(
d∑

l=1

ỹkl(s)

)
dds = 0 .

Since the Fourier transform preserves the L2 scalar product, we have from (9), (11)
and (13)

d∑
k=1

∑
n∈Zd

vn,k

(
d∑

l=1

bn,klvn,l

)
= 0 . (15)

By (2) and (8), we have for each 1 ≤ k ≤ d

∑
n∈Zd

∣∣∣∣∣
d∑

l=1

bn,klvn,l

∣∣∣∣∣
2

< ∞ .

The last result, together with (8) and the Schwartz inequality, ensures the con-
vergence of the series ∑

n∈Zd

vn,k

(
d∑

l=1

bn,klvn,l

)
for each 1 ≤ k ≤ d. Thus, we may transform (15) into

∑
n∈Zd

d∑
k=1

d∑
l=1

bn,klvn,kvn,l = 0 . (16)

From (2) we know that for each n ∈ Zd, we have

d∑
k=1

d∑
l=1

bn,klvn,kvn,l ≥ b1

d∑
k=1

|vn,k|2 .

Since b1 > 0, equation (16) may be true if and only if vn,k = 0 for all n ∈ Zd and
all 1 ≤ k ≤ d. From (7), we get xn − xn−ek

= 0, which means that Theorem 1
is true,

xn = const .

�
Using the above result, we prove the main theorem:
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Theorem 2 Let f, f ′ : Zd 7→ C be solutions of equation (4), which fulfill con-
dition (3). Then

fn = f ′n + const ,

which means that solutions of (4) which fulfill condition (3) are unique up to a
constant.

Proof The difference x := f − f ′ is a solution of equation (5) and fulfills
condition (6). Therefore, Theorem 1 applies and we have

xn = const .

Thus,
fn = f ′n + const .

This ends the proof.
�

3 Necessary condition for the existence of solu-
tions

Theorem 3 If f , fulfilling condition (3), is the solution of (4), then its right-
hand side g must be square-summable.

Proof Indeed, from (4) we have

∑
n∈Zd

|gn|2 =
∑
n∈Zd

d∑
k,l=1

d∑
k′,l′=1

bn,klbn,k′l′(fn − fn−el
)(fn − fn−el′ )

−
∑
n∈Zd

d∑
k,l=1

d∑
k′,l′=1

bn,klbn+ek′ ,k′l′(fn − fn−el
)(fn+ek′ − fn+ek′−el′ )

+
∑
n∈Zd

d∑
k,l=1

d∑
k′,l′=1

bn+ek,klbn+ek′ ,k′l′(fn+ek
− fn+ek−el

)

× (fn+ek′ − fn+ek′−el′ )

−
∑
n∈Zd

d∑
k,l=1

d∑
k′,l′=1

bn+ek,klbn,k′l′(fn+ek
− fn+ek−el

)(fn − fn−el′ )

(17)

6



Each of these terms is bounded, for example:∣∣∣∣∣∣
d∑

k,l=1

d∑
k′,l′=1

bn,klbn,k′l′(fn − fn−el
)(fn − fn−el′ )

∣∣∣∣∣∣ ≤
≤

d∑
k,l=1

d∑
k′,l′=1

|bn,kl| |bn,k′l′ | |fn − fn−el
|
∣∣fn − fn−el′

∣∣ ≤
≤ b2

2

d∑
k,l=1

d∑
k′,l′=1

|fn − fn−el
|
∣∣fn − fn−el′

∣∣ , (18)

since for Hermitian bn, we have |bn,kl| ≤ ‖bn‖. For each product of the type
|fn − fn−el

|
∣∣fn − fn−el′

∣∣, we have

∑
n∈Zd

|fn − fn−el
|
∣∣fn − fn−el′

∣∣ ≤ d∑
k=1

∑
n∈Zd

|fn − fn−ek
|2 < ∞ (19)

and analogously for other terms in (17). Using these results, we obtain

∑
n∈Zd

|gn|2 ≤ b2
2d

4
d∑

k=1

∑
n∈Zd

|fn − fn−ek
|2 < ∞ . (20)

Hence, g is square-summable.
�

4 Summary

We introduced the generalized discrete Poisson equation in d dimensions. With
the use of the Fourier transform, we proved the uniqueness up to a constant of
the solutions with square-summable discrete derivatives. We also provide the
necessary condition for the existence of solution. Because of the ubiquity of dis-
crete equations and the Poisson equation in particular, this result is important
for many areas of physics and mathematics.
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