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Abstract. This paper provides a sufficient condition to guarantee the stabil-
ity of weak limits under nonlinear operators acting on vector-valued Lebesgue
spaces. This nonlinear framework places the weak convergence in perspective.
Such an approach allows short and insightful proofs of important results in
Functional Analysis such as: weak convergence in L∞ implies strong conver-
gence in Lp for all 1 ≤ p < ∞, weak convergence in L1 v.s. strong convergence
in L1 and the Brezis-Lieb theorem. The final goal is to use this framework as
a strategy to grapple with a nonlinear weak spectral problem on W 1,p.

1. Introduction

The weak continuity of operators between Banach spaces is an important topic in
the applications of Functional Analysis. One can often take advantage of the locally
compact structure of function spaces endowed with the weak topology, providing a
better understanding of the behavior of these operators. This issue becomes much
more interesting in the nonlinear environment.

Among nonlinear operators, there is a distinguished class called Nemytskii op-
erators. In a certain sense, we are concerned about when they preserve the weak
convergence. More precisely, we consider the notion of a.e. and weakly conver-
gence (a.e.w.), and formulate the problem αp,q where p, q ≥ 1 as follows: Let f
be a Carathéodory function and suppose that the Nemytskii operator associated
to f maps Lp(Ω,E) into Lq(Ω,F). Does Nf map a.e.w. convergent sequences into
weakly convergent sequences? Our purpose in this paper is to study under what
conditions the problem αp,q is affirmatively answered, and then apply the answer
to analyze some linear and nonlinear problems. It is worthwhile to point out that
our approach is developed for vector-valued function spaces which has turned out
to be not only a suitable tool to clarify important linear phenomena, but also an
interesting technique to approach nonlinear problems.

Our paper is organized as follows. In section 2 we treat the problem αp,q for
q > 1. Theorem 2.6 answers the question. The central idea of theorem 2.6 was
motivated by the real-valued version of the problem. However the vector-valued
case is supported by nonstandard results in Functional Analysis and Vector Measure
Theory. Afterwards, we illustrate how to use theorem 2.6 to provide short proofs
of some important classical results. Namely, we prove that weak convergence in
L∞ implies strong convergence in Lp for all 1 ≤ p < ∞ and a.e.w. convergence
in Lp implies strong convergence in Lq for every 1 ≤ q < p. In section 3 we
offer a new approach to the Brezis-Lieb theorem using the ideas developed in the
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previous section. Current proofs may not provide much insight into the underlying
machinery. We hope that our proof remedies this. Section 4 deals with the problem
α1,1. The strategy used here is quite different from section 2. As a consequence
we obtain an extension of a result regarding the relationship between weak and
strong convergence in L1. Section 5 concerns an application of the ideas studied on
section 2, namely, the weak convergence under nonlinearities, to treat a nonlinear
weak spectral problem on W 1,p(Ω). More specifically, we study the solvability in
W 1,p(Ω) of following nonlinear functional equation:

f(x, u(x))− λu(x) = ψ(x),

where λ ∈ R and ψ ∈ W 1,p(Ω). The ideas in this section illustrate how topological
methods can be used to get regularity results for nonlinear functional equations,
skipping the usual machinery often involved in such problems.

We believe the ideas contained in this paper may be applied to study a wide
class of functional and partial differential equations involving many different types
of nonlinearities.

2. Weak convergence under Nemytskii-nonlinearities

Definition 2.1. Let (Ω,A, µ) be a measure space. Let E and F be separable Ba-
nach spaces. A function f : Ω× E→ F is said to be a Carathéodory function if:

(a) for each fixed v ∈ E the function x 7→ f(x, v) is A-measurable;
(b) for µ-almost everywhere fixed x ∈ Ω the function v 7→ f(x, v) is continuous.

We write f ∈ (C) to indicate that f is a Carathéodory function. In this case,
the map x 7→ f(x, u(x)) is A-measurable whenever u is a E-valued A-measurable
function and will be denoted by Nf (u). The correspondence u 7→ Nf (u) is called
the Nemytskii operator. There is of special interest when Nf acts on Lebesgue
spaces. The next result characterizes these cases.

Theorem 2.2 (Lucchetti-Patrone). Let E, F be separable Banach spaces. The
Nemytskii operator Nf maps Lp(Ω,E) into Lq(Ω,F), 1 ≤ p, q < +∞, if and only if
there exist a constant a > 0 and a function b(x) ∈ Lq

+(Ω) such that

(2.1) ‖f(x, v)‖F ≤ a · ‖v‖p/q
E + b(x)

In this case, the operator Nf is continuous and bounded, in the sense that it
maps bounded sets into bounded sets.

The first natural question which raises here is the weak sequential continuity of
the Nemytskii operators acting on Lp spaces. The next example shows that there
is no hope for such a result to be true.

Example 2.3. Let Ω = (0, π
2 ) and un(x) = sin(nx). By Riemann-Lebesgue’s

lemma, un ⇀ 0 in L2(0, π
2 ). Let f : (0, π

2 )×R→ R be given by: f(x, t) = t+. Now
we note that 〈 1, Nf (un) 〉L2 = 1

n

∫ n π
2

0
(sin(y))+dy. Then

lim sup
n

〈 1, Nf (un) 〉L2 ≥ lim
s

1
4s + 2

s∑

k=0

∫ (2k+1)π

2kπ

sin y dy =
1
2
.

The main point in example 2.3 is the oscillation of the sequence un. In order to
focus the problem on the right way we have to introduce the following concept.
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Definition 2.4. Let (X,A, µ) be a measure space and F(X,E) a topological vec-
tor space of E-valued functions defined on X. We write fn → f a.e.w. (almost
everywhere and weakly) in F(X,E) if fn → f µ - a.e. in X and fn ⇀ f in F(X,E).

The most frequent source of examples of a.e.w. convergence comes from bound-
edness in the Sobolev spaces Wm,p(Ω) for m ≥ 1 and 1 ≤ p ≤ ∞. Using the
previous definition we can restate our question as: Is the a.e.w. convergence pre-
served by Nemytskii operators? Stating it in a precise way, our problem is:

(αp,q)

8
<
:

f ∈ (C)
Nf maps Lp(Ω,E) into Lq(Ω,F)

Does Nf map a.e.w. convergent sequences into weakly convergent sequences?

The rest of this section will be devoted to study the problem αp,q and some
consequences. The problem α1,1 has turned out to be more delicate and it will be
fully studied in section 4. The next example deals with the question αp,1, for p > 1.

Example 2.5. Let 1 < p < ∞. The answer to the problem αp,1 is negative.
Indeed let Ω be a domain in RN . Without losing generality, let us suppose 0 ∈ Ω.
Set f : Ω × R → F , f(x, t) = |t|p · ν0, where ν0 ∈ F \ {0}. The Nemytskii
operator Nf maps Lp(Ω) into L1(Ω,F). Set un ∈ Lp(Ω), un = |Bn|−1/pχBn ,
where Bn = {x ∈ RN ; |x| < 1/n}. Since un → 0 a.e. in Ω and ||un||p = 1, by
reflexivity, we may assume un → 0 a.e.w. Our claim is that Nf (un) 6⇀ 0 in L1(Ω,F).
In fact, from the Hahn-Banach theorem, there exists a ψ ∈ F∗ such that ψ(ν0) = 1.
Define Ψ ∈ [L1(Ω,F)]∗, by

Ψ(ξ) =
∫

Ω

ψ ◦ ξ(x)dx.

We obtain

1 = |Bn|−1

∫

Ω

χBn(x)dx =
∫

Ω

ψ(Nf (un))(x)dx = Ψ(Nf (un)) 6→ 0.

Theorem 2.6. Let 1 ≤ p < +∞, 1 < q < ∞ and (Ω,A, µ) be a σ-finite measure
space. If F is reflexive, then the answer of problem αp,q is affirmative.

Proof. Indeed, let us suppose un → u a.e.w. in Lp(Ω,E). Since (un) is bounded in
Lp(Ω,E), by theorem 2.2, (Nf (un)) is bounded in Lq(Ω,F). Once F is reflexive, so is
its dual. By the Phillips theorem, F∗ has the Radon-Nikodym. Thus, [Lq(Ω,F)]∗ =
Lq′(Ω,F∗). It implies that Lq(Ω,F) is reflexive. Hence, taking a subsequence if
necessary, we may assume that Nf (um) ⇀ v ∈ Lq(Ω,F). Clearly, Nf (um) → Nf (u)
a.e. in Ω. By hypothesis, there exists a sequence {Ωj}∞j=1 of measurable subsets of
Ω such that:

• µ(Ωj) < +∞ for each j ≥ 1

• Ω =
∞⋃

j=1

Ωj

Let j ≥ 1 be fixed. From Egorov’s theorem, given ε > 0 there is a subset Aε of
Ωj with µ(Aε) < ε such that Nf (un) → Nf (u) in L∞(Ωj \ Aε,F). In particular
this convergence takes place in Lp(Ωj \ Aε,F). It follows that Nf (u) = v a.e. in
Ωj \ Aε. Therefore, the set Aj = {x ∈ Ωj : Nf (u)(x) 6= v(x)} has measure zero
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once Aj ⊂ Aε, for every ε > 0. To finish, setting A =
∞⋃

j=1

Aj , we have that

A = {x ∈ Ω : Nf (u)(x) 6= v(x)}. In this way, µ(A) = 0 and the result follows. ¤
In the next result as well as in the last section we shall make use of the theory

of Sobolev spaces. For the convenience of the readers, we provide the following
definition.

Definition 2.7. Let Ω ⊂ RN be an open set and 1 ≤ p ≤ ∞. The Sobolev space
W 1,p(Ω) is defined to be:

W 1,p(Ω) :=





u ∈ Lp(Ω)

∣∣∣∣∣∣∣

∃g1, g2, ...gN ∈ Lp(Ω) such that∫

Ω

u
∂ϕ

∂xi
= −

∫

Ω

giϕ ∀ϕ ∈ C∞c (Ω) ∀i = 1, 2, ..., N





Such gi’s on the above definition are unique (a.e.). This allows us to denote
gi = ∂iu and call it the ith weak derivative of u. We should also mention that the
Sobolev spaces W 1,p inherit the same functional properties of the Lp-spaces. For
further details see, for instance, [1] or [2].

Proposition 2.8. Let (Ω,A, µ) be a finite measure space. If un → u a.e.w. in
Lp(Ω,E) with p > 1, then un → u in Lq(Ω,E) for all 1 ≤ q < p. In particular,
if Ω is an open subset of RN , W 1,p(Ω) is compactly embedded in Lq(Ω), for all
1 ≤ q < p, without any regularity condition on ∂Ω.

Proof. Let us fix 0 < ε < p − 1. Set f : E → R given by f(ν) = ‖ν‖p−ε
E . Nf

maps Lp(Ω,E) into Lp/p−ε(Ω). From theorem 2.6, f(un) ⇀ f(u) in Lp/p−ε(Ω). In
particular ∫

Ω

‖un‖p−ε
E dx →

∫

Ω

‖u‖p−ε
E dx.

Thus, un → u a.e. and ‖un‖Lp−ε(Ω,E) → ‖u‖Lp−ε(Ω,E). This implies that un → u in
Lp−ε(Ω,E). Moreover, since Lp−ε(Ω,E) ↪→ Lr(Ω,E) for 1 ≤ r ≤ p− ε, we conclude
that un → u in Lq(Ω,E) for all q ∈ [1, p− ε]. Letting ε → 0, we get the result. The
second part of the proposition follows from the first part with the additional fact
that every bounded sequence in W 1,p(Ω) has a subsequence that converges a.e.w.
in W 1,p(Ω). ¤
Proposition 2.9. Let Ω be an open bounded domain in RN . If a sequence un ⇀ u0

in L∞(Ω), then un → u0 strongly in every Lp(Ω), for 1 ≤ p < ∞.

Proof. For each x ∈ Ω, let us consider the functionals ϕx
r : L∞(Ω) → R defined by

ϕx
r (f) :=

1
|Br(x)|

∫

Br(x)

f(ξ)dξ.

ϕx
r are linear functionals and ‖ϕx

r‖L∞(Ω)∗ = 1. Therefore, passing to a subnet if
necessary, we may assume that ϕx

r
∗
⇀ ϕx, as r → 0. From Lebesgue’s differentiation

theorem, for every f ∈ L∞(Ω), there exists a set Af , with |Af | = 0, such that

ϕx
r (f) r→0−→ f(x) in Ω \ Af . Let A =

∞⋃
n=0

Aun . In this way |A| = 0, and for every

x ∈ Ω \A there holds

ϕx
r (un) r→0−→ un(x) = ϕx(un) n→∞−→ ϕx(u0) = u0(x)
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Thus, un → u0 a.e. in Ω. Given p ∈ [1,∞), from the continuous embedding
L∞(Ω) ↪→ Lp+1(Ω) we get un ⇀ u0 a.e.w. in Lp+1(Ω), and by proposition 2.8,
un → u0 in Lp(Ω). ¤

Remark 2.10. (i) Follows from the proof that one just need to verify in the hypoth-
esis of theorem 2.6, boundedness of un in Lp(Ω,E), instead of weak convergence of
it. When E is not reflexive, this assumption is much easier to check.
(ii) It is worthwhile to point out that theorem 2.6 holds for any continuous (nonlin-
ear) bounded operator Φ : Lp(Ω,E) → Lq(Ω,F) provided Φ(χAf) = χAΦ(f) holds
for every finite measurable subset of Ω. The proof of this fact follows from a small
variant of the proof of theorem 2.6.
(iii) Proposition 2.8 is sharp since W 1,p(Ω) may not be compactly embedded into
Lq(Ω), for q ≥ p. This fact can be found in [1].
(iv) Proposition 2.9 was motivated by [9] which brings a different and abstract ap-
proach. The last step in the proof of proposition 2.9 follows also from the Lebesgue
dominated convergence theorem.

3. A new approach to the Brezis-Lieb theorem

In [3], H. Brezis and E. Lieb provided a powerful result concerning a refinement of
Fatou’s lemma which has been shown to be very useful in a wide class of problems.

Theorem 3.1 (Brezis-Lieb). Let 0 < p < ∞. Suppose un → u a.e. and ‖un‖Lp(Ω) ≤
C < ∞ . Then

lim
n→∞

(
‖un‖p

Lp(Ω) − ‖un − u‖p
Lp(Ω)

)
= ‖u‖p

Lp(Ω).

Our purpose in this section is to provide an alternative proof of theorem 3.1
which might give insight as to why this type of phenomenon should hold. Besides
this, our approach may be used to get useful extensions on this matter. Indeed, let
us, for the moment, work on the case where p = 2m is a even number. In this case,
we can develop the expression above by Newton’s binomial expansion and get
∫

Ω

|un|2m−|un−u|2m =
∫

Ω

−
2m∑

i=1

( 2m
i

)
u2m−i

n · (−1)iui n→∞−→
∫

Ω

|u|2m as n →∞,

since
2m∑

i=1

( 2m
i

)
(−1)i = −1 and from theorem 2.6, u2m−i

n ⇀ u2m−i in Li′(Ω).

It gives us a better understanding as to what is really behind this issue. In fact,
the key point of the computations above is that the highest power in Newton’s
binomial expansion cancels out, avoiding the interference of the α2m,1 problem.
For the remaining powers, theorem 2.6 can be applied.

To treat the general case we need a lemma regarding an inequality on the real
line. A similar inequality is also needed in the original proof.

Lemma 3.2. Let 1 < p < ∞. Given ε > 0, there exist a constant Cε > 0 and a
function δ(ε) → 0 as ε → 0 such that

∣∣∣ |a|p − |a− b|p − |b|p
∣∣∣ ≤ Cε|b| · |a− b|p−1 + δ(ε)|b|p ∀a, b ∈ R
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Proof. Let us consider the function ϕ : R \ {1} → R given by

ϕ(x) =

∣∣∣ |x|p − |x− 1|p − 1
∣∣∣

|x− 1|p−1
.

Although ϕ blows up at 1, we have lim
|x|→∞

ϕ(x) = p. So given ε > 0, there exists a

constant Cε such that
∣∣∣ |x|p − |x − 1|p − 1

∣∣∣ ≤ Cε|x − 1|p−1 whenever |x − 1| > ε.
On the other hand if |x− 1| ≤ ε, we have∣∣∣ |x|p − |x− 1|p − 1

∣∣∣ ≤ εp + δ̃(ε), where δ̃(ε) = sup
|t−1|≤ε

| |t|p − 1 |.

Adding up the above two inequalities we get that∣∣∣ |x|p − |x− 1|p − 1
∣∣∣ ≤ Cε|x− 1|p−1 + εp + δ̃(ε),

for every x ∈ R. Finally, given two nonzero real numbers a and b, we make x = a
b

in the above inequality and the result follows. ¤

Proof of the Brezis-Lieb theorem using theorem 2.6: As pointed out in [3], for
0 < p ≤ 1 the theorem follows immediately. Let us deal with 1 < p < ∞. From the
last lemma, we have

(3.1)
∫

Ω

∣∣∣ |un|p− |un−u|p− |u|p
∣∣∣dx ≤ Cε

∫

Ω

|u| · |un−u|p−1dx+ δ(ε)
∫

Ω

|u(x)|pdx

Consider the map f : Ω×R→ R defined by f(x, t) = |t−u(x)|p−1. Nf maps Lp(Ω)
into L

p
p−1 (Ω) and therefore, from theorem 2.6, Nf (un) ⇀ 0 in L

p
p−1 (Ω). Letting

n →∞ in (3.1) and after letting ε → 0, we conclude the proof of theorem 3.1. ¤

Remark 3.3. In a more general sense, suppose j : E→ F is a map such that:

‖j(u)− j(u− v)− j(v)‖F ≤ Cε‖v‖µ(ε)
E · ‖u− v‖p−µ(ε)

E + δ(ε)(‖v‖p
E + ‖u‖p

E),

where µ(ε) > 0, and δ(ε) is a modulus of continuity. Then there holds∫

Ω

‖j(un)− j(un − u)− j(u)‖F −→ 0

as n →∞, whenever un → u a.e. and ‖un‖Lp(Ω,E) ≤ C < ∞.

4. The problem α1,1

In this section, we bring our attention to the problem α1,1. To this end we
need a general version of the Dunford-Pettis theorem.

Theorem 4.1 (Talagrand). Let F be a weakly sequentially complete Banach space.
Let F ⊂ L1(Ω,F) be a bounded convex subset. Then F is weakly relatively compact,
if and only if it satisfies the following two conditions:

(1) ‖F‖F := {‖ϕ‖F : Ω → R : ϕ ∈ F} ⊂ L1(Ω) is weakly relatively compact;
(2) for each sequence (ϕn) in F , the set of x ∈ Ω such that there is a k for which

the sequence (ϕn)n≥k is equivalent to the vector basis of `1 has measure zero.

Let us point out that condition 1 above is equivalent to the countable additivity
of the integrals

∫
Ω
‖ϕ‖Fdµ be uniform with respect to ‖ϕ‖F (see [5]).
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Theorem 4.2. If E is weakly sequentially complete and F is reflexive, then the
answer of the problem α1,1 is affirmative.

Proof. Let un → u a.e.w. in L1(Ω,E). Defining u0 = u, the set K = {un : n ≥ 0}
is weakly compact in L1(Ω,E), by the Eberlein-Smulian theorem. Let us denote
X = co(K). From the Krein-Smulian theorem, X is weakly compact, thus, in
particular theorem 4.1 says that ‖X‖E is uniformly countable additive. It means
that for each decreasing sequence {Ωj} with void intersection, the limit

lim
j→∞

∫

Ωj

‖ς‖Edµ = 0

is uniform with respect to ς in X. By theorem 2.2, the Carathéodory function f
satisfies the following growth condition:

‖f(x, v)‖F ≤ a‖v‖E + b(x)

where a > 0 and b(x) ∈ L1
+(Ω). Let Y = co(Nf (K)). If v ∈ co(Nf (K)), there exist

functions uk1 , ..., ukn ∈ K and positive numbers λ1, ..., λn fulfilling
n∑

i=1

λi = 1 such

that v =
n∑

i=1

λi ·Nf (uki).

In this way
∫

Ωj

‖v(x)‖Fdµ =
∫

Ωj

‖
n∑

i=1

λi ·Nf (uki)(x)‖F dµ ≤
∫

Ωj

n∑

i=1

λi‖Nf (uki)(x)‖F dµ

and
∫

Ωj

n∑

i=1

λi‖Nf (uki)(x)‖F dµ ≤ a ·
∫

Ωj

n∑

i=1

λi · ‖uki(x)‖E dµ +
∫

Ωj

b(x) dµ

→ 0 uniformly as j →∞
We have just verified condition 1 of theorem 4.1, for Y . By hypothesis, we get
condition 2 for free, because F does not contain a copy of `1 since it is reflexive.
Therefore by theorem 4.1, the set Y is weakly compact, and thus so is Nf (K)

w
.

Using again the Eberlein-Smulian theorem, up to a subsequence we may assume
Nf (un) ⇀ v in L1(Ω,F). Since Nf (un) → Nf (u) a.e. in Ω, we conclude, as done
on the final step of theorem 2.6, that v = Nf (u) and then Nf (un) ⇀ Nf (u) in
L1(Ω,F). ¤

It is interesting to notice that we could change a.e. convergence to convergence
in measure in every subset of finite measure in the hypothesis of theorem 2.6 as
well as in the hypothesis of theorem 4.2. In this way, we can, not only generalize
to vector-valued functions, but also give a straightforward proof of a remarkable
theorem concerning weak convergence v.s. strong convergence in L1.

Theorem 4.3. Let E be a weakly sequentially complete Banach space, and let un ⇀
u in L1(Ω,E). Then {un} converges strongly to u if and only if {un} converges in
measure to u in every subset of finite measure.
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Proof. Since un − u ⇀ 0 in L1(Ω,E) and, by hypothesis, un converges to u
in measure in every subset of finite measure, it follows from theorem 4.2 that
N‖·‖E(un − u) ⇀ N‖·‖E(0) = 0 in L1(Ω). In particular

lim
n→∞

∫

Ω

‖un − u‖E = 0.

¤

Remark 4.4. Theorem 4.3 gives the reason for the negative answer to the problem
αp,1 for p > 1. In fact, the problem αp,1 is equivalent to its strong version:

αp,1 − strong version : un → u a.e.w. in Lp =⇒ Nf (un) → Nf (u) in L1−norm.

5. A nonlinear weak spectral problem on W 1,p(Ω)

We shall provide an application of theorem 2.6 by solving a general nonlinear
equation on the Sobolev spaces W 1,p(Ω). The problem studied here is a very natural
question for the Nemytskii operator on Sobolev spaces. Indeed, the problem we shall
work on is:

Let 1 < p < ∞ and Ω be domain in RN . Let f : Ω× R→ R be such that:
(1) For a.e. x ∈ Ω, f(x, ·) is a Lipschitzian function and sup

x∈Ω
‖f(x, ·)‖Lip = L

is finite.
(2) f(·, t) ∈ W 1,p(Ω), and ‖f(·, t)‖W 1,p ≤ C, ∀t ∈ R.

Given a ψ ∈ W 1,p(Ω), and given a λ ∈ R we are interested in finding a u ∈ W 1,p(Ω)
such that

(5.1) f(x, u(x))− λu(x) = ψ(x) a.e. x ∈ Ω.

Theorem 5.1. The Problem 5.1 is affirmatively answered for all λ > L. Moreover
the solution is unique and the resolvent operator (Nf−λId)−1 : W 1,p(Ω) → W 1,p(Ω)
is sequentially weakly continuous.

Proof. By changing f by f − f(x, 0), we may assume, without loss of generality
that f(x, 0) = 0, for a.e. x ∈ Ω. Let us start by estimating ‖Nf (ξ)‖W 1,p(Ω):

‖Nf (ξ)‖W 1,p = ‖f(x, ξ(x))‖Lp +
N∑

j=1

‖∂jf(x, ξ(x))‖Lp

≤ L‖ξ‖Lp +
N∑

j=1

‖(∂jf)(x, ξ(x)) + (∂tf)(x, ξ(x)) · ∂jξ(x)‖Lp

≤ L‖ξ‖W 1,p + C.

The inequality above tells Nf : W 1,p(Ω) → W 1,p(Ω) is a bounded operator. This
fact added with that every weakly convergent sequence in W 1,p(Ω) has a subse-
quence converging a.e. implies that Nf is sequentially weakly continuous. Indeed,
it follows from a same kind of argument found on the final step of theorem 2.6. Let
us define Λ : W 1,p(Ω) → W 1,p(Ω) by

Λ(ξ) =
1
λ

[f(x, ξ(x))− ψ] .

We observe that once Nf is sequentially weakly continuous, so is Λ. Moreover, the
solvability of the equation 5.1 is equivalent to finding a fixed point of Λ. For each
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ξ ∈ W 1,p(Ω), there holds

λ−1‖f(x, ξ(x))− ψ‖W 1,p ≤ λ−1 (‖f(x, ξ(x))‖W 1,p + ‖ψ‖W 1,p)
≤ λ−1(L‖ξ‖W 1,p + C + ‖ψ‖W 1,p).

Let us fix M >
C + ‖ψ‖W 1,p

λ− L
. For such an M we see that if ‖ξ‖W 1,p(Ω) ≤ M , then

‖Λ(ξ)‖W 1,p ≤ L

λ
·M +

C + ‖ψ‖W 1,p

λ
≤ M.

In other words, Λ maps the closed ball of radius M in W 1,p(Ω) into itself. Let X

denote BW 1,p(M) endowed with the weak topology. So X is a compact and convex
set of a locally convex space. In additional, as we pointed out before, Λ : X → X
is a continuous map. Invoking the Leray-Schauder-Tychonoff fixed point theorem
we conclude that Λ has a fixed point which is precisely a solution to 5.1. We now
turn our attention to uniqueness. Let us suppose that there exist u1, u2 ∈ W 1,p(Ω)
such that

f(x, u1(x))− λu1(x) = ψ(x) and f(x, u2(x))− λu2(x) = ψ(x).

Subtracting these above equations, we find f(x, u1(x)) − f(x, u2(x)) = λ(u1(x) −
u2(x)). Therefore

|f(x, u1(x))− f(x, u2(x))| = λ|u1(x)− u2(x)| ≤ L · |u1(x)− u2(x)|.
If |u1 − u2| > 0 in a set of positive measure, we would find, λ ≤ L. Hence the
solution of (P ) is unique.

Finally let us study the weak sequential continuity of Rλ = (Nf − λId)−1 :
W 1,p(Ω) → W 1,p(Ω). Suppose Rλ(ψ) = u, i.e., f(x, u(x))− λu(x) = ψ(x). Then

‖ψ‖W 1,p ≥ λ‖u‖W 1,p − ‖Nf (u)‖W 1,p

≥ ( λ− L )‖u‖W 1,p − C.

Writing in a better way, ‖Rλ(ψ)‖W 1,p ≤ ‖ψ‖W 1,p + C

λ− L
. We have just verified

that Rλ is a bounded operator. Suppose ψn ⇀ ψ in W 1,p(Ω). Let us denote by
un = Rλ(ψn). The sequence {un} is bounded, therefore, up to a subsequence, we
may assume that un ⇀ u in W 1,p(Ω). From the weak sequential continuity of
Nf − λId, there holds

ψn = (Nf − λId)(un) ⇀ (Nf − λId)(u).

This implies that Rλ(ψ) = u, and thus, Rλ(ψn) ⇀ Rλ(ψ) as desired. ¤

Remark 5.2. Let us assume that f(·, t) ∈ W 1,∞
loc (Ω), and ‖f(·, t)‖W 1,∞(Ω̃) ≤ C(Ω̃), ∀t ∈

R and Ω̃ ⊂⊂ Ω. Then the solution u belongs to W 1,∞
loc (Ω) provided the data ψ lies

in W 1,∞
loc (Ω). In fact, for each Ω̃ ⊂⊂ Ω, there holds

‖u‖W 1,p(Ω̃) ≤ |Ω̃|1/p ·
C(Ω̃) + ‖ψ‖W 1,∞(Ω̃)

λ− L
, ∀p > 1.

Letting p → ∞, we conclude the remark. Furthermore, this is as far as one can
expect due to the obstruction imposed by the regularity of the nonlinearity f .
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The main information given by theorem 5.1 is the regularization of the solution.
We observe that if we see the map Λ (defined in the proof of this theorem) as
Λ : Lp(Ω) → Lp(Ω), it is easy to verify that it is a contraction. Therefore, from
the Banach Fixed Point theorem, for all ψ ∈ Lp(Ω), the problem 5.1 has always a
unique solution u ∈ Lp(Ω), provided λ > L. The main point of theorem 5.1 is that
u ∈ W 1,p(Ω) whenever ψ ∈ W 1,p(Ω).

Moreover the range provided by theorem 5.1 is sharp, as the following simple
example shows us:

Example 5.3. Let f : Ω × R → R be defined by, f(x, s) = |s|. In this case,
sup
x∈Ω

‖f(x, ·)‖Lip = 1. Suppose λ ≤ 1, then f(x, u(x))− λu(x) = |u(x)| − λu(x) ≥ 0.

Hence, if ψ ∈ W 1,p(Ω), with ψ(x) < 0, it is impossible to solve the equation 5.1.
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pliquées pour la Mâıtrise. Masson, Paris, 1983. MR 85a:46001
[3] H. Brezis and E. Lieb A relation between pointwise convergence of functions and convergence

of functionals., Proc. Amer. Math. Soc. 88 (1983), 486-490. MR 84e:28003
[4] J. Diestel and J. J. Uhl, Jr. , Vector measures, Mathematical surveys, No 15. AMS 1977.

MR 56 :12216
[5] N. Dunford and J. Schwartz, Linear operator, Interscience Publishers, INC.,New York, second

printing (1964). MR 22:8302
[6] R. Lucchetti and Patrone On Nemytskii’s operator and its application to the lower semicon-

tinuity of integral functionals, Indiana University Mathematics Journal, Vol. 29 No 5 (1980).
MR 82i:47104

[7] H. P. Rosenthal, A characterization of Banach spaces containing l1, Proc. Nat. Acad. Sci.
U.S.A., 71 (1974). MR 50:10773

[8] M. Talagrand Weak Cauchy sequence in L1(E), American Journal of Mathematics, 106 No
3 (1984). MR 85j:46062

[9] T. Zolezzi On Weak Convergence in L∞, Indiana Univesity Mathematics Journal, Vol. 23,
No 8 (1974). MR 48:6918

Department of Mathematics, University of Texas at Austin, RLM 12.128, Austin,
Texas 78712-1082.

E-mail address: dmoreira@math.utexas.edu

Department of Mathematics, University of Texas at Austin, RLM 9.136, Austin,
Texas 78712-1082.

E-mail address: teixeira@math.utexas.edu


