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Abstract

In this paper, we consider the time-dependent Navier-Stokes equations in the half-space [z, o0) xR C R?,
with boundary data on the line = = x4 assumed to be time-periodic (or stationary) with a fixed asymptotic
velocity u,, = (1,0) at infinity. We show that there exist (locally) unique solutions for all data satisfying
a center-stable manifold compatibility condition in a certain class of fuctions. Furthermore, we prove that
as r — oo, the vorticity decompose itself in a dominant stationary part on the parabolic scale y ~ /z
and corrections of order 2~ 2*<, while the velocity field decompose itself in a dominant stationary part
in form of an explicit multiscale expansion on the scales y ~ /z and y ~ x and corrections decaying
at least like z=5+<. The asymptotic fields are made of linear combinations of universal functions with
coefficients depending mildly on the boundary data. The asymptotic expansion for the component parallel
to U, contains ‘non-trivial® terms in the parabolic scale with amplitude In(z)x~! and z~!. To first order,
our results also imply that time-periodic wakes behave like stationary ones as z — oo.

The class of functions used to prove these results is ‘natural’ in the sense that the well known *Phys-
ically Reasonable’ (in the sense of Finn & Smith) stationary solutions of the Navier-Stokes equations
around an obstacle fall into that class if the half-space extends in the downstream direction and the bound-
ary (z = xo) is sufficiently far downstream. In that case, the coefficients appearing in the asymptotics can
be linearly related to the net force acting on the obstacle. In particular, the asymptotic description holds
for ‘Physically Reasonable’ stationary solutions in exterior domains, without restrictions on the size of the
drag acting on the obstacle. To our knowledge, it is the first time that estimates uncovering the In(z)x!
correction are proved in this setting.

1 Introduction

In this paper, we consider the time-dependent Navier-Stokes equations?!

1
6tu+u-Vu:%Au—Vp

V-u=0
U(X, t)|$:xo = Ub(?/at)

lim u(x, ) = Uy, = (“50)

X|—o0

(1.1)

in the half-space 2, = [xg, o0) x R. We will restrict ourselves to the time-periodic setting, i.e. uy(y,t) =
> ez €Uy (y), with basic frequency (Strouhal number) 7 and u, € I'(Z, B) for some functional space
B3 to be defined later on. Note that with appropriate scalings, we can set without loss of generality |u| =
U = 1 and Re = 1. The scale of the Reynolds number then translates to the scale of u,,.

LVectors are denoted by boldface |etters, generic positionsin the physical space R? are denoted either by x or by (z, ).



We consider this problem as a simplified version of the “usual’ exterior problem around an obstacle

1
du+u-Vu=—Au-—Vp

Re
V-u=0
u(x, t)|aq = 0 (1.2)
. _ (U
\Xl|l£>noo U, ) = Uoo = ( 0 )

in R2\Q, where 99, the obstacle, is compact and connected. Getting rid of the obstacle by considering the
flow only in the downstream region is a brutal simplification. We hope that by capturing the main difficulty
of (1.2), (the spatial asymetry introduced by (1.2.4), as seen in the slow decay of vorticity as + — oc for
instance), techniques used in this paper could shed a new light on the theory on the Navier-Stokes equations
(1.2) which began with J. Leray’s pioneering work in the 1930’s (see also [7] and references therein).

The question we address here is to give a quantitative description of the flow in the so-called ‘wake
region” which extends downwards of the obstacle (i.e. as x — o0). In previous papers [9, 18] such a
description has been obtained in the stationary case by assuming that the restriction of the solution of (1.2)
on a given line x = xy > 1 was in a certain function class. Then it follows from [9, 18] that as + — oc,
the velocity field u and the vorticity w = V x u satisfy

U ) = s+ (B0 4+ O, wley) = wleg) O (L)

for some o > 0, where

() = 2 Jo(3) + £ (@200(2) — 1301 (1) (L4)
Bal ) = B 115 + (@01 (1) + asg0(1)) (L5)
wala 1) = £1(E) (L6)

for some a = (aq, az, as) and

M

z
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This result was expected to hold for a long time, see e.g. [2]. It should be noted that the terms onthe y ~ =
scale are of smaller order than the stated correction order. It is however argued in [2, 9, 18] that on the
given scales (y ~ z or y ~ +/z) the velocity field indeed converge to its asymptotic form and furthermore
that the upstream asymptotics (z — —oo is given by (1.4) and (1.5) with a; = 0 and the same coefficients
as and az as in the downstream direction. Integration of the equations (1.2) in the domain comprised
between the lines x = —zy < 0 and = = ¢ > 0 then implies (see e.g. Appendix Il in [21]) in the limit
xg — oo that a; + 2a; = 0 (mass conservation), and that the force F acting on the obstacle is given by

" () v [ geomer= (). @

In other words, for stationary flows, this shows that a, resp. as are linearly related to the drag resp. lift
acting on the obstacle, see also [2, 9, 18] for more physical interpretations.



For completeness, we note that (1.4) and (1.5) can be easily derived heuristically in the two following
steps. We first note that the field (4, v,) with a; = 0 would be a solution of the Navier-Stokes equations
(1.1) or (1.2) (for an appropriate pressure) but for the boundary conditions. And then, as we may expect
02w < O,w as x — oo, the vorticity satisfies (to first order) guw = agw whose solutions corresponding
to decaying velocity fields behave asymptotically like (1.6). It is then easy to see using w ~ —d,u and
d,v = —0,u that the corresponding velocity fields are as stated in (1.4) and (1.5).

Unfortunately, the function class used in a first attempt to give a rigorous foundation to these heuristics
in [9, 18] is rather unorthodox and the question wether the (restriction of) solutions of (1.2) were in this
class was completely left open.

On the other hand, it is well known from experiences and numerical simulations that stationary solu-
tions of (1.2) in exterior domains are only stable at low Reynolds numbers, and it is commonly believed
(see e.g. [5, 14, 16, 17]) that at a (first) critical Reynolds number, the stationary flow loses its stabil-
ity through a Hopf bifurcation and becomes time-periodic before eventually leading for larger Reynolds
number to von Karman’s vortex street and then to turbulence.

In this paper, we will give a more detailed asymptotic description than (1.3), as we will prove that in
both the stationary and time-periodic case, the solutions of (1.1) satisfy

_ Uagr) (T, Y) pste _ ~3+4¢0
ue.t) = v+ (JOT ) +0(T0L0) el = e O @8)

uniformly in time, where 0 < g < % a(t) = (a1, as(t), as(t), aq, as, ag) for some constants aq, a4, as and
ag and time periodic functions a, and as, w, IS as above and

a) (. 9) = 2 fo( ) = 2 (ash(25) + (a6 @) + a) i(25)) + L (@@o() — as(®)gi (1)) »
vay (@, 9) = 2 1(25) + 1 (02091 (1) + asgo(2)
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By the use of functional spaces more adapted than in [9, 18], we will prove that existing results on (1.2)
implies that (1.8) also holds for (1.2). This rigorous link between (1.1) and (1.2) will only be estabished
for the stationary case, as this case has been widely studied in the litterature (see e.g. [7]). Though we
believe it should also hold just after the Hopf bifurcation, we are not aware of any rigorous treatment of
the exterior periodic problem in 2D (see [15] for some rigorous work on the 3D case).

In analogy with the stationary case, we may also expect that for the solution of (1.2), the asymptotic
velocity field upstream (x — —o0) is given by (1.9) with ¢ = a4 = a5 = ag = 0 and the same coefficients
as(t) and a3(t) than in the downstream direction. If this holds, then integratingV-u=0andw =V >< u
in the domain comprised between x = —zy < 0 and x = z¢ > 0, we get (letting 2o — o0) as(t) = ——a1
and as(t) = fR2\Q w(x)dx. As this last quantity (the total vorticity) is preserved by (1.2), we see that

ay(t) and as(t) are in fact constant in time2. This implies that to the order given by (1.8), time-periodic

2Note that it would be wrong to conclude that the drag and lift are constant in time from the fact that a- and a3 are constant,
as the volume integral of d;u in (1.7) will generically no longer be zero for time-periodic fows. This is in agreement with
results of numerical simulations, see e.g. [10, 12].



wakes cannot be distinguished from stationary ones, though the actual value of the coefficients will differ
from the to case. Without rigorous proof that the upstream asymptotics are as expected, we consider these
physical interpretations as conjectural ones.

We end this section by noting that asymptotical results like (1.3) have been successfully used in nu-
merical simulations of the stationary Navier-Stokes equations (1.2) in exterior domains, see [20, 21]. In
particular, in fixed simulations domains, it allows to compute drag and lift coefficients with better accuracy
than usual methods, while for fixed accuracy, smaller simulations domains can be used, thereby reducing
significantly the CPU time needed for these computations. It is our hope that (1.8) could also be of such
use in the time-periodic setting.

1.1 Reformulation of the problem

As in [9, 18], the starting point of the analysis is to write (1.1) as a dynamical system where z plays the
role of time. To do so, we write U = U, + vV where v = (u, v) and introduce the vorticity w = d,v — d,yu
and its derivative w.r.t. x as n = d,w. Since the boundary data is assumed to be time-periodic, it is natural
to assume that there is also a (discrete) Fourier decomposition of the various fields (this corresponds to the
so-called global mode behavior, see also [13, 19, 22]) given by

u(w,y,t) =Y e u(z,y), vy t) =Y " uz,y),

nezZ nezZ

, _ (1.10)
w(z,y. ) => e rwyz,y), @y t) =Y e nzy).
nezZ nez
In terms of this decomposition, the n-th Fourier coefficient of (1.1) read (see also [9])
Ow =n
8xn:77—8§w+in7w+q
1.11
Opt = —0yv ( )
00 = 0yu+w,

with ¢ = u0,w + vo,w, and where we dropped the » indices on the fields for concision. Namely, the third
equation in (1.11) is the incompressibility relation V - u = 0, the last one is the definition of the vorticity,
while substituting the first one in the second, one recovers the ‘dynamical’ part of (1.1). We note here
that using the incompressibility relation 0,u = —d,v and the definition of the vorticity, we may cast the
nonlinearity ¢ in the following equivalent form

q = Op(uw) + 9, (vw) = 9,(P) + 0,(Q) -
We also note that using d,u = —d,v and defining R = uv, S = %(v2 — u?), we have the decompositions
P=w=0,R+9,8, Q=w=-9,R+0,S and ¢= ((9§+8§)R+2Q.

We interpret (1.11) as a new dynamical system where the space variable x plays the role of time (the =
derivatives on the r.h.s. of (1.11) can be eliminated using n — P instead of n as auxiliary field).

Using Duhamel’s variation of constants formula, we can cast (1.11) in an integral form, whose structure
(omitting also the time argument for concision) is given by

u(x) - Kl(x - xO)Euw + KO(:E - l’o)l/ + -/Tl,u(x) + ~¢'2,u(x) + Els(x) - ‘CQR(:E) ) (112)



U(ZL‘) - Kl(x - :L‘O)‘va + KO(:E - $0):“ + -/Tl,v(x) + ~7:‘2,1)(1') - ‘ClR(x) - EQS(:E) ) (113)
w(r) = Ki(x — zo)w + Fru(x) + Fau(z) . (1.14)

The derivation of this integral formulation for the solution of (1.1) is given in Section 2, as well as precise
definitions of the different expressions. The terms involving the kernels &, and K depend on w and v,
which are functions defined on the boundary x = 1, while . is given by the Hilbert transform . = Hv on
the boundary (in particular, 4 is not an independent quantity). The F terms depend on the values of P and
Q@ on [zg, o) x R and do not vanish on the boundary x = x,. Thus the integral formulation above does
not satisfy the boundary condition u(zq, y,t) = Uy(y, t), unless for specific choices of » and w, but then
the boundary condition for the vorticity cannot be satisfied. This is related to the fact that the equation
(1.1) with a boundary condition for the vorticity, the velocity and the pressure is ill-posed. The boundary
values on x = x, thus have to be taken on the so-called central-stable manifold. As we will explain in
section 7, the parametrization of that manifold by the functions w and v is a convenient one.

We will give precise statements of our main results in subsection 1.3 below after the definition of
some functional spaces and related norms. On an informal level, our results are twofold. We will use the
integral formulation (1.12)-(1.14) to prove that if w and v are in a certain class C;, there exist a (locally)
unique solution of (1.1) in the Banach space W defined in the next section. We will then show that
the asymptotic structure of these solutions is indeed given by (1.8) with ¢y > 0. On the other hand,
time-periodic solutions of (1.2) must satisfy (1.1) for all x, sufficiently large. We will then show that for
solutions of (1.2) in a certain class C,, the F’s are well defined, and thus solutions of (1.2) in G, must also
satisfy (1.12)-(1.14) for certain functions w and v. As Ky(0) = K;(0) = 1, the functions w and v can be
determined by inverting any two of the three (linear and local) relations (1.12)-(1.14) at x = x¢, the third
relation, which correspond to the central-stable manifold condition in the dynamical system formulation
(1.11), is then automatically satisfied since we know that the solution exist. We will then show that the
functions w and v obtained in this way are in the class C;, which finally implies that solutions of (1.2) in
C, also satisfy (1.3) with o > 0.

1.2 Definitions
To state our main result, we need some definitions. We first give the topology we will use to control the

decompositions (1.10). Let 1 < p < oo, and f(z,y,t) = >, € fulz,y) for (x,y,t) € [z, 00) X R x
[0, 2£]. Let (z) = V1 + 22, we define

r>x0

wmpz&mummﬂ,WNWJz@Vwmwpz@V}j(ﬁwuuawﬂp,
7o = SUp [flleccir+ 1/l = )71 = (@)7 3 es5 sup | )]

T270 nez

1

£ toran = supla) o @ @ =sup ([ dyl5uol?)”

x>0 nez R

[ Fllsimony = sup(e) 2| @) @)~ = supess sup| fula,v)]
x>0 neZ yeR

where we use the notation || f(x)||, as a shorthand to the more rigorous || f(x, -)||,. We will refer to P and
Py as the projection operators on Fourier series defined by

,P(Zeim-tfn> _ Z et Po(zemthn> —

neZ neZ,n#0 nezZ



as well as the operators Z (the ‘primitive’), S (the symmetrization) and M (the ‘mean value’) defined by

(1)) = d 19 [a: 79 (spw= e+ 0. M= [ fwo. @15)
2 R

Note that 7 is the inverse of 9, (when it is defined). We can now specify our basic functional space

Definition 1.1 Let C5° = {{(tn, Vn,wn) tnez S-t. (Un, Uy, wn) € C° ([0, 00) X R,R®) Vn € Z}. We de-
note by W the Banach space obtained by closure of C3° under the norm

1(v, W) = sup [|(v, W)z

r>x0

1OV, e = Nl oo,s + [l ga-1 +10yullepn-x

+ HUHIOO 1—¢ + HUHmpl Lpfl + Ha UH:ET‘ £

%WMH23+HWWwH2L£+H%wmw_+H%wmll
This choice is discussed at the end of this section. Note at this point that the ‘expected’ asymptotic
decomposition (1.3) is in W if p > 1. We now specify the class of solutions of (1.2) for which our results
can be applied:

Definition 1.2 A solution (v, w) of (1.2) is in the class C,, if ||(v, w)|| < p for some finite constant p and

B l-2<p<y3, 1<p<gq, r>2, 326>12>0,
o, 1-2- n>0 T—(1+5)e>0, 14+&—n—20>0, (1.16)
<(z)?, +n—-6-2>0,.

The condition @ < (z0)? will be a convenient way to get bounds depending on z, only and not on
the Strouhal number 7. It should be noted that this condition is only restrictive in the limit of vanishing
Strouhal number. This is not expected to occur for time-periodic solutions of (1.2), if the Hopf bifurcation
picture of [5, 14, 16, 17] is correct.

We now define the class G, consisting essentially of those functions w, v and x for which the part of
r.h.s. of (1.12)—(1.14) depending on w, v and p is in WV (see Lemma 3.1, 3.3 and 3.6):

Definition 1.3 We say that v and w are in the class C; if M(Pyw) = 0 and ||(v, p, w)||., < p for parame-
ters satisfying (1.16).

Note that M (Pyw) is always well defined if [|(0, 0, w)|, < oo since ||jw||.r < (x0)~2]|(0,0, w)|., (see
Lemma A.1). In the case of symmetric flows (i.e. « even in y and v odd in y), M(Pow) = 0 is a trivial
consequence of the fact that w is an odd function of y (it is also expected from (1.3) or (1.8)). Our results
will in particulat imply that the vorticity decomposes itself in a first order part with zero mean value with
second order corrections with generically non-zero mean value (see (1.12)).

We end this section by making some comments on Definition 1.1. First, for the v component, we will
need ¢ > 0. Namely, as we will see, the optimal decay rate for v as + — oo can only be obtained if u €
LY(R, dy), since the integral expression for v contains a convolution of ;. with Ko(z—x¢, y) = %
But (apart from symetric flows), u(y) ~ 1/y as y — oo (see (1.3)), so in general 1 ¢ LY(R, dy).



The second comment is on the need of  and £. Basically, the problem is that 0, u and 0, v are naturally
build of sum of functions on two length scales (y ~ /z and y ~ x, see e.g. (1.9)). Dependence on r of
the decay exponents as x — oo of L” norms of such functions either vary like 1/(2r) for functions on the
shorter scale or like 1/ for functions on the longer one. Our choice of exponents are thus ‘wrong’ on the
scale y ~ x and is ‘corrected’ by introducing n and £. These additional parameters would not be needed if
we choose r = oo, but in that case we would lose the boundedness of the Dirichlet-Neumann operator (or
exchange operator) v — Hv in W, which is needed to compare solutions of (1.1) and (1.2) (see Section
7).

The last comment is that if (1.16) holds, we control the nonlinearities R, .S, P and @ in terms of the
|- [|-norm by

1Rl 2+ 1Slaex + 10BNz r + 10,5201 < CllV,)?
1Pl 1Qls o+ 10,Pllst—y + 10,Qllnz- s e <ClV @I, (117)

19 Pllys s + Ilo1*@lls 3 s < ClIV. )P

2

forall 1 <m < ococand 1 < n < r. To establish these estimates, we used
[wlloor + lwlly,z < (v, W) (1.18)

which follows (see Lemma A.1) from

1—-L L
lwlio < Callwll ™ lllylPwllz and  [lwliie < y/llwlicz|9ywlle -

1.3 Main results

We are now in position to state our results in a precise manner. The first one states that the topology of
Definition 1.1 is well adapted to (1.1):

Theorem 1.4 If x is sufficiently large, then the two following statements are equivalent
1. There exist a unique solution to (1.1) in C,, with parameters satisfying (1.16).
2. v and w are in the class C; with parameters satisfying (1.16).

Furthermore if 1. holds and additionally

llyl2v(o)lls + Illy[2 =+ Sv(ao) | < Clao, [|(v. )],
then for all € > 0, it holds

llylz= 0228l + Iyl Sully < Cileo, (v W) (1.19)
Our next result is that stationary solutions to the ‘usual’ exterior problem (1.2) are in the class C,:

Proposition 1.5 For any stationary solution of (1.2) ’Physically Reasonable” (PR) in the sense of Finn
and Smith (see e.g. [6, 7, 8]), the fields u, v and w satisfy ||(v,w)|| < C with parameters satisfying (1.16)
if , is sufficiently large. Furthermore |||y|2V(zo)||4 + |||y~ +92Sv(x)||; < oo forall & > 0.

From this, we conclude that (PR) solutions satisfy the integral formulation (1.12)-(1.14):



Corollary 1.6 For any (PR) stationary solution of (1.2), » and w are in the class C; with parameters
satisfying (1.16) and |||y|z =0+ Su||y + |||y|2~ 998 u|l; < oo forall e > 0.

The proof of this Corollary follows directly from Theorem 1.4, Proposition 1.5 and uniqueness. Once
these results are proved, we will use the integral formulation (1.12)-(1.14) to get the asymptotic structure
of the solutions to (1.1) or (PR) solutions to (1.2):

Corollary 1.7 Leta; = (—M(ZPyw) — fm PoQ(x,y)dzdy, 0, 0), then all solutions to (1.1) in C, satisfy
(1.3) with oy = (1 + &) > .

Note that since ¢ > 0, in (1.3), the terms containing a, and a3 are of smaller order than the remainder,
which explains why these parameters are not specified in the Corollary. Once this Corollary is proved, we
will be able to get the more precise asymptotic form as shows the

Corollary 1.8 Assume that |||y[zv(zo)||l« < oo and |||y[z=C+2Su|; + |||y|z"4T9Sull, < oo, and
let a; = —M(ZTPyw) — fQ+ PoQ(z,y)dzdy, as = M(Sv) — fQ+ PoQ(z,y)dzdy, a3 = M(Su) and
p<po=1+¢e)p< % Then there exist a constant a4 such that all solutions to (1.1) in C, C W satisfy
(1.8) with a = (ay, as, as, as, a?, a1Pyas), in || - || foru,and in || - oo + || - |1 + [[Jy|*~2E+9% - ||, for w.

We conclude this section by noting that the constant a; can be expressed in the following equivalent forms:

Remark 1.9 The constant a, is also given by the value of the following constant function
i (z) = M (I(Pow(x) + / di ex*fpop(f)) + / i (e — 1)P0Q(gz«)) ,
= M(Z(Posta) + / i IPP@)) + / di " FPQE) + PoS(a)) .
which is ‘almost local’ in = due to the exponential factors.

1.4 Structure of the paper

Our first task in the remainder of this paper is to establish the integral formulation (1.12)-(1.14). This is
done in the next section (Section 2). The proof of Theorem 1.4 is then split in two parts. The proof that
(1.19) holds is delayed until Section 7 together with the proof that 1. implies 2. The converse is given in
Section 4. The proof of Proposition 1.5 is also delayed until Section 8. Finally, the proof of Corollary 1.7
is given in Section 5, that of Corollary 1.8 in Section 6, while the proof that Remark 1.9 holds is left to the
reader as it follows very easily from the integral formulation in Fourier space given in the next section.

2 Integral formulation

We now derive the integral formulation (1.12)-(1.14) of the solution of (1.11) and (1.1). All the material
of this section is very similar to [9, 18] where the case = = 0 was treated. For completeness, we now
reproduce some of the analysis here, encompassing the additional term proportional to the Strouhal number
T.
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Re(A4) Re(A4)

[\]
wv

Figure 1: Dispersion relations A as a function of wavelength &,
with n7 = 0 in left panel, and nT = 1 in right panel.

We first note that performing a (continuous) Fourier transforn?® f(k) = = e f(y) leads to a system
of the form 0,z = Lz + q, with z = (w, n, u, v), g = (0, ¢, 0, 0) and

0 1 0 0
K+int 1 0 0
0 0 0 <k
1 0 —ik 0

L(k) =

As in [9], the matrix L can be diagonalized. Namely, define (k) = sign(k), Ay = v/1 + 4(k% + in7) and
Ay =l and setz = Sy, withy = (w4, w_, uy,u_) and

1 1 0 0
A, A0 0
Ay+int  A_+inT
A A_

Ay+int  A_+inT —i0 0
then we get S'LS = diag(Ay, A_,|k|, —|k|) (see figure 2 for a graphical display of the dispersion
relations A). The real part of A being positive, the two equations corresponding to the ‘+’ modes are
linearly unstable. We thus integrate these modes backwards from = = oo, where we set them to 0 (see
also [18]). We then get

0 Aia—d)
woi(z) = — /dx —a(7)

0

N x eA,(x—J:)
w_(z) = M- g) — /di A q(T)
e 0
1 o k-2
wle) = =5 45 (@)
2 ), itk—nrto

Swe distinguish functions and their Fourier transform only from their arguments ‘&’ resp. ‘4’ in Fourier resp. direct space.
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1 % e lkl@—2)
u_(z, k) = e Fl@—mog 4 5 / 47 S 4@,

, tk+nto

for some functions @y and g, to be specified. Integrating by parts the integrals involving 9, P in w.,
replacing ¢ = (9% + 8§)R + 20,Q in uy and integrating twice by parts the term involving 92 R, we find

A (e—=2)
ola) = B2 - fa e @
@ B x eA, (z—7)

— A_(xffl'o) _ ~ ~
w-(zr) =e w A JC(:x Ao q_(Z)
P(x) + ikS@) + [KIR@) [ Zke\kl(m #)
uy(z) = . d Q(7)
2(ik — nT0o)
A P(x) +ikS(x) — |k;|R(x) ike k=)
— ¢ kl@=2z0),,
u_(z) =e ik & nro) /d T Q@)

where ¢ = AL P —ikQ, v(k) = io(k) — 2 (x°)+;’(“£fg)7;|)k‘A(x°) and w(k) = (k) + L2, For convenience,

we also introduce (k) = iov(k). Then, a little algebra shows that when reconstructing w, « and v, the
terms involving P(x) cancel out exactly, giving

T e/\f(x—i‘) e €A+(x—5z)
w(z) = el — /d:% q_(z) — /d:i‘ q+(Z) (2.2)
20 Ay - Ay
’ke[\*(x_x())

2
_ ket b@—a0),, , K°9(@) — [k|nT R(x)
u() A +inT we v k% + (n1)?

q eh-(z—1) 3 oAt (@)
/xA —i—mri /xAJr—ir nqur()

Zke |k|(z—2) Zke‘k|($ z)
dg ——— 2.2
/:;OIL‘ itk +nto Q) Jr/m 1k — Q(x) (22)

A_eh-@=wo) ~IblGa=a0),, k:ZR(x) + |k|nTS(z)

) = TRy e B (nr)?

A xN eA_(mfz}B) ~ A c>o~ €A+(xf§:) ~
—Ejﬁ——f%@—i/M——fm@
o - T

Ikl M3 kew(x H o

Using inverse Fourier transform, we get (1.12)-(1.14) where the operator K (x) is the convolution operator
with the inverse Fourier transform of K1 (z, k) = eA ¥, Ko(x) is the convolution operator with Ky(x,y) =
jrx2+y2, and, in terms of their symbols, £, = Ly = % L, = (A_ +in7) Nk, L, =

(A_ +inT)"tA_, and

IcQJr(m—)2 !

‘EA@:/&KMM@—@H@+KmAx—@@@ (2.4)

zo

‘aAﬂz/%KmM@—@H@+KpAf—W%@ (2.5)
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with similar definitions for # ,,, 7., F1, and F,, and

K1, =—Ks— Ky Kig,=—K;
Ky, =—e"(K + Kg + Kp) Kyo, =—e"Ky
K=Ky — K3 Kipy=—F— Ky
Kyiu = e (K3 — Ks) Ky =F"—e"Ks
Kigw=Ki1w+ K, + K, Kiow=Kiow+ G+ K3
Ko1p=Ko1,— e “Ky Koy = Koo — G +e 7Kg
with
g Az
Ki(z, k) = et-" Koz, k) = —*5— Ks(x, k) = m
nrel—7 intAyet—2 A_ =z
Ko, k) = 25 mn Kole, k) = —m Ky(x, k) = 23=ed
dlm(A_ z A T nTeA*l
Koz, k) = %61\’ Kia(x, k) = m Kiz(z, k) = m
inTRe(A_)er—7 —n7im(A_)e"—
K. (z, k) = % Ki(z, k) = % Ko(z,y) = sz—ﬂﬂ )
and
ike~ Ikl |k|e~ Ikl
Fl, k)= ———, Gx, k)= ——.
(z, k) ik +nto’ (2, %) itk +nro

Various estimates of these kernels are given in Appendix A. Intuitively, the two kernels F' and G behave
like Poisson’s kernels = 2+ ~and & p $2+ 5, While all the other kernels behave like y derivatives or primitives
of K according to the expansion of their prefactor as |k| — 0 or |k| — oco. We thus need to understand
the basic properties of e*-*. To do so, we define

Moy = 3(1— JHET) (o) = 3y /e
and note that (see also figure 2 on page 10)
b(nt) — c(nT)k?* V|k| <1 1 (1 + (nr)*)~1/4
o) - B > RS { (4R 2

For all practical purpose, the kernel K, corresponding to e*-* thus behaves like a superposition of a kernel
of Poisson’s type with a heat kernel (see also Lemma A.10):

-5 1 2
K x’ %eb(nT)x € A4z _'__ X .
1(0) Virz Rty

Actually, most results of Appendix A can be easily derived from this analogy. In particular since 5(0) = 0
and b(r) < 0, it is easy to see that L? estimates on K; will decay at most algebraically as = — oo, while
the same estimates on P K, will decay exponentially faster. We also easily see that ;" K, ~ x~™(x) 2 K.

Re(A_) < {

3 ‘Evolution’ estimates

Our next task is to prove that for each boundary data in C;, there exist in C, a unique solution to (1.12)-
(1.14). This will be done in the next Section using a contraction mapping argument in V. We thus have
to show that the r.h.s. of (1.12)-(1.14) defines a Lipschitz map in (a ball of) V. Subsection 3.2 is devoted
to the terms involving v, 1 and w, Subsection 3.3 to those involving R and S, Subsection 3.4 to the terms
JFi.. and Subsection 3.5 to the terms 7 ..
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3.1 Preliminaries
In this whole section, we will encounter various convolution products like

K@—wﬁ@ﬁzfaﬂﬂx—ay—@mwuzm

on which we will use repeatedly the following inequalities (see Subsection 1.2 for the definitions of the
norms)

1P K@ =27l < P K@ = 2l 17l + 1K@ = el Gz (3.)
|K@ = 2@l < min (|K@ = o[£l 1K@ = Do | £ (32)

1K = 7@ < min (1K@ = ol F Gl 10,K6 = e 1Z7Gl) . (63)
10, = 21 EDs < win (1K@ = e, » 10,5 = o | F Q) B4

Where =+ q— == + = =1 + . Note that (3.3) and (3.4) follow from K(z — 2) f(2) = 0, K(z — 2)Z f(2)
and 0 (K(:c — z)f(z)) = (9, K(:c — 2))f(2) = K(z — 2)(9,f(2)). In particular, (3.2)-(3.4) give a great
freedom for the way we will actually do the estimates. Our main concern and difficulty will be to get
optimal decay rates as + — oo. As a rule (particularly in Subsections 3.4 and 3.5), we will choose the p,
as small as possible to cover regions where |x — z| is small and p, as large as possible in regions where
|x — z| is large. For concision, we will often omit the arguments in the K’s and f’s when no confusion
is possible. For the same reason, we will use (3.1)-(3.4) without reference or even sometimes without
explicit statement of the choice made for the parameters.

We also note for further reference that using || f||.c < (||f||2||8yf||2)%, the interpolation inequality,
0<p< % and % +n — & > 0, we have for some constant C' that

1(£,0,0)[| < CI(0, £, 0|l < C1]0,0, Nl - (3.5)

3.2 The ‘linear’ terms
In this subsection, we will prove the following inequalities,
[(LuK1(x — zo)w(wo), L, K1(x — zo)w(x0), Ki(z — To)w(z0))|| < C[(0,0,w)]s, (3.6)
[(Ko(z — wo)v(wo), Ko(r — z0)pu(w0), 0)|| < C|(v; 11, 0)| g » (3.7)

which show that the || - || norm of the ‘linear’ terms in (1.12)—(1.14) is controlled by ||(v, u, w)||,, provided
v, i and w are in the Class C; of Definition 1.3. By (3.5), it will be enough to prove that

”(07 07 ]:(1('7j - xO)w(‘TO))H < CH(Ou 07 w)on (38)
||(£uK1(x - :L‘O)w(x())? (‘Cv - 1)K1(l‘ - [L‘0)U}(ZL‘0), O)H < CH(Oa 07 U})on (39)
|(Ko(z — zo)v(x0), Ko(r — x0)(x0), 0)|| < CI(v, 1, 0)]| o - (3.10)

For convenience, these three inequalities are proved in the three following Lemmas. The general idea
of the proofs is to consider separately the regions zo < x < 2xg and x > 2x,. In the first region,
we will use the fact that ||Ko(x — zo)||L: + || K1(z — 20)||L: is uniformly bounded (thus Ky- and K-
are LP-bounded operators for all p > 1), whereas in the region x > 2x,, we will essentially use that
| Ko(x — z0)||Lr + || K1(2 — x0)||Lr decays as x — oo assoonasp > 1.
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Lemma 3.l Let f = Ki(z — xo)w(xg). Assume that the parameters satisfy (1.16), then there exist a
constant C' such that

”(07 07 f)H S CH(07 07 U))”mo :
Proof. We first note that for 4y < x < 2, since || K1 ||; < C, we have
1122 + 10 o8 + 10y S Nlots < Cllwllgy 23 + 10,0l 4y 008 + 1By0lagit) -
while for x > 2z,

[fllz22 < (IPEG 0z llwlly + 10y K], 08 1 PoZwl]y)
10, meog < (PO, K1l 0,2 llwlly + 102 K, 2,3[[PoZwlly)
10y f |z < (PO K e allwlly 4 102K [|o,1 || PoZwl]y) -

I,

Using Lemma A5, that = — zo > £ if 2 > 21, and that (z)7e"* < {2 < (243, we get
[ f 1228 + 10y f 2003 + 110y fllzan < Cao)2 lwlly + [[PoZw]]1) -

Next, we note that for all z € R, we can write |y|° = |y — z|° + L(y, 2) with | L(y, 2)| < C(|2|° + |2|ly —
z|P~1), so that

B _B
2 2

3
|Hy\ﬁw|\2+08up< )i 2| Plyl K|z [[wlh

r>x0

lly1*P il s < Clag)s™

4
3_8 8 1
< Cla) gl wlla + Clao) )
3_6 _
191 Pollo -3 < € sup )= (gl Ko)Pawlla + ly Pwlla + o1~ Ko oz lyeoll )

42

B
2

< ( sup ()5 19,019l K) | TPowlly ) + CIIO, 0, @)y

B
2

3_8 3
lywlly < (o)1= = [wll2 + {wo) ™2 [[[y"wll2 < 110, 0, )|z, -

The proof is completed using (zo)z ||lw||; < [|(0,0, )|, (see (1.18)) and Lemma 3.2 below. m

Lemma3.2 Let3 > 3and0 <~y < 3—2., Z5={||1+|y/?)f2 < cc and M(f) = [, f(y)dy = 0}.
Then there exist constants Cs,Cp, such that for all f € Z3,

~

IZfllue < Collflle %HIylﬂfHLQ :
3.0
P Z Sl < Conllflee™ Pl

The first inequality is also valid if M(f) # 0.
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Proof. Let 5 > 2 and a > 0. Since || Zf||L~ < || f||L1, the first inequality follows from Lemma A.1. Then,

since M(f) = 0, we have
7/6) = - [ 410 = [ d: ).

from which we deduce

Pl < 2(al sl + 1Ak [ ol ([ 8 o 12
*  dz )é

3 ol 3 o e
< (3l + a5 P [ ool ([
0 Y (1 + |Z"6)2

Setting a = |||y|°f||.2/| f||L= completes the proof, since the last integral is bounded if y < 3 — 3. m
Lemma 3.3 Let f, = Ki(x — 20)Low(xo), Lo, = L, — 1 and f, = Ki(x — x0)Low(xo). 1f (1.16) holds,

then there exist a constant C' such that
|(fu, fo, 0)]| < C||(0,0,w)||s -

Proof. By Lemma A.5, forall 1 < s < oo, we have
_1 _1_
10y fullry-x—y < C sup  (2)' 7279, Lowll, + sup ()72 |, K ||| Luwl)y

r>2x0

To<z<2x0
1
$0>1 20, Lywlr

< CllLuwlly +
fullsg—g <C sup ()i 5 Laolls+C sup (@)2 5 [ Kaflel| £aw]
< Cl|Luwls + o) 2| Lutolloe
gforaz > 21

since <x0>%_ﬁ|]f||u) < I fller + ()2 || f]lL forall 1 < p < co. We then note that £, =
particular, PL, = £, and Pec?nz < bz for all ¢ > 0. As in Lemma 3.1, since z —zo >

ﬁvw”l )

and b(7) < 0, we have
1Follsax—y < Clao) "2 Lowlls + C sup ()~ 2 | PKy|L
s >2x0
< Cwo) 2 #I|Lowlly + Clao)' 2| Lowllos + (wo)> ~# [ Lowls ,
10y fullrz -z <C sup (@2 # €9, Low], + C sup (x)2™ 2 ([P0, K| || Low])s
r T>2x0

zo<z<2xT0
< C (o) 540y Lowlle + () Lol ) -
Since (cp)eﬂgﬁ < @ < (z0)2 and & > . The proof is then completed using Lemma 3.4 and 3.5 below. m
Lemma 3.4 (Mikhlin-Hérmander) Let m : R — C, and define mg = sup;,cg |m(k)| + |koxym(k)| and
my = supyeg |Okm(k)|. Let F denotes the (continuous) Fourier transform and M : f — F~'m()Ff

Then there exist constants C), such that
M [l < Coomo[ [0y fllez s 1M Fllee < Cpmol flle
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17 £ e < € (mo/TFTIcNu ez + vimamal ]l

forall 1 < p < oc.

Proof. The L? estimate for 1 < p < oo is a consequence of the classical Mikhlin-Hérmander condition
(see, e.g. [11]), the L> and L' estimates are immediate consequences of the Sobolev and Plancherel
inequalities. m

Lemma3.5 Let £, = £, — 1and £, = £, + ZP, and assume that (1.16) holds, then

1Luw]ly + (w02 | Luwlloo + o) =2 [0, Law ]l < CUITPow]s + [1(0, 0, w)llx,)
[Luwlls + (20)2 [ Luwlloo + (o) ~2 |0, Luw]l; < C[I(0,0,w)]|, .
(0)2~# || Low|ly + (o) || Low]|o + <ro>§’7’£H0 Lowllr < C(0,0,w)]la, ,
(w0) 2P| Low]ly + (mo) P [ Lowlloo + (w0} 22 (|0, Low]l, < C(0,0,w)]l,
Proof. We have £, = —ZP, + L,. Then the symbol T'(k,n) of L, is given by T'(k,n) = —%

A_+inT
if n # 0 and T'(k, O) = =% and it satisfies (uniformly in n € Z) the hypothesis of Lemma 3.4 with

mo = CZL < Cx)2 and my = CY2 < Clw,). Using §,Zf = f and Lemma 3.2 and 3.4, we get that

ILuwll < (o) wllafwo) ¥ lywlla)? + (o) [lw]]s
(20) 7| Lutw]loo < ((20) ¥ w2 (o) F10,]l2)7
(o) =2 |0y Luwl], < (20) 22 [ Dywlly < {wo)|Bywlly + (o) Dyl
(20) 3 | TPywlle < (o) 2lIPowll < C((zo)[[wllz{zo) T lywllz)? |
(o) = 18, ZPow]], < (o) "= |wll, < {wo) wls + (wo)|[w]lo -

Similarly, since PL, satisfies the hypothesis of Lemma 3.4 with m, = 2@ < 2(xg)¥ < 2<x0>% and
my = md < 4(xq)*?, we get

(o) Pl Luwloo < (o) wlla(wo) F00]2)
@)Ll < C((@o) wllato) tlywlla) * + Clao) s
(20)2™ 2419, Lowll, < (w02~ [9yll; < (o) [0ywlls + (w0) 2 Oyl -

Since £, = L, + 1, the proof is completed using (zo)z |lw||1 + (zo)|w|l < CJ|(0,0,w)|, (see also
1 3 3_B
(1.18)) and (x0) 7 [ywll> < (wo) ¥ [[wll2 + {a0) 172 |||yl wll> < C[|(0,0,w)]. m

Lemma 3.6 Let g,(z) = Ko(z — xo)v(zo) and g,(x) = Ko(x — xo) (o), then if (1.16) holds,

||(guagvao)|| S CH(V)M’ O)HJCO ?
9u@)lloo + lgo(@)lo0 < Cla) ™I, 12, 0)[

for all z > 2x,.
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Proof. We first note that ||[@(x) L+ < Czv'and ||0,Ko(z)||> < Cz+~2. Then let ¢ < py < oo and

p < p1 < o0, since (z — o)L < Cz)sLif x> 2x0, we get

1_1 1_1
1gullpp -2 = € sup (@)2 v [l +C sup ()2 ey,
r>2x0

ro<x<2xz(

1—L 1—1_
Igellps,1- 2 < € sup {z) ™2 lpllpy + C sup ()= ully
r>2x0

ro<x<2xg

1 1_1
10,9ullr1- 2y < C sup () "= |v|, + C Sup ()2 allvlly,
r>2x0

ro<x<2xz(

3_ 1 _ _1_
18yg0ll3- 1 ¢ < C sup (2)27 2| dyul|, + C sup (@)l pell
r>2x0

ro<x<2xz(

while for x > 2x, we have

lgu@lloe + g lloo < (@)% (@) el + WHplly) ) < ()7 ()5 %l )

The proof is completed since ¢ > ¢, 1 < g < 2and 1 — ]

N [—=

;S @<
3.3 The ‘local’ terms

From now on, we begin the estimates of the contribution of the nonlinear terms in (1.12)-(1.14). We first
consider the ‘local’ terms first.

Proposition 3.7 Assume that (1.16) holds then for kg = m1n(2, 5 — N+ & — ), we have

I(£1S = LoR, L1 R — L5, 0)|] < C(wo)~"[|(v,w)]?,
1£:5(x) = LoR(@)]| oo + [[L1R(2) + L2S(@)[|oo < C () HI(v, )| (3.11)
Proof. The proof follows at once from Lemma A.3 and (1.17). m

We already see at this point (see (3.11)) that these terms are of smaller order as x — oo than most terms
of the preceding section.

3.4 The nonlinear terms |
In this section, we prove the

Theorem 3.8 Assume that P and () satisfy the bounds (1.17), and that the parameters satisfy (1.16), then
there exist constants C' and <; > 0 such that

1(Fris Fros Fro)ll < Clao) ™ (v, W) - (3.12)

This is incidentally the hardest part of the paper in that the parameters in (3.1)-(3.4) need to be chosen in
the right way to get a bound that decays as xo — oo. The proof of (3.12) is split component-wise in the
three Propositions ending this section. During the course of these proofs, we will encounter repeatedly the
following functions

A[ P2,42,5 }(x x0) = é:i‘ min ( <f>_‘11 <:C>5<§;>—q2) |

P1,q1 (x — z)7 ’ (x — x2)P2

[ P2,42,52 (a: o) = /d~ Mde=m) ((:1:)_‘“ (x —2)% (T) 2 (x — j;>82> |

P1,41,51 (x — z)P ’ (x — T)P2

which occur naturally from (3.1)-(3.4). For further reference, we note that these functions satisfy the
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Lemma 3.9 Letp; <1, s> 0and ps, g1, g2 € R, there exist a constant C' such that forall z > z¢y > 1, it
holds

A[ 72 Jaa0) < € (@707 + ()7 max((a) =, (w0) 7)) (313)

p1,91

if ¢ # 1, while the same inequality holds with max((z)1~%, (z,)!7%) replaced by In(1 + z) if go = 1. If
furthermore we have s, s, > 0 and <:—> < (z9)%, then for all m > 0, there exist a constant C' such that for
all z > x¢ > 1, it holds

B[ D2,42,52 ](:c,xo) < C(<x>*q1 <x0>2(1+s1*p1)<ﬁ + <x>*p2*m<x0>2(1+m+82)4{7 maX(<x>*Q2’ <x0>*QQ)> )

P1,491,51
Proof. We first note that for all p > —1, there exist a constant C' such that

Tr—x
O )=

/ die ™ @ <C | dre 12 <O < O A < Oo) PP (3.14)
x0o 0

since [b(7)| < C772 < C(x()?*. We then note that since x > xy > 1, we have @) <4 < (x). We first
consider the case of finite x, that is precisely, iy < x < 2z, then

S

AL P2 (@) < Clan) (o = a0)' 7 < Cla) 0
P1,q1

71’(7)(1*5) (ZL‘ . j)slfpl < C<$O>*€I1+2(1+51*p1)¢ .

B[ beo,52 ](x,xo) < (o)™ /gi e

P1,91,81 zo
However, in the applications of the result of this Lemma, we will generically have e.g. 1 — ¢; — p1 < 0,
that is, the integrals we seek to bound decay as x+ — oo. To get the optimal decay rate, the idea is to

consider x > 2z, and split the integration domain xo < z < z in two equal parts. Since x > 2z, implies
2 <(r—wmo) <zandzo < < R implies 2 < 250 < g — & < x — z9 < z, We have

z+zo x

A[ DP2,G2,5 }(l‘,l‘o) < C<$>8_p2 QdZi‘ <j>—Q2 + C<x>—Q1 dz ($ — :i’)_pl .

P1,91 Ttz
xg 5

The proof of (3.13) is completed using fxf dz (7)< ffo dz ()~ and considering separately ¢, < 1,
g2 = 1 and ¢ > 1. In the same way, we have

_ _ ztzg
B[ P2,92,52 ](.CC T ) < Cmax(<x> q2’ <.§C0> q2) Zdjew(x o j)32+m
P1,q1,51 = <$>p2+m o
+ o die 5 (x — )P,

(z)ar Jetz

which completes the proof with the help of (3.14). m
We now turn to the proof of the part of Theorem 3.8 that involves F; ,,. To prepare the ground for the
asymptotic results of Section 5, we also show that most terms in F; ,, have decay rates as x — oo faster

by (almost) 22+ than those of w.
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Proposition 3.10 Assume that P and () satisfy the bounds (1.17), and that the parameters satisfy (1.16),
then there exist a constant C' such that for x; ; = min(i — £ —n, % — &), we have

10,0, Fr )| < Cwo) =" [I(v, W), (3.15)

and defining 1, .(z) = — [ di Ky(z — 7)Q(%), we have

|1F 1) — Friw(@)oo < Cla) 242 (v, )|
1Fio(@) = Fraw@lh < Cla) )|V, w)||? (3.16)
1yl? (Fru(@) = Fraw(@))|lz < Cla)~ 5272 (v, w)||? .

Proof. We write F1 ,(z) = Fi11.0(%) — Frou(x) — Fi3.(x), where Fy 1 () is defined above and
Frou(®) = /dff Ks(x —2)P(), Fizw(z) = /di’ Kyo(z — 7)P(2) .

Then, from the results of Section A and (3.1)-(3.4), it follows easily that

10,0, Fi )l < Cllw, P (@FA] 1377 [ + (@24 1751727 |(o,a0)
+ O (@) 5A] 11770 J(w,a0)
Ol (@3] S a0 + @A FE2 @)
Using Lemma 3.9 and 3 > 2, we get
10,0, Fia Il < C ()37 + (o)) (v, )12 (317)

Similarly, from the results of Lemma A.6, it follows easily, choosing {&; = 1 — 1 and &3 = 2 — 2e5 with
g; > 0, that

8 _
2

10,0, Fralls < Cllv P (@) 24| 720 ](x o)+ (2) i
}(%900))

+ Ol WP (@Al 22, @)+ @A 2, @)

175272777 1*61,5

AL o)

EN SN
Ny wlm

+ Ol W) ({2 §A[ .

1—e1,

ot »J:-IU\
SIIs wlm

—€

=

Fiael@)l < A T2 G < ClP ()3 4 (@) H )

3
2

720l < CIIFA] 10 JGea0) < e )IP() 710 + (o) InGo))

N\Q wlm —

ol Frau@ll < Cla)? (A 570 @ o) +A] 777075 @)



20

Using Lemma 3.9, In(1 + z) < C(x)® and ¢; > 0, we get

10,0, Frz)ll < C (o) ™55 + (o)™ 347 4 (ag)~H407) | (v, ) 2 (3.18)

|Fi 2@l < CIVH0)H [ Frpu@lh < W), (3.19)
5484,

9 Fraw(@lz < Ol w)[2a)~HHE+ (3.20)

Finally, from the results of Lemma A.7, it follows easily that

3 9_36 1348
100, Fra)lle < Clv @) (@B[ 10 @z + @15B| 55100 @)
71,0 s~ s :Lsts
s-gpl 25-44
+ O @P (@ EB] T3 | @ a0)
8’4 2’8
1 1315
+ Ol @I (@3B] 75 @ a0+ <x>B[ S8 @)
12— n0 g2 g

|Frs0@lle < V@B LY, |@a0) < Cllvw)|(@) 75

OOM—A

oo\r.n m\m m\m =
’—‘ ’—‘ M\w

|Fi 5@l < Cl@,)2B[ & i]:cxo)scu<v,w>u2<x>*1+@,
’8
Jé] 9_ %, 3y B 55_ 081
Iy Fraw@le < CHV I (B] 3757575 [@ e+ B 11727 |@0)
8 8 8 8 8’4 2’8
+§+¢

< O||(v, w)|*)
where in the last inequality, we used 3 > 1. Using Lemma 3.9 and 5 > 1, we get
10,0, Figo)l| < Clao) 5] (v, ) (321)

The proof of (3.15) and (3.16) is completed choosing £; = p and €, = ¥ in (3.18)-(3.20). =
We now turn to F; ,. For further reference, we also show that substractlng some terms to F; , gives
improved decay rates compared to those of v.

Proposition 3.11 Assume that P and () satisfy the bounds (1 17) and that the parameters satisfy (1.16),
then there exist a constant C' such that for x, ; = min(x1, 7, 2 —n+ & —2¢), we have

100, 0, )| < Clag) ™2 (v, w)?, (3.22)
1F10(@) — Fro(@) — Fra (@)oo < C(x) 3 (20) % (v, )2,

where Fy3,(z) = [, d7 G(z — 2)Q(7) .

Proof. We first note that we can write 7 ,(z) = Fi1..(x) + Fr1..(2) + Fr2.(x) + Fi35.(z) with F; 5 as
above and

Firi.(z) = /é;ﬁ (K. (x — %)+ Ki(x — 2))P(@), Fia.z)= /é:i Kis(z —2)Q(7) . (3.23)
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Using (3.5), we see that the contribution of F; , to (3.22) is already proved in Proposition 3.10. Then
from the results of Lemma A.8 and A.9, it follows easily that

1
1K (@) + K@)l < Ce™ <§+xé+<f>8<}l ) CBi(z)

||K13(l‘)|||_1 S Ceﬂlxzf;@ (1 + (z0)?¥

We then have
10, Frros O)lla < Cl(v, )2 / di{x)! By (v — 3)(7) "}

+C”(V’W)HQ/d (z > ¢_EB1(ZE—x)< >_§ >

o

Ol [dntnt - <Be - ay(a)

zo

10, Frzs 0)] < IV, w)||2/ H2)'Dy(x — 3)(F) 2

zo

+ CH(V7 W)HQ di’<$>174‘07%D1(x _ ;’i.)<‘%>*2+ip+i

+CIIP [drtts it - @) Er

1F11.0@) ]l < OV, W)|? [dEBy(z — 2)(F) "2,

1Fr00(@)le < C(v, )2 / 4iD: (x — 3)(F) > .

Using Lemma 3.9, we get

10, Fit Ol + 110, Fr20, 0l < € (42 o 5 4 () ) (v, )
1F110@) oo + 1F120@) o0 < Clx)~2

T wo)? [l (v, )7

In the same way, from the results of Lemma A.4, it follows easily that for all ¢ > 1 and s > 1, we have

0,6l < Cad L G < ca (14 10

2

) CE,(z).
We then have

T ~_Z+LT
10,71 30ll 31 ¢ < Cl(V, w)||*(z)2 2 ¢ /d;z» min ((:z»y%%%@(x — ), L) _
T o T
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Using Lemma 3.9, and » > 2, we get
100, Fr5.0, 0)ll < C o)~ Z IV, )] -

The proof is completed. m
We conclude this section by estimating F ,,. In the spirit of Proposition 3.10, we will also show that
substracting the ‘right’ term to F ,, improves its decay rate as x — oo.

Proposition 3.12 Assume that P and () satisfy the bounds (1 17), and that the parameters satisfy (1.16),
then there exist a constant C' such that for x1 3 = min(k12, 5 — (1 + 52)¢, 3 — £ + 1 — £), we have

1(F 10, 0,0 < {ao) ™2 [I(v, )] (3.24)

for all x > x,. Furthermore, let

~7:1,2,u($) == /éf Kio(z — 7)Q(2)

o

Fraal) = [85 ((PEale — 2) ~ Koo - D)P@) - PRulo - DQ@) . (25)

zg

then for all € > 0, there exists a constant C' such that
1F1u(2) = Frou@)]e < C@) 2 (v, ), [ FLau@)lloe < Clx) ™2 (zo) F [|(v,w)[|? .

Proof. We first note that with 7 -, as above, we can write F; ,(x) = F1.1,.(2) + Fi12.(2) + F13.u(x)
with

Fraal) = [85 (Kals — ) = Kiald = )P@), Fiaal) =~ [85 F@ - 2)Q@) . (326)
Then we note that ||(F13.4,0,0)|| < [|(0, F13.4,0)| (see (3.5)), and that F; 5, and F; 3, differ only by
signs and the exchange of the Kernels F" and G. The bound on F; 3, in the proof of Proposition 3.11
being insensitive to these details then apply mutatis mutandis, in particular, we have ||F}3.(2)]w <
C{x)~1%||(v,w)||?. Then, by Lemma A.8, we have

1_ 1 @
P

K@) < 327

1— 1

x
| Ko(2)||e + || Ka3(2)||r < C (
10y Ko ()| L2 + [|0y K13(2) |2 < C (

so that for all py € [¢, o0), we have

11 [T . L N ey 3 ~
”-7:1,2#”%;)0,%7% < C”(V7 w)”2<x>2 P0 /d]} min <<x> 2ot 5,s El(x — x), (x) SJ“PEpO(x — l‘))
zo
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1 S T )i (F) e
10l < CH P =20 [d win (324 E 0 — ), 0T,
[ 2r z0 (.T - l‘) T

Bl < )P [d min ((2)75°55 HuGo = 2), (@) oo — )

10, P alla - 3=y < OV @I ()2 / d min ((7)" 347 H, (@ - 2), (7)1 J@ - 3))

zo

By Lemma 3.9, using these bounds with py = g and py = oo and In(1 + z) < C(x)¥, we get

[F120:0, 0)lle < € ({0) 737 + (o) 57 ) v, )

1

1F110:0, 0}l < € (§0) 479 + ) 7H0H9 ) v, )2
1P 10@le < Cla) v, )]

We finally note that

z b(r)(z— ]_ ¥ 3
IFraa@lle < Clv? fdi e (14— 4 L 2

0 x2 (;U—:E)i
(o) T||(v, W)I*,

3
2

< Cfx)”
which completes the proof. m

3.5 The nonlinear terms I1
In this section, we prove the

Theorem 3.13 Assume that P and () satisfy the bounds (1.17), and that the parameters satisfy (1.16),
then there exist constants C' and «, > 0 such that

1(Fois Fas F)ll < Clao) ™2 |(v, w)[|* . (3.27)

For convenience, the proof is split component-wise in the next three Propositions. For further reference,
we will also point out that most decay rates on F . are in fact better than those of the related fields.

Proposition 3.14 Assume that P and () satisfy the bounds (1.17), and that the parameters satisfy (1.16),
then there exist a constant C' such that for x4 ; = i — 7, we have
10,0, F2 )l < Clzo) ™ I(v,)[1*,  [Fow(@)loe < Cla) 2 |(v, w)||?

[Fou@ll < C@TNWN?, Iy Foul@)llo < Cla) 5 |(v,0)],

3
2
5
4

forall z > x.

Proof. From the results of section A, it follows easily that there are exponents p > 0 and ¢ < 1 such that

le"Kanwlliipa + € Kowllpa + 16" Kopwllopg + 1€ Kopwll2 pe < C
e 1y|° Ko wlligpar + 1€ 191  Kopwll1pay < C
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while for all zo < 2 < Z, we have

@) (IP@I2 + 1Q@)]2) < @) 2 (I1Pllsos + 1Qlzs7 )

(@) (|10, P@2 + 0,Q@)]12) < (&) 5 (10, Pll0z .+ [0,Qll5.09 ) -

) < (z)
) < (z)
(@) (10, P@) 11 + 10,Q@)1) < )2 (9, Plls1,5- + 19,Qllz12-) ,
) < (z)
) < (z)

B
2

N

3_ ~ ~
(@52 (P P@ + 9P Q@I) < (@) 3 (ol Pllys s + N1y° Q7o

- 5,
@ P@) + Q@) (1P laa + 1Ql5r sy

2

X

since 3 > 2, o < ¢ < landi—¢+n >0 By(117), the above quantities are all bounded by

C{a)=i|(v, w)|1%, while ()2 (| P(#)]lo + Q@) o0) + (@) (IP@]1 + 1Q@)]1) < Cll(v,w)||*. Easy
estimates applied to (2.5) thus lead to

< =i 2 [gz € AT =)
10,0721 < Cla )l [ = T
[ee] :vfi(‘,i, _ x)p

£l < Oy Hlvw? [dr =

7l < Cla) P [dn S

— x)q

v, )] / gz @ D"

(7 — )

Y

(Sliey

1y Fow(@)]|2 < Clz)~1*

This completes the proof. m

Proposition 3.15 Assume that P and () satisfy the bounds (1.17), and that the parameters satisfy (1.16),
then there exist a constant C' such that for k9 » = min(x, 1, g), we have

100, Foo, O)[| < Clag) 22| (v, )2, (3.28)
1F20(2)]loo < Clag) =202 (v, w) |2 . (3.29)

forallz > zpand 0 < e < 1.

Proof. We first note that we can write % ,(z) = Fa () + Fa1.,(x) + Faa.(x) where
Foru(r) = — / dz e T I (7 — 2) P(2) — e T Kg(2 — 2)Q(T) (3.30)
Foon(r) = — /di G*(z — 2)Q(7) . (3.31)

Using (3.5), we see again that the contribution of F , to (3.28) is already proved in Proposition 3.14. For
the contribution of 7, , to (3.28), we proceed as in Proposition 3.14. There are exponents p > 0 and
g < 1 such that

||K6||1,{p,q} + ||K7||17{P,f1} <C,
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while for all zo < 2 < Z, we have

(@) (| P@loo + Q@) lo0) < @) 2 2(IPlanos + 1Qllz002-) -
(@) UP@ + 1@y < ()77 5 (1Pllaps—p + 1Qllepopt)
()2~ 5(|0, P@)l- + [0,Q@) 1) < (@) 2 (10, Plls a2y + 104 Qlzr3— 1)

)
)!

since p < ¢ < Landn < €. By (1.17), the above quantities are bounded by C(x —3 (v, w)||?, and we get
p<¢{<jandn<E By q

100, a0, ) < Clar)™ %n(v,w)Hz/df

T (j - l‘)q ’

_3
1F21.0(@) o0 < Clz) 2 (v, w)]* -
Next, we note that for x < z and ¢ > 1, we have

1 L
”POGHq,{o,k%} <C, H,PGHq,{O,lf%q} < Ozt < C(T) %,

1

where in the last inequality, we used that T < (T) a4 (xg)a
the change of variables ¥ = xz, we get

»Jk‘ﬁ

< <x0>i. Then, forall 0 < ¢ < 1, after

5 _l+880 o0 Z*E“F(l*g)ip e
||"T2,1,v||x,oo,1—so < (v, w)||*(z) "2 dz (7,(1 +(z-1)"71),

1)1 2ep

|Fasalleps s < ClW.0) e %/dz H -1,

100 F2 10l 3 3¢ < Ol ) ()4 /d —)E o).
This completes the proof. m

Proposition 3.16 Assume that P and () satisfy the bounds (1.17), and that the parameters satisfy (1.16),
then there exist a constant C' such that for xq 3 = K29

1(Fos 0,0)| < Clazo) ™3| (v, w)||? (3.32)
1 F2u(@)]|oo < Cla) =202 (v, w) |2, (3.33)

forallz > zpand 0 < e < 1.
Proof. We first note that we can write
JTQ,u(:E) = FQ,l,u(x) + FQ,Q,u(x) )

Foru(z) = / Sofz e @Ky — 1) — Ko(& — 2))P(@) + e T K (3 — 2)Q(2) , (3.34)

Fonale) = / di (i — 2)Q) (3.35)
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We then note that
”K2H1,{0,%} + HK5”1,{0,%} + HKGHI,{O,%} <C,
while for all zo < x < Z, we have

(@2 (1P@ oo + Q@) 1o0) < (@) (IPllz00.8 + 1QN15.002-) -

(@) (1P@p + Q@ < @) 5 (1Pllapa-z + 1Qllzpopp)

(@) 1(10, P@ + 10,Q@I) < (@) 10,Plls 1y + 10,Qlsr 52 )

N

since p < ¢ < 2and 2 — ¢+ > 0. By (1.17), the above quantities are all bounded by C'(z) ~!||(v, w)]|?,
thus we get

|(Fars 0,0)]]a < Clar) (v, )2 / di (). (3.36)

Next, we use (3.5) and note that F»,, and F, -, differ only by signs and the exchange of the Kernels F

and G (see (3.31) and (3.35)). The bounds on F,, in the proof of Proposition 3.15 being insensitive to
these details then apply mutatis mutandis. Finally, the proof of (3.33) follows at once from (3.36). m

4 Existence and uniquenessresults

Our next task is now to prove existence and (local) uniqueness result in C,, for solutions of (1.1). This was
stated as 2. implies 1.” in Theorem 1.4, or, to rephrase it, that

Theorem 4.1 If v and w are in the class C; with parameters satisfying (1.16) and x is sufficiently large,
then there exist a (locally) unique solution to (1.1) in C,, with parameters satisfying (1.16).

Proof. The proof follows from the contraction mapping principle. For fixed v and w in G, we define the
map F : W — W by

F(V,w) = rhs. of (1.12) — (1.14) .

By the results of Section 3, it follows that if the parameters satisfy (1.16), then for x = min(xo, k1, K2),
we have

[F NV, )| < Cullw, 1, w)||zg + Calwo) " [|(v, )17,
[ F Vi, wi) = F(vo,wa) || < Colxo) "([[(Vi — Vo, w1 — wa)|)([[(V1 + Vo, w1 +w))]) -

Letp > 0and 0 < ¢ < 5. We easily see that if ||(v, u, w)|., < p, the map F is a contraction in

Bo((1 + )Cip) € W if (xg) > (ClCng—l)%. By classical arguments, the approximating sequence
(Vos1, wni1) = F(Vy,wy) forn > 1 and (vi,w1) = F(0,0) converges to the unique solution of (1.1) in
Bo((1 4+ £)Cyp) € W. This completes the proof. m
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5 Asymptotics

Now that we know that there exist (locally) unique solutions of (1.1) in C,,, we can turn to their asymptotic
description. As explained in Section 1.4, we will first prove the partial description of Corollary 1.7, and
more precisely that

Theorem 5.1 Leta; = (—M(ZPyw) — fQ+ PoQ(z, y) dxdy, 0,0,0,0,0) and ug,, wa, as in (1.9), then for
all e > 0, solutions to (1.1) in C, satisfy

[u(z) — g, (2)||oe < Clao, ||(v, w)]]) (z) 1O+

{x)~

[w(@) — wWay (@)oo < Clao, ||(V,@)]]) (z)~

lw(@) — wa, ()]l1 < Clo, [|(v, w)|) (z)~1+E+2
1) (w(x) — wa, @))]]2 < Clao, [|(v, w)|f) ()52 0+

%+(1+e)<p

(5.1)

forall § <3, <1-2(1+¢)pandz > .

Note that here, in contrast with (1.3) or the statement of Corollary 1.7, we did not include the terms in
the y ~ x scale for « nor the v component, as they are of order 21, resp. x='¥, which are smaller than
the O(x~1+(+9)%) correction. These terms will appear later in Section 6. Note that we need only prove
(5.1) for x — oo (we will in fact prove them for = > 2x,), as they are trivially satisfied for finite z.
Furthermore, for x > 2x,, we can either compare, u(x) t0 uq, () Or ua, (r — ) and w(x) to wy, () or
wa, (T — 1), as is proved in the

2
Lemmab5.2 Let K.(z) = \/i Ko(x) = ﬂ$2+ 5, f(x) = K (x — x9) — K.(x) and g(z) = Ko(z — x¢) —
Ko(z), then for all m € N, there exists a constant C', such that

10" 9(@)loo < Crnfa) ™ *(zo) , 110} Hg(@) | < Crnlx)™™ (o)
105" F(@)]oe < Conl2)” (o) ,
190" f(@)l[2 < Crn(z)”

forall x > 229 > 2.

3+m

2 (zo), O f (@)L < Crala)”

3+2
m <x0> :

2+m

Proof. Since v — x¢ > 5 for x > 2x,, we have
189l + 10 Ho(@)lloo < / [ @20 _ =le| < / Ak
e} o 296
"8;nf(x)|’oo < / dk‘k‘m‘eka(mfxo) — eik2x| < 560/ dk‘k‘m+2e—%
and similarly
I f@)? < a2 [ dk|k2 e R < O a2 a
|3y @3 < = 2 y-fom

00y SR < 2 [ QR0 o e < G
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The proof is completed with the use of Lemma A.l. =

For convenience, the proof of Theorem 5.1 is split in the next two subsections. The terms coming from
w and v in (1.12)-(1.14) will be studied in the next subsection, the remainder in the second one. The basis
of the proof of Theorem 5.1 is that the large time asymptotics of K (x)f is captured by* M(f)K,(z) if f
decays sufficiently fast, which is the content of the next Lemma.

Lemma5.3 Let0 <~ < 1,0 <~y < 2and f satisfying ||(y)” f||1 < oo. Then for all m > 0, there exist
a constant C, such that

me@uﬂwmm§q%ggmwmh

+ m+W

Jog Kaa)f = MUl < &5 a1

5 tm+y

YO Ky (2)(f — Mmm<c” o7l

3+7+%
07 K @)(f — Mmm<@ﬁﬁﬁWMmemm
1K@ — M) ~ 0, K@Ml < g1
(z) 7

1 12(@)(f = M) = 0y FKr2(@)My oo < Coo = MMy fll1

where M(f) = [ f(y)dy.
Proof. Let

Ry(x) = Kyp(2)(f — M(f)) — 0, Kr2(2)M(y f)
Ry(x) = Ky(2)(f — M(f)) — 9, Kr()M(y f)

and R3(x) = Ky(x)(f — M(f)). Using twice the Fourier Transform, we get

11—k
WMM@+WMM@§§:/MWW”Ax/@/—T;@—%WWMMN
nezZ
107 Ry ()] e <Z/dk |6 7e $\/dy o ‘,Y Y[ /2 )|
nezZ v
00 ez’ky
s < 3 ( [ or lie el fanl s wrisol)

lyoy Rs(@)]» < 2> /dk: | [k 22|y f]] ) + 10 K (@)L= {y) f1]1 -

nez -

NI

The proof is completed using Lemma A.2 and ||0; Rs||1 < (][0} Rsl|2|y9;" Rs]|2)

“4py abuse of notation, K, is here considered as afunction and not as a convol ution operator.
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5.1 The ‘linear’ terms

In this subsection, we consider the asymptotics of
U(r) = Ki(z — z0)Loyw + Ko(z — zo)v,  W(x) = Ki(r — zo)w , (5.2)
as x — oo. We first note that by Lemma 3.5, 3.6 and A.5, we have

||K1(:E - :L‘O)(‘Cu +IP0)w + KO(:L‘ - :L‘O)V”OO S C(l‘(h ||(V7 :u7w)||$0) x 1+SO

{
IPW (@)oo < Clo, || (v, 1, w)||20) (&
IPW@)|r < Clwo, (v, 1, w)lay) (w
1y PW (@)l|2 < Clao, |V, 1, w)||o) ()~ 5+ o

1—|—g0

)
)72t
)
)

forall x > 2z, and 0 < 3y < 3. This means that the first order contribution of U and W to (5.1) is given
by Uy(z) = Ki(z — o) f and Wi (z) = =0, K1 (x — x0) f, Where f = —ZTPyw. Using Lemma 5.3 and that
by Lemma 3.2 we have ||y f|; < C||(0,0,w)||,,, we conclude that for a, ; = (—M(ZPyw),0,0,0,0,0),
we have

U () — ttay, (x — 20|00 < Clao, [|(v, )|} ()~ H0+
||W(ZL‘) - wa1,1(x - xO)Hoo S C(xm ||(V, w)”) <$>_%+(1+6)¢ (5 3)
HW(:C) - Wé'll,l(aj - xO)”l < C(SEQ, H(V, w)”) <x>*1+(1+€)ﬂ0 .
11y (W () — way, (& — 20))l2 < Clao, (v, w)|)) ()T 20+
forall 2 < 3, <1landxz > 2z.
5.2 The nonlinear terms
We now turn to the asymptotics of
Ul(l') - fl,u($) + ~¢'2,u(x) + Els(x) - ﬁgR(l’) ) Wl(x) = ~f'l,w(x) + JTQ,w(ZL') .
It follows from Propositions 3.7 to 3.16 that for all % < Gy < Band z > zq, we have
1U1(2) — Frou()]loo < Cxo, [[(V,w)]]) (z)~ L1+
||W1("L‘) - Fl,l,w(x)”oo S 0(1‘0, ||(V7w)||) <1’> %+(1+5)90 (5 4)
IWi(2) — Friw(@)y < Clao, (v, w)|]) (z)1HF .
()~

5
7 70+(1+€)80

ly* (Wi(2) = Friw(@))llz < Clao, [I(v,w)) (@

where
Frou(@) = - / i Koo — HQ@) and Fryo(e) = - / "di Kol - 2)Q() .

The proof of Theorem 5.1 is then an immediate consequence of the preceding section, Lemma 5.2 and the
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Proposition 5.4 Assume that () satisfies (1.17), and define a; » = (— fm PoQ(x,y)dzdy,0,0,0,0,0)and
Di(z) = Frou(7) — uay,(x — x0) ,  Da(z) = F110(2) — wa, , (T — T0) ,
then for all ¢ > 0, there exist a constant C' such that
D@0 < Cla) 2w, w)[?, (Do)l < Ca) ™2 92| (v, w) |7
| Do(@)lls < Cfa) 492 (v,0)[2, [y * Do)l < Olar) =5 54092 (v, )
for all x > 22, and % < Fo <1 =2(1+¢e)p.

Remark 5.5 This result is expected in view of the corresponding classical theory on the nonlinear heat
equation (see e.g. [3]). However in our case, we can prove that in fact a; , does not depend on «, v and w

on the whole domain €2, but only on « and v on the boundary =z = z,. Namely, since ) = —9,R + 0,5,
we have

a1, = Po Q@wmmyz%/pQMWMD—%M%MNMMZwM@ﬁ@m-

Q. Q,

Proof. Let Dy 1(z) = =P [, di Kip(z —2)Q(%) and Dy 1(2) = =P [ d7 Ky(z —7)Q(%). Using Lemma
3.9, we have

=

S

1.3
1D, < B Y250 |@aolv, @)l < Clo) 2w,

L 2,4 T¥g

[ 1.3
1D2a(@) < B| 3720 @ ao) I, o)l < Cla) 4 v, )]

27 )
ID2a@), < B| 310 @ a)|(v,)]? < Cla) ™4 (v, ) 2
§,Q7§, 0 lﬁ,ﬁ, .0
[l Do), < (B 223770 |@wa) + Bl 3372770 | @a0)) )P

< Cla) 1774 (v,w) |2 .

Now, let DLQ(I‘) =—P f;() dz Ku([L‘—ZZ‘)Q(f) and D272(l‘) =—Py f;; dz Kg(ﬁ—ii')Q(j) Since PoKqp =
0, 8;,3770K12 = —8yK2, 8;,3730[(2 = Gng and POKQ = 28yP0K8+8yP0K1 and PQKH = —P()Kl —Png,
integrating by parts in z, we get

D 5(x) = Po (K (z — z0) + Ks(z — x0)) /éz Q(2) + /350 Oy Kso(z — 2) ~(gilﬁz Q) ,

zo 0

Dy o5(x) = =Py (0, K1 (x — x0) + 20, Ks(x — x0)) /éz Q(z) — /350 Oy Ks(z — ) ~(gilﬁz Q(2) .

0 0

We then have

HKl(x — ) LOSZ Q)

< Ol / Az ()24 < (v, w)|2(x)

[e.9]

HKs(x — o) /éz QR)|| < ClWv.w*(@ —z0)" /32’ ()72 < Ofl(v, w)|*x) ",
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1
2

: / dz (2) >4 < (v, w)[[P(2) 72+,

0 x

< Clw)

aKl(x—:po)/sz(z)

N \

0, Ks(x — o) / 4= Q(2)

scler /dz )2 < O, w) [2a)
— Xg

0,K\(x — o) / d:00)|

< Ofv, )P / dz ()3 < O (v, )P (2) "+ .

[MIed)

0y Ks( — o) sz(z) < C(v, W)IIQL /dz< )2 < Ofl(v,w)[P(2) 7

(x—z 0)4

where in the last six inequalities we used x > 2z(. Similarly, for x > 2z, we have

H'y'ﬁ(’aﬂﬁ(x ~ o) / 6:Q0)| < Ol w) Pt

H‘y‘ﬁayf(s(x ~ o) / d:Q()|| < Clv,w)|[Pa) THE+e
o 2

Note that the first of these two estimates is only valid if 3 < 3 —2¢p. Next, for D, 3(z) = [ di 9, Ky(z —

7) [; d2Q(2) and Dy3(z) = [ d70,Ks(x — 7) [; dzQ(z2), we have, (see Lemma 5.6 below for the
definition of D[ - |(x, 1) and related estimates), that

D@, < @] 24 |l 2l < Clw P
IDes@)lc < (D[ 1277 ] all v < e, )+
1D25@Il, < ()10 1777 | an)| (@) < Ol 2w) 7

Along the same lines, we find|||y|° D 3(z)||, < C||(v, w)||2(z)~ T+ We finally define
T(0.3) =ty ,(0) = Palste — ) [ 6:Q().

Since [ d2Q(z) = [~ d2Q(z) — [;7 d= Q(z), we get, using Lemma 5.3 and & > 2z, that

1D @) < HT(:v)H Cla) (v, )

<O / a2 Iyl Q) + Cla) (v, )2
1Dl < 110, T(x)n Oy (v, W)

<Ol / 02 gl Q) + C )4+ v, W)l

[1Da(@)[x < [0, T(x)lll +C(z) (v, W)
<Ol /dz VIR QG + Cla) =2 lI(v, W),




32

_5,580
1y[® Da(@)l|2 < |[ly1*8,T(@)[|, + Cla) T2+ (v, w)||?
YT o _ 5.8
< Cz) 3tz / dz [y QI |y QI + Cz) T2+ (v, )12,
o

forany 0 < v < 1 (we used |[|y|® fll, < [ fIl,~lly|f]|2> to establish the last estimate). Then, for any
7 < lando > i, we have

”/1 +o

v, W),

/ Q@)L < © / A=+ )P QE)ls < © / dz ()7t

zo o zo

while with similar arguments we have for any v, < 1 and 3 < 1,

/ d- Q@ =Q@: < C / 2 (W)

0

— =Bg) o 7
[ eI lslQl < ¢ [ de a3 0w
xo o

Choosingy; = 1 —=2(1+¢)p, 72 =1—-41 +e)p, 13 = 1 — 2( 1J“f)cpanda = —+590W|th5 >0
completes the proof. m

Lemma5.6 Let 0 < py, ¢ < 2,and po, g1 > 0, then there exist a constant C' such that

p|re @, :co>—/ dx/ s o (x_ e ) s ot e,

P11 )P’ (x — T)P2

forall x > 229 > 2.

Proof. The proof follows at once from

D[pz’qz](x,xo) / dx/dz )2 4+ C(x)” 1/ di (x — z)
PL@1 — xo)p2 rtg
< C(< >2 P1—aqi g < 2 —p2— QQ) ’

see also the proof of Lemma 3.9 for related results. m

6 Refi ned asymptotics
To complete the asymptotic description of solution of (1.1), we still have to prove the Corollary 1.8. Since

the asymptotic description of w is already proved in Theorem 5.1, it only remains to prove the

Theorem 6.1 Letp < ¢y < L. Assume that |||y|2V(wo)||s < oo and [[|y|z=#°Sv | + |||ly|z~#°Sulli < oo,
and let a; = —M(ZPyw) — fm PoQ(x,y) dxdy, as = M(Sv) — fm PoQ(z, y)dzdy and az = M(Su).
Let a = (ay, as, as, ay, ar,a1Poaz) and ug, va as in (1.9), then there exist a constant a4 such that for all
e > 0, solutions to (1.1) in C,, satisfy for all z > xq
Ju(@) = () loo < Clao, [I(v, @)} ()75, (6.1)
[0(z) — va(@)lloo < Clao, (v, )) (z) 3490 (6.2)

for po = (1 + €)p and some constant C'(zg, ||(V, w)|]).
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Here again, we note that we need only prove the estimates on « and v for z > 2x,, and, using Lemma 5.2,
we can choose to compare u(x) and v(z) either to ua(x) and va(x) or to ua(z — xo) and va(z — x4). The
proof of Theorem 6.1 then stands on three pillars, the partial description of Theorem 5.1, Lemma 5.3 and
its equivalent on F', G and K, which we now state:

Lemma6.2 Let 0 < v < 1 and f satisfying ||(y)” f|1 < oo. Then for all m > 0, there exist a constant
C,, such that
|0 F(e)(f — M(Dllow < Coe™ " [[ly £l
107" G(@)(f — M(Dllse < Coz™ ™7 Iyl f]1
|0 Ko(@)(f — Moo < Coz™ " [lly[ 1],
|07 HE @) = Mo < C™ = [l £l

where M(f) = [ f(y)dy.
Proof. The proof follows along the same lines as that of Lemma 5.3, e.g.
ethy — 1

|ky|

Jog P~ MU = 3 [ ak flimoe ) [y

nezZ v

" fn)] -

The other estimates are similar. m

For convenience, the proof of Theorem 6.1 will now be split in the following subsections. We will first
come back to the terms proportional to w, v and p. Then, using the first order results on w and u, we
will prove (6.2) in a first round of estimates on the nonlinear terms. We will then use (6.2) to prove (6.1)
in a second round of estimates on the nonlinear terms. In principle, this ‘ping-pong’ strategy could be
systematically used to get higher order asymptotic developments.

6.1 Back to the ‘linear’ terms
In this subsection, we consider the asymptotics of

U(z) = Ki(x — x0)Low + Ko(x — zo)v,  V(x) = Ki(x — x9)Low + Ko(x — zo)pt (6.3)
as r — oo. We first note that by Lemma A.5 and 3.5, for all m > 0 and x > 21, we have
[PE(z — z0)Luw|loo + [|[PE(z — z0)Low]loo < Clao, [|(v,w)||,m)(z) ™"
since ||PK;(x)||; decays exponentially as x — oo. Then we note that for z > 2z, we have
[PoK (& — 20) (Lo + Dl|oo < CI2K (2 — ) | o | (L0 + D)y < Clar) 3| Ty

Thus, as in Section 5.1, the asymptotics of U and V' are the same as those of U;(z) = Ki(x — x¢)f and
Vi(z) = —0,Ki(xz — x0)f, where f = —ZPyw. Using Lemma 5.3 and that by Lemma 3.2 we have
1y flln < Clo, [[(0,0,w)]l4,) for all v < 2 —2(1 + )¢, we conclude that for a; = (—M(ZPyw),
asy = —M(yZPyw) and a; = (a1 1,0,0,a4,1,0,0), we have for x > 2z, that

U2(2) — tta, (= — 20) |0 < Clao, [|(v,w)][) {x) =449,

3 6.4
1Vi(2) — va, (7 — 0)||oe < C@o, ||(v, w)||) (z) 20T (6.4)
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We then note that since ;» = ‘Hv and v = —Hp, we have

Ko(z — zo)v = Koz — 20)Sv — Ko(x — x0)HSHv = Ko(x — x0)Sv — HKo(z — 20)Spt ,
Ko(x — zo)p = Ko(x — 20)Sp — Ko(r — 2o)HEHu = Ko(x — 20)Sp + HEo(x — 20)SV .

Defining @, = M(Sv), as1 = M(Sp) and ay = (0, az21,as31,0,0,0), we get by Lemma 6.2 that for
T > 2x9,

| Ko(z — x0)v — Uay(® — 20)||e < Ce(v, 1) (x)_%+(1+5)¢’
1Eo(x — w0t — vay(x — 70)l|oc < Ce(w, p) () =210+

where c(v, i) = (||Jy|2 928w |, + |||ly]2~+9Spull,). Using Lemma 5.2 and A.10, we get

|U (@) = tay(@)l|e < Clao, (v, )|, e, ) ) 5705, (6.5)
|V (@) = vag(@)lloo < Clo, [I(v, @I, elw, ) () 27+ (6.6)

foraz = (a1,1, 02,1, a3, as,1,0,0) and some constant C(xo, ||(v, w)|, c(v; 11))-

6.2 Nonlinear terms, first round
To complete the proof of Theorem 6.1 we now have to give the asymptotic development of

ul(x) = ‘/Tl,u(x) + ~¢'2,u(x) + Els(x) - ﬁgR(l’) )
vi(x) = -7:1,v(50) + f2,v(x) — L1R(x) — L25(x) .

We first tackle the terms w(z) = L£15(x) — LoR(x) and ve(z) = —L1R(x) — L25(x). Let Py(x) =
Ug, (*)wa, () Where a; = (a4, 0,0,0,0,0) and AS = S(z) — ZP,(x). We first note that by Theorem 5.1

1AS@)]|oe < [[0(@) 1% + [[u(x) — tay (@)]|oo|[u(@) + ta (2)]]
< Owo, || (v, w)|) (z) 20+,

Then, since PP,(x) = 0 and PyLy; = 0 implies £,5 = L,AS, we get

IL1R(@)]| o0 + | L2R(@)]|0s < Clao, [|(v, w)]]) (z) 2%
1£1A5() o0 + [|£28()]| 00 < Clao, (v, w)]]) (@) 2H1H

while PyL; = 1 implies

|ua(x) — ZPa(x) oo < C(xo0, ||(V,w)|]) <x>—%+(1+5)¢;

3 (6.7)
|02(2) || 0e < Clzo, ||(V, w)]|) (z) 2+

It then follows from (6.7) and Propositions 3.10 to 3.16 that

ur (@) = Frsu(@) — Fr ) = Frou(@)]loo < Clao, [|(v, w)|]) (z) 20+
[01(2) = Fr10(@) = Frau(@llse < Clag, [|(v, @)]]) z) 210492
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where

Fisulr) = /gi Ky (Z — x)P(%) + 2Z Ps(x)

zo

Froule) = - / dit K\a( — 2)Q(@) — TPa2)

The asymptotic development of F; ; () is established in Proposition 5.4 above, that of F; 3 ,(z) and
Fi 3.(x) in Proposition 6.3 below, followed by that of F; 5 ,,(z) in Proposition 6.4. The proof of Theorem
6.1 will be completed by the study of F; ¢, () in Section 6.3.

Proposition 6.3 Assume that () satisfies (1.17), and define a, = (0, — fm PoQ(x,y)dxdy, 0,0, 0, 0), then
for all e > 0, there exist a constant C' such that

1F13,0(2) — tay (@)oo + 1F13,0(2) — vay (@)oo < Ca) 57097 (v, w)
for all z > 2x,.

Proof. The proof is very similar to the one of Proposition 5.4. We first note that [[F'|| L ;o +

2ep? L
HGHﬁ,{O,l,QW} < 1 s g, < Cl(v,w)|]?. Then, we define T'(z) = fxo dz F(z — 2)Q().
Since 0, F(z) = 0,G(x), after integratlon by parts, we have

T(z) = F(x — xo) /ng Q(z) — F(x — xo) /ng Q(z) — /éf 0,G(x — 7) ~(gilﬁz Q(2) .
Let 71 (x) = F(z — xo) [.° dz Q(z) and Ty (z) = f;; dz 0,G(z — z) [; dz Q(2). Since z > 2z, we have

I7:@)ll < Clv @) P = 20)™ / dz 2737 < C(v,w)|*(2) 27

Tl < ClwIPD| 5722 70T ) < Ol @) 507
Then, we define B(x) = F(x — x0) f;: dz Q(z). Since |7| < (z¢)? < (x)¥ and = > 2z, (using Lemma
5.6 in the second inequality)

IPTy@)lle < Cla) 24| (v.w)]? / 0z {2) 74 < Oa) 2w, w)?

Finally, by Proposition 6.3 and using |||y|2=t92Q|l, < C||y|* Q|2 < C(z)"710729)||(u, v, w)||?, we
have

|PoTs(2) = ay (& — 20)l o0 < C) 2% (v, w) / dz () 71730729

where we used PoF = PyK,. Since ¢ < 1, the proof of the estimate on || Fi3.(2) — ua, ()] iS
completed using Lemma 5.2. The proof of the estimate on ||F; 35 ,(z) — va, (%)|| being very similar, we
omit the details. m

We now turn to the asymptotics of F; 5 ,,.
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Proposition 6.4 Assume that P satisfies (1.17) and let Py(z) = uq, (z)wa, () where a; = (a4, 0,0, 0,0, 0).
Assume that

Iyl (u(zo)® + v(wo)*)ll2 < Cll (v, w)]1* -

Let a5 = (0,0,0, — [, Pou(zo, y)v(zo, y) dy,a?,0), then for all e > 0, there exist a constant C' =
C(xo, ||(v,w)||) such that

|F150(2) = s @0 < Cla, I3, ) D) 5422
for all z > 2x,.

Proof. We first note that Theorem 5.1 implies that || P — B]|
p < ooand e > 0, so that for p = ﬁ, we have

pa-(rae-x < Clzo, [[(v,w)]) forall 1 <

T 47 <£>f§+(1+%)<p

H/ dz Ky(z — 2)(P(2) — a(f))HOO < C|(v, “’)”2/1210 ——
< C(z)~ 204202 (v, w) |2 .
Then, we note that

P(z) — Pa(z) = 9, R + 50,(v(2)*) — 30, ((u(x) — ua, (2))(u(z) + ua (2)) -

Now, let 71 (z) = f 20 47 Ky(z — 2)0; R(T) + Koz — z0)R(z0). By (1.17) and || 0, Kz || 0o < ||0y Ks(x —
D)loo + |0, K10(x — #)|| 0, integrating by parts, we find

1Tl < @3 (14 ()

while Lemma 5.3 and A.10, together with |||y|2 ¢ R(zo)||; < |||y|(u(z0)? + v(x0)?||2 < C||(v, w)]|* show
that

| Ko(x — 20)R(x0) + uas(* — 0)||co < C||(V, w)HQ(x)*%W .

Then, let S;(z) = v(z)? and Sy(z) = (u(x) — ua, (7)) (u(z) +uq, (). By Theorem 5.1, we have ||Sy(z)|]2 <
C{x)~1=¢||(v,w)||? and ||S1(z)||; < C(z)~1+2*2||(v,w)]||?. Therefore, for x > 2z, we have

/m 45 0 Kg(x—x)Sl(x)H < C(x) ™22 (v, w)||?

(¢ = D5:(5)| < Cla) T,

We then define R(z) = Py [, d7 (Ka(r — %) — 9, K (x — ) Pa(¥) and we get

IPs(@)le < C.)I? [d [ db Poed- 5k — )+ )
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r — I 3 — I 1 1 3
< v, @) /dmm(“’” DT D)e < clnw et

(r—2)p #» @ 32

It remains to establish the asymptotic comportment of

T(x) = / d 0, Ko — #)Pa(F) + 2T Pa(z) .

0

We first note that 7°(x) is conveniently computed in terms of its Fourier transform, which reads

j\j(.’]j'7 ]{]) = Zkf% erf(%;io)e—k;2$ _ #erf(i%E)e_kﬁx . a%ej

= Ty(x, o, k) + x’%H(k\/E) .

For T5(x, xq, y), we note that for = > z, we have

3
2

. : 2 oo 2
Rl erf(H0) ek < af/ di k?e™2 < C|(v, w)|* ()2 .

7o)l < [ ok | “flerf(s
To complete the proof, we only have to prove that the inverse Fourier transform of H is —“%Th. To do so,
we note that H (k) satisfies

2
2 k

EH'(k) + (2k* — 1)H(k) — ‘gj; =0, / dk H(k) =~ | / dk kH(K) =0,

which after inverse Fourier transform leads to

5 Y
aje 2

H'(y)+LH'(y) + Hy) + == =0, HO)=-2, H(0)=0,

_ ath(y) .

whose unique solution is H(y) = 5

6.3 Nonlinear terms, second round

In view of Remark 5.5 and the corresponding theory on nonlinear heat equations, (see e.g. [3]), we may
guess that the decay rates of Proposition 5.4 on F; »,, would be improved using higher moments of @), i.e.
after substraction of ug, with ag = (P fm Q(x,y) dzdy, 0,0, P, fm yQ(z,y) dxdy, 0,0). This is wrong

since the first momentfQ+ yQ(x,y) dzdy of Q is infinite in generaP. However, with the estimates obtained
so far on v — v, and w — w,, We can show that higher moments are well defined for @@ — (), as shows the

Lemma 6.5 Let Q4 = vawa Where v, and w, are defined in (1.9) and a = (a1, as, as, 0,0, 0). Then for all
e > 0, we have

||Q - Qa||oo,§—(1+e)<p + ||Q - Qa||1,2—(1+6)s0 < C”(Vv w)||2 (6.8)
[y["(Q — Qa)”l,%—y—m(l-i-%) < Cl(v, W)HQ

forall 3 <~ <2 —2p(1 +¢).

Sexcept for symmetric fows where fR yQ(x,y)dy =0
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Proof. The estimate (6.8) follows at once from the boundedness of ||(v — va)|| 3_(14¢), @nd Theorem 5.1.
Now let 1 <~ <2 —2¢(1 +¢)and defineg =1 — —(1 — (4 + ¢€)yp) and ﬁo (1 — &)y + 5. By

hypothe5|s on 7, we have ye; <land0 < Gy <1— 2(1 + €)p, so that
Ily["(@(x) — Qa1 < [[v(@) — va@) oo [[ly1 @ (@)1 + 17 va(@) oo [y (@ () — wal))]l2
< v, | () 27392050 4 ) A0 D))

This completes the proof since v > 1. m
We can now conclude the proof of Theorem 6.1 by proving the following

Proposition 6.6 Assume that () satisfies (1.17), letag = (fQ PoQ(z,y)dzdy, 0,0, as2,0,a1Poas), Qaas
in Lemma 6.5. Then there exist a, 5 € R such that

1F16.(2) = ta (@)oo < Clao, [I(v, @) ) ()5 ++.
for some constant C' = C(xo, ||(V, w)|]).

Proof. We first note that we can write

PoQalw, 1) = 2 1) (2 A1) + Lao(2) + 91 (1)

%
F1(&) + BAE) + 2 A(H)90() — B h(En(?)

J/

=Qar(@.y) =Qax (@)
22
where f,,(z) = 2 ef“ , gm(2) = £, b = Poaz and ¢ = Poay. Now, since |go(z)| < 1, Qa satisfies
the same estimates as QQ(x) — Qa(x) (with even better decay rates). To exploit this, we define AQ(z) =

Po(Q(x) — Qa(x)) + Qa2(x) and
Ts1(z) = — / Lgla: Kio(z — 2)AQ(T) ,

z+xzQ

Thae) = - [ 767 (Kue - D(AQE) - MAQE)) - 8, Kusle ~ DMEAQE))

zo

Using Lemma 5.3 and 6.5, as well as = > 2z, we get

_3
1T51(2)[0 < Ca sup [AQE)|o < Cla) 2 0H2| (v, w)|1?
£>2r0
z+zo
9 2 5_ -
IT5.2(2) |0 < C{a) s+ / dz |||y|+ 2 AQE) 4
To
gp

< Ola) 440792 | v, ) 2 / oz ()% .

Zo

We then define

ac+ac0 ac+ac0

Tya(e) = Kualr — o) / di M(AQ()) — / 4 Kyoe — HM(AQ()) .
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z+zo z+zo

Tya(e) = 9, Koo — o) / " d MyAQ() — / " 47 0, K a(r — YMAQE)) .

xo o

and note that after integration by parts, using ||0, K12(2)||s < || Ks(2)||ac + [ K10(2)]|lee < Cx) ™2 (20)?

and ||0,0, K12(2)[|oo < |0y Ks(x)|| 00 + 1|0y Ki10(2)]|00 < C{x)~2(x0)? if z > 0, we get

z+xzQ zt+z(

I Ts5@@)llee < ClIV, WPy 27 [ di [ de (2) 270492 < C|(v, w) () "2+

ts) T

zt+z( z+xz(
2

| T54(2) |00 < Cl(v, w)||?(z) =2+ / df/ dz (2) " 3H0H92 < O||(v, w)|[ X ) 3T

xg z

while also for x > 2z, we have

[t~ ) [ dz maQa|| <l [ o @)z,
< OJl(v, w)|* () 20

0, Kiale — ) [ 8 MuAQ@)| < Cllw.)l?) ™ [ da () Fr20e s

< Of|(v, w)|[* ()~ 5420+

Now, leta; 3 = [~ dz M(AQ(z)) and ays = [~ dz M(yAQ(x)). As is easily shown using Lemma 6.5,
a1,3 and a4 5 are bounded, and using Lemma A.10, we have for z > 2z

(Ko — o) — Ko(x — 20))arglloe < Cla) 27| (v, )%,

||8y(K12($ — x9) — Ke(r — IEO))@4,3||oo < C<$>_%+¢H(Va uJ)HZ .

for some constant C' possibly depending on zy. After collecting the results obtained so far, and using

[(Ko(x — 20) — Ko(@))a1 3]0 < C(x)™ 3 (20)]|(v, )|,
10, (K o(x — 20) — Ko(@))aslloo < Clx) ™25 (@) (v, )%,

we get for a; = (a1 .3,0,0,a43,0,0) that

|

In other words, since Py@Q = AQ + PyQa1, it only remains to establish the asymptotic comportment of

/ i Ko = DAQE) ~ (o) < Cllw)|Pla) F120797

0

o) = — / 47 PoK 1o — 7)Qan ()

0

To do so, we first define

T5(.§U) = — /éfi P(](Klg(ﬂf — ZE) -+ KC(SC — ‘f?))QaJ(fé) s
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on which we get

1T5(2)]|s0 < Clao, [|(v,w)|) /dgz« /dk Pyel-l-D-4* <k2 + k4 — :i)):i_%

< Clao, (v )) fdimin (220 4 T20Yamk < O)w )Py

lo

We finally define

Ty(x) = / 0 K.(c — #)Qai()

zo

As in Proposition 6.4, T is conveniently computed in terms of its Fourier transform, which reads

2 (-0 _ Kz
ale M3 2) ale

- ’
4/2mxq 42
—_ 7162796 _1.2(n__TO 71’6210
ade ke Cdler iz afe PRI —em o)

N NG 4273 ’

De(x, k) = arb(In(z) — In(zo))ike % +

= a1b(In(x) — ln(xo))ike_k%

from which we get finally

To(w, y) = arb(In(ze) — (@))3, Ko(w,y) + D 4 TP (w,y) + R(z, y)

with

IR < Cava [diie s < )Pt
We thus have proved that

| F16.0(2) = ta (@)oo < )5 0| (v, )2,

where ag = (a1 3+ 7= 4\/?, 0,0, as 3+ a1bIn(xzy), 0, a1 Poas). It then follows by simple comparison with the
result of Proposition 5.4 that as = ag as claimed. =
7 Estimateson the boundary data
In this section, we complete the proof of Theorem 1.4, which is

Theorem 7.1 If z is sufficiently large and there exist a unique solution to (1.1) in C, with parame-
ters satisfying (1.16), then  and w are in the class C; with parameters satisfying (1.16). If furthermore
y|2v(@o) |4 + ||y|2~EF9Sv(wo) |1 < CJ(v, w)]|, then for all > 0, it holds

lyl= =2 Swly + Iy~ Splly < Cilao, I(v, w)]) - (7.1)
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Proof. The functions v and w are determined by the evaluation of (1.12)-(1.14) at x = x, which gives

Low + v = u(rg) — Foulzo) + L1S(20) — LoR(20) (7.2)
Low + p = v(x0) — Fou(v0) — L1R(20) — L25(20) (7.3)
w = w(ro) — Fau(o) - (7.4)

Denote by (U, V, W) the r.h.s. of (7.2)-(7.4). By Propositions 3.7, 3.14, 3.15 and 3.16, (U, V, W) are well
defined and ||(U, V, W)|| < |(V, W) |k, + C{xo)~"||(V, w)||* for x = min(ko, ko). Note that unsurprisingly
(the stationary Navier-Stokes system is elliptic), the system (7.2)-(7.4) is overdetermined. Nevertheless,
since we know that the solution exists, the three relations have to be satisfied. We now use this as an extra
freedom to derive properties on v and w. We first note that using Propositions 3.7, 3.14, 3.15 and 3.16, we
get

I(Cuw + v, Low + pt,w) 2y < [V, w)l|g + C0) "I (v, w)|? (7.5)
for some « > 0, since (U, V, W) satisfies this estimate. In particular, it implies at once that
1€0, 0, w) [z < 1V, @)[lg + Co) ~"[I(v, )| .
Then, by interpolation, we have
11 = 5 1,5
(zo)2 2 || Lywlr < [[Luwl[Lr + (w0} 2 || Luw ||~
_1_ 1_ _
(o) "= || Lywlle < (wo)2 || Lowllr + (zo) ~#II Lvw]Le

where £,, = L., + ZP,. Using these inequalities, —% < —2ip and Lemma 3.5, we get

I(Luw, Low, )]z < C1]1(0,0,w)]lx, »
so that from (7.5), we get
I — TPow, 1, w)lag < (1 + OV, @)l + Clao) (v, )][) - (7.6)

In particular, this implies that ;o € L? N L and 9, € L", which gives v € LP N L*> using v = —H . (See
Lemma 7.2 below). Since ¢ > p, we get v € L9, and then (7.6) also implies that Z7Pyw € L? (because
v € L7and v — IPyw € LY). Thus ZPyw has to decay as |y| — oo, though maybe only in a weak sense.
On the other hand, from the definition of Z (see (1.15)), we have lim,_. 1. ZPyw(y) = £M(Pyw) (the
limit exists since (1 + |y|”)w € L% implies w € L!). This is compatible with ZPyw € L? only if M(Pyw)
vanishes. We can thus use Lemma 3.2 and get that

B
2

IZPowllir < C({ao)Twllz)™ 2 (({wo) T2 ||y w]l2)® < CJ(0,0,w) ], -

Using again Lemma 3.5, we thus get
H(Euw, va? O)HJEO < C2H(07 07 w)HlEO )

so that again from (7.5), we get
1, 1, W) lg < (L4 Co)((I(V, )y + Co) " [I(v, w)I7) - (7.7)

To complete the proof of the first part of Theorem 1.4, we still have to prove that (7.1) holds. This is done
in Proposition 7.3 below. =
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Lemma 7.2 Letp,q > 1. There exist a constant C), , such that for all f satisfying (f, 9, f) € LPNL*> x L9,
we have (Hf,0,H[f) € L’ N L> x L7 and [[H f[|L < Cpq(llflILr + 10y fllLo)-

Proof. Note that Hf € L? and 9,Hf € L% for 1 < p,q < oo is a classical result which follows

from Lemma 3.4 (see page 15). Then, if ¢ = .4 > p, the L* estimate follows from Hf|lLe <

(HHqu/HanyHq)% < C(Hqu/Hanyq)%. However the ¢’ > p restriction is not essential: using the
Cauchy-Schwartz inequality and integration by parts, we have

[Hf)| = [lim Mdz‘ < O|Ifllr + |lim Mdz‘
€70 J121>e z =0 Jocpu<1 P
y+e 1
<O+l o0 [ 0|+ | [ st -
E— y—e 4y

< Cpg(lf e + 10y £lle) + 110y f Lo Lim(26)" < | In(e)] -
This completes the proof. m

Proposition 7.3 Assume that |||y|2v(zo)|ls + [|]y|z =092 Sv(zo)|y < C||(v,w)
holds

, then for all ¢ > 0, it

1_ 1_
Hyl== 928wy + [l[yl2 =92 Sully < Clao, lI(v, W) -

Proof. In this proof, we will use repeatedly that ||[y|* f[l, < [|fIl,~*[lly[f||; forallp > 1and 0 < a <1, as

well as ||y|%_(1+5)‘?’f||1 <|| |y|1—(1+%>¢f||2 or || |y|%—(1+6)%"f||1 < |lly|fll2- We first note that by Lemma 3.5
and 3.2, (using also that the symbols £, and L, together with their derivatives w.r.t. the Fourier variable
‘k’ are bounded), we have

1 1 ~
lyl2= 2 Lwlly < [llyl2 =2 IPywlly + [[lylLuwllz < Cllv, )]l
1_
lyl== 92 Lowll < fllylLowlle < ClIv, W) -

Then we have
llyl2=2L1S 1 < [ly(Ly — D)lfalIS]h + (1 + (€0 — D) [yS ]l
< Clmo)? || (v, w)II” + Iy 12ul@o) 13 + Iyl v(xo)l3
[y[27=LaS 1 < MlyLall2llSNl + L2011 [lyS])2
< Clxo)?|| (v, II” + NIy 2 ulzo)lF + [|y|> vzl

where we used |71 < (x0)?. This shows that |||y[2—=£1S||1 + |||y|2=L2S]|1 < Clxo)||(v,w)||. The
same holds for |||y|z £, R||; and |||y|2—*£L2R||1. We then note that

fQ,U(x) = fQ,w(x) + f2,1,v(x) + f2,2,v(x) ) f2,u(x) = f2,1,u(x) + f2,2,u(x) )

see Propositions 3.15 and 3.16, or (3.30), (3.31) and (3.34) and (3.35) for the definitions of the vari-
ous terms appearing in this decomposition. By Proposition 3.14, the contribution of 75, is bounded by
C||(v,w)||?. Then, there are exponents p > 0 and ¢ < 1 such that

||K2||1,{p,q} + ||K5||1,{p,q} + ||K6||1,{p,q} + ||K7||1,{p,q} <C,
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Y122 .0y + 1191 K52 0.0y + (191 K6l p.ay + [y K7ll2,tp0y < C

Using ||ly|2=+9% f]l; < ||ly| /|2, this shows that the contributions of Faq1. and Fy 4, 1s also bounded by
C/|I(v,w)]||?. For the contribution of 55, and >, ,,, we note that
|SG*@ ~ D)Q@)2 < Cl — 2] ~2(@)" (| (v, )]
ly(PG*(@ — 2)Q@))ll2 < C(|7 — |2(z) 2" + ()" T)||(v. w)]*

while
[ySPoG* (& — 2)Q@) < ( / Ek (051 (s k)|2>%

+( / dk e[, (i0(Q(E. K) — Q. —k)>|2)%
< (|17 — 22 (@) 72+ + (@) 1H)|(v, )12,

where we used that |Q(, k) — Q(&, —k)| < |k|2~¢|||y|22Q@)|lx < |k|2=|||y|Q(&)||2, S0 that the coeffi-
cient of the Dirac measure appearing when differentiating o w.r.t. k£ in the above expression vanishes. This
implies finally that

lly|z- 02 SG* (& — 2)Q@)|: < |ISG*GE — 2)Q@) ST #7|lySG (@ — 2)Q@) |y 7
< O|F — a2~ 099 ()73 (v, w) ||
+ O — a2 (@) S (v, w) (7.8)

The same estimate holds for |||y|2 "0 T*SF*(z — 2)Q()||;. Since e > 0, integrating (7.8) from & =
to £ = oo completes the proof. m

8 Checking the applicability to the usual exterior problem
In this section, we prove the Proposition 1.5. We will use the notation » = /22 + y2. From [1, 4, 7], we
get that any ”Physically Reasonable” (PR) solution solution satisfies the estimates
ra ifr > C
<C - 1to e
[ule, )| < { pomin(5%1-e) jf 1 cos(¢p) > r—1te
[, y)| < Cr @), [dyule,y)| < Cr @), (9,0, y)| < Cr In(r)?

w(z,y) = c10x(e2 Ko(r)) + cﬁy(e%Ko(r)) + (’)(e%r’% ln(r)2> ,
Oyw(z,y) = cl(’?yax(e%Ko(r)) + 0283((3% Ko(r)) + O(e%T_Q ln(r)2> ,
where ¢ is arbitrarily small, o € [0, 1], tan(¢) = £, ¢; and c, are constants and K is the modified Bessel

function of the second type of order zero. From this, we get immediately ||(v,w)|| < C'if xq is sufficiently
large and r > (2 min(n, £))~! (using also In(x) < C'(x)¥). Namely, for the estimates of the velocity fields
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< C. This follows since foro = =, ¢ =

u and v, the only difficulty is to prove that ||ul|,
xo sufficiently large, we have

1_1 l
37 q
if v > 2z and |y| < cx
if z > zgand |y| > cx

lu(z, y)| < C{

which gives

%*% 2 ([T dy N\
ully s < (2 / 2 )]
Iellos- < ) e )

For the estimates on the vorticity, it follows, using that |z|’e=* < C,, for all p > 0 and the asymptotic
development of K, that for = > z sufficiently large we have

This shows at once that Haywﬂoog < C. Then, for all « > 0, after the change of variable y = /2xz + 22
and using again that |z|Pe* < C),, we get that

5 (In(@)? + V22 1 2)(:(2x + z))a>é

llylwlhe < (] d=

\/_ (x + 2)°V2x + 2
§C:p4+3(/dz %) < Olz)~i+% (8.1)
0
> dze i —1

o [ de S2 < Clx)~ ',

0 VaVT + 22z + 2 0o Vz

Using the estimate (8.1) with & = 0 and « = 3 achieves the proof of ||(0,0,w)|| < C. We then note that
for |y| > cx > cxo with zo, we have forall ¢ > 1

1Oyl < C

_1 1
lu(z, y)| + vz, y)| < Crm20Fa) (8.2)

from which we deduce that |||y|zu(z)||4 + |||y|2v(z)||s < C. Finally, it follows from e.g. [7], section X.6,
that there exist constants m = (m, ms) such that for all |y| > cz > cx(, we have

lu(z,y) — um(z, v)| + |v(z, y) — vm(z, y)| < Cr ', (8.3)

where u,, and vy, are defined in terms of Oseen’s tensor E by

(Ume ) — - E). ©.4)

It then follows from (8.3), (8.4) and the explicit form of Oseen’s tensor that
llyl2 =2 Su(@) | + Iyl Su@)lh < €

where (Sf)(y) = f(y) + f(-v).
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Appendix A: Kernels estimates

A.1 Definitions and preliminaries

This section is devoted to estimates of all the kernels in various L? and Sobolev spaces of the ‘y’ variable.
Note that the Kernels are most conveniently expressed in terms of their Fourier transform, and though it
is sometimes possible to calculate explicitly the inverse Fourier transform of the kernels, we will estimate
the norms in Fourier space as often as possible. To do so, we will use the following Lemma which relates
the L norm in direct space to the H! in Fourier space, and the L2 norm with weight |y|° for non-integer 3
to integer ones.

Lemma A.1 Let 3 > 1. There exist a constant Cs such that for all f with ||(1 + |y|°) f||L= < oo, we have

1—-L 1
Call Fllez* Myl £l

CVIllyflle: < Sy Il e

where f denote the (continuous) Fourier transform of f. Then, for all s; € [0, 3] and s, € [0, 2], we have

11 < {

— 51
3

s 1—51 s 1—32 52
Nyl fllee < I 2 P AIE S el 2 flle < lylflle 2 IylPFILS -
Proof. Let ¢ > 0, then
1 1 _
1l < D+ gl @+ 191D e < Co(a® 7l + a7 iyl fe)

for some finite G;. Setting a = |||y|°f||L2/|| ]|z completes the proof of the first inequality. The second
one follows from Plancherel’s inequality, while the last two follow trivially from Young’s inequality. m
We then introduce the functions

[o¢] o0
2 2
By y(z,n7) = / i [K[7[ " 2 RO B (e, nr) = / A |35 mp
— 00 —00

through which most estimates on the kernels can be easily obtained, and which satisfy the

Lemma A.2 Letp > % Then for all ¢ > 0, there exist a constant C, such thatforall 1 <& <+ % we
have

eb(nT)x <.T> “PTH eb(nT)x <.T> Z eb(nr)a:

Byp(z,n7) < C, By p(z,n7) < Cy By(,n7) < C“’W

e+l ! réite !

forall z > 0 and nT € R.
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Proof. We first have

By o, n) < Ce?ne ( / dk |k|#e ke 1 / dk |k|so€—2c(nr)xk2> ’
| \

k|>1 k|<1
bnm)z \ Eit b(nr)z [\ £3L
b(nt)z el -1 ZES e <x> 2
< O <1+(so+1)2 ((")T) SR

because c(n7) (e’ "¢ < C(1 + ¢) for all ¢ > 0. Then, we note that since |-| is uniformly bounded
in k and n7, we trivially have B, (z,nT) < C,By,(z,n7) forall x > 0. To get the more precise
bound of the Lemma in the case 1 > 1, we use that |Aﬁ0| < (' and that by hypothesis on &;, we have
0<& —1<28 —1<2pu,hence

B (x,nT) < Cenn)e (/dk‘ |k3|§0+£1716*|k\$ + /dk k|w+251_16_26;(:”)mk2>
| |

E|>1 k|<1 (1+(n7)?)2

<62b(n7)x n (c(m)—lx)%gb(m)x) .
— ghte (n)é1 (1+(n7)2) T

Since c(n)*~2(1 + (n7)%) "% < C by hypothesis on x and &;, this completes the proof of the second
inequality if ¢ = 0. If > 0, we use c(n7) ' (e’™<¢ < C(1 + (), so that

b(nt)x

eb(m—)x<x>%
B (x,n1) < C:Efl+9" (1 + (%)

P
2

-1 —1 _b(n7)2zp~1 2
(c(nT) 12207 e )2> <C o

For the last inequality, we first note that B,(z, n7) < C,By(0,nT) (this follows again because |A | is
uniformly bounded). Then we have B,(0,n7) < C, so we only have to show that B, (z, nr) decays at
least like e?"=3=2—% as z — oo, and this follows since

2¢ —2c(n7’)xk k‘Q(pe |k|x
B (x,n7) < C’e%(’”)x(/dk WZre 0 [ B2 2 )
4 k<1 (@) 2 ko1 T

b(nt)x 1 14 L
S (el o+ ()5 amhr)

x2 ¥

This completes the proof. =
Note that in the bound on B,, ,(x) in Lemma A.2, the best decay rate as x — oo improves as . grows. The
‘free’ parameter &; gives a way to limit the growth of the divergence rate as z — 0.

A.2 Actual estimates
We begin this section by an easy estimate on £ and L,:

E and £y = M then

LemmaA.3 Let £, = 22

k2+( nt
1£1 = U1 5000 + [[ L2100y < C
In particular, £, and £, are L? — L? bounded operators for all p € [1, o).

Proof. The proof follows immediately since using Fourier transform, we get that for fixed n, it holds
1Ly — 1|2 + || L2]]2 < Clnr|and ||0x(L1 — V|2 + |0cLa]|2 < ClnT|™L. =
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Lemma A4 Forall p > 1, ¢ > 2 and m € N, there exists a constant C' > 0 such that

”POFHp,{o,k%} + HIPOGHZL{OJ*%} <C
195" Fllg 0,140m-13 + 195" Gllg g0,14m-1y < €
[r2) PO F g o,10m-1y + (T2) PO Gl fo14m-1y < C

1
”,PF”I,{O&} + H’PGHL{O&} <C|r|"%.

Proof. After the change of variables k = ¢/, we get

120" F 0,141y < supsup (/dg (M)< RIRry s)

71

x>0 neZ §2 + (n x)2
1/q
,75 q(1+m) alél
[ de [e|i et wmwleqﬂ
el<1 o1
o ag\ T
o meLML}<:wpwp</H§mwleql) <c
>0 nezZ _

for any m € N and ¢ > 2. The same holds for GG. We next note that G = —io F, so that

OpG(x, k) = —id(k)F(x, k) — icO F(x, k)

= ) 0P k) = —idn — 00, P B) (A1)

mnT

K|

where 6,0 = 1if n = 0and 4,0 = 0 if n # 0. We thus have 9, PyG(x, k) ¢ L?, so that we cannot use
Lemma A.1to bound HPOG(:(;)HU In fact, Py F" and PG can be explicitly computed, giving Py F'(x, y) =

p x2+y2 and PyG(x,y) = 2+ 5. This shows that PyG(z,y) ¢ L', and gives an easy way to prove the
estimate on ||7>0F||p7{071_%} + ||730G||p7{071_%} for p > 1 in direct space. On the other hand, (A.1) shows

that | PO, G(2)||L2 = || POk F (z)]|L2, and we have

oo e—2\5‘(§4+(n7—m)2(17\§|)2) 1/2
10k PF |2,10,01 + |0k PG|2,40,0y = Sup VT sup /df @)

neZ,n#0
1/2
X _
SSUpi Sup (/d6 §2+(n’rx)2 + <nra:> /dge |§|)
2>0 2 nezmn£0 \Jjg|<1 l€|>1
C
< .
7|

Using Lemma A.1, this proves the estimates on |[PF'||; 1, 1 + | PG| 40,1y and completes the proof. m
Lemma A.5 There exist a constant C' > 0 such that for all 1 < < 3, it holds

1oy + 1K@ gz + Ny Kl gy 0y < O
”ayKlHl,{%,l} + HayKlHoo,{l»Q} + ”‘y‘ﬁayKl(x)”Q,{ngrg,o} <C,
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105 K[| oo q2,3y + 105 K ll1,1,2y < C
1Kl 0,2y + [Kalloogoy + Ny Kally a8 0y < C,
10y Kol oo (1 2y + 10y K21 13y < T,
”K5”1 {0,3} + HK6H1{0 3 + ”K7”1 A3} <C,
|||?/|K5||2,{0,Z} + |||y|K6||2,{0,Z} + |||?J|K7||2,{%,Z <C.

The same estimates hold with K, replaced by e*%PKn forn=1,2,5,6,7.

\k|a:eRe(A*)x

o and

Proof. We have |0pe-*| <

Gfe=r| < Rt (UL ol
O ee )| < eReAe (S0 D )
k| g )
ak( e “)| < R )x(f\‘(ﬁf + |j\z€\|3 + |AJ(;\2 + \At|3> )
O (et ") < [kt (2 4 i)

Similarly, we have

‘k‘eRe(Af)x
|K5(ZL', k?)| + |K6(x7 k)| S T
[ Ao
D05, )] + 104 Ko, B)| < R0 (e, 4 )

| K7(x, k)| < CeRer-)x ,
Ohr(a, )] < CeR (G )
Finally, we note that for fixed x and n, we have
10, Kl < € (1 2 (1512 + koK 172) )
< C (19, Kl (I K12 + 229, Kol P2)) T
102Kl < C (IR 2 (2R + R0, K 1))
< C (|2 K |2 (2010, KallP2 + 22|02 K] 72)) T

where here, L' = L'(R,dy) and L? = L%(R, dk). The proof is then easily completed using Lemma A.2

and Pel—f %)— we omit the details. m

LemmaA.6 Forall1 < 3<3,1<&<1landl <& < 2, thereexists a constant C' > 0 such that
I8l 0,603 + 1Kl 0,55y + 1Sl 1.2y + 10y Ksloo 18y < €
|||?/|6K8||2,{_§+§,0} + |||y|ﬁayK8||2,{—%+§71} + ||8yK8||1,{%7%} <C (A.2)

The same estimate holds with K replaced by G_ME)EPK&



49

Proof. Forany 0 < o < 1, we have

1-o eRe(A_)z/2
(z|Aol)?

Re(A_)%
e
<C (z[Aol)7

|Ks(z, k)| < C ‘ RG(M}

0K, )| < O Ly 4 ZEBEANY (Rt de < ¢ i Ren 7
Aol [Ao] o

|0i Ks(x, k)| < C

[Ao|? [Ao|? Aot

Re(A kO2eN—7 A ke
e(AO)MageA,leke | | 0eett] ket

SR bl KL\ Re(A)2
= C( Rl TR T o) € 2

Let1 <& <32,03=%—Llandyy =% — 1. Since 0 < 03,73 < 1, for any fixed z, we have

nr)e—c(nr)ck? k|x
| Ks()||t> < C'sup (:5203 / dfp LoD | 2 [ g b= )
|k

nez <1 (+En)F k[>1

< C'sup ebnm)z <L2033 4+ 1= 2“/3) < Cr=8 .
nez (I1+(n7)?)

The bound on [| sy, o) + 155l g0 ey + 1917 Ksllp 5.2 ) is completed using Lemma A.1, A.2 and
Pe

b(nt)z b( )z
4

. To bound |0, Ks||, {1,146} We note that for fixed =

10, Ke(@lr < Csup (kK@ (IKs@)E + [koKs(@)E))* < C ()

This completes the proof. m
Lemma A.7 Let x > 0, then there exists a constant C' > 0 such that for all 1 < g < 3 we have

<C
C.

_ b=z _ b= _ b=
Je” K10||oo{01}+||€ 7 K10||z{o3}+||€ T Kioll1

15y
§5)

_ b(n)z
le™ |y|ﬁK10||2,{g+g oy 3ﬁ}+||€ ) K10 oo, 1 2}+||6 ) y Kol 3,13y

| N

Proof. We have | Ko (z, k)| < C%eRe(A—)x, and

InTk| z|knt| Re(A_)x (@)|n7| k[ eREA—")
|0k K10(z, K)| < C(\AO|4 + <nr>|Ao\>€ < on \Aol ’

3 | A_ _x k826A7 ]CEA_Z
B2 Koo, B)| < |2 (Jager-=] + | e |+ i)
n7| Re(A-)o (@] | 2’k | 1tw
< Cune (le\S + T Al

In particular, we have PK o = Ko. The proof is then completed using Lemma A.2, that Pe 7" < 7"

1 bnr)x

and |n7|(n7)~Hz)2e ™ < 2, and that for fixed z, we have

10, K10(2)||Lr < C (|kK10@)]122 (1 K10(@)|2 + [[kOKio(@)I2)) *

where L! = L(R,dy) and L? = L*(R, dk). =
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Lemma A.8 Letp > 2. There exist a constant C' > 0 such that

K 2o, g20y + M2l 02 1y + 10y Kol pa- o1y < €

00{2

(‘r)z b(‘r)z

le="%

while there exists a constant C such that for all + > 0, we have

K13H2{1 1}+Ha€ K13”p{1 1 2 1}<C,

b
HKlz(Jf, nT)HLl + e

(1+—|<T> )

The estimates of this Lemma also hold with K5 replaced by e‘ﬂiﬁPKlg.

P

Proof. We first note that R K3 = 0 and PKy3 = K13. We then have | K15(z, k)| +| K13(z, k)| < CeReA-)w
and
O ia e, )| + |0k Kg(, B)] < CeRo0 (o )

withm, = 1ifn=0and m, = % if n £ 0. We then get e.g.

”akK12(x)HE2 < sup ( dk m2+k2z? e?b(nT)foC(n‘r)ku + [dk m%—l—ksz €2b(nT)x|k|x)
\

(nT) 1+k
nez k<1 |k|>1
< C'sup (eb(’”)x (mi + \/5)) .
nez

b(nr)x b(r)x
< 2and Pe™ 1 < M

The proof is completed using Lemmas A.1 and A.2, that |n7‘|<m‘)’1(x>%eﬂ%

(see also the proof of Lemma A.7), we omit the details. m
Lemma A.9 Let p > 2. There exist a constant C' > 0 such that
_ b= _ b(n)=
le™ K||oo{11}+||€ T Killouyt <0,
le” 8K||p{1 121}+||6 8K||p{1 121}<C

while there exists a constant C' such that for all x > 0 and p > 1, we have

b(r 1_1 1_3 1_3
| @)l + [ K@)l < Ces (””if” T+ )
T P z 8P |T|4Pz 4P
roo e first note that RK; = 0, ; = K;. We then have | K, (x, < C= :” T
Proof. We first note that R K; = 0, PK; = K;. We then h Kk:<<|le(A>Kk:<
TZ’T2 Re(A_)z . nr 2eb(n7)z -
C(IC%JFW < C'min ((ICQ)JFW, eRe(A-) ) and

|0p I (2, )| < CeReA- )x<\m\> <|Ao\ " \k|x>

A)z k|x
O, B)] < oI (L e
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This shows that

N

IK @)~ < 05" 87
€T

N 1 1
| Ki(x)||.r < C sup eb(2) min ( , <xg>f>4 ((ﬁ:?)fx + ﬁ) 4

neZ,n#0

n b(nt)z b(r)x

“<2andPe 1 <e 1

The proof is completed using [n7|~! < C|r|~Lif |n| > 1, |n7|(n7) " (z)2¢
(see also the proof of Lemma A.7), we omit the details. =

2

Lemma A.10 Let K. (z,y) = Pof;f%. We have

195" (K — Kolloo (2225 gmoay + [0,(Ky = Koy 3,9y < CT77%(7)?
19y (K12 = Kol (25 gmyay + 1Ko = Oy Kelloo g5y < OT7(7)?

for all m € N.

Proof. We first note that R|A_ + k?| < Ck*, so that

Hﬁzn(POKl(x) K (.’E))”Loo < Sup/dk |k’m:7) eRe(A )x‘l 7(k2+/\ )m|

< CxByaim(z/2,0) < C(x) et
10" PK1(z)]|L= < sup/dk k| PR < OBy ()2, 7)

nez
m—+5

< Cla) "2 o sup (28 () e T

x>0

10 (PoK1(2) — Ko(@)f2 < sup / A [k[*"PoeRe |1 — (A2

nezZ

+5

)< CT72< > 5 :L,fmle’

IA

Cx? B, gr2m(7,0) < C< >9+2mx7772m )
|0y PEL(@)IIE> < sup / d; [k[*"PeRE < OBy om(w, 7)

nez

< Cla) ™2 T2 sup (o8 () e T) < O Y (z) S
x>0

o0 2A_ 2
10,(u(PoK1() = Ke(a)) £ < C* sup / L e e
neZ J—oco 0
< C(4*Bos(x,0) + ' Boa(, 0)) < C<$>§$79 )
10, (yPK,(z)) ||t < 2°sup /dk || peReA-)r < Ca® By (v, T)

nez
< C(x}gafg sup (2% (z) e ﬂ) <Cr Y > ol

x>0

The proof is completed using |, fll.t < (10, flluz(I1 2 + 18,(y)112))?, Ka(z) = 8,(K1(x) + Ks(z) +
Klo(ZL')) and Klg(ZL') = Kl(l‘) -+ Kg([L‘) + Klo(ZL‘). |
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