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Abstract: We consider the edge Hall conductance and show it is invariant un-
der perturbations located in a strip along the edge (decaying perturbations far
from the edge are also allowed). This enables us to prove for the edge conduc-
tances a general sum rule relating currents due to the presence of two different
media located respectively on the left and on the right half plane. As a par-
ticular interesting case we put forward a general quantization formula for the
difference of edge Hall conductances in semi-infinite samples with and without
a confining wall. It implies in particular that the edge Hall conductance takes
its ideal quantized value under a gap condition for the bulk Hamiltonian, or un-
der some localization properties for a random bulk Hamiltonian (provided one
first regularizes the conductance; we shall discuss this regularization issue). Our
quantization formula also shows that deviations from the ideal value occurs if a
semi infinite distribution of impurity potentials is repulsive enough to produce
current-carrying surface states on its boundary.

1. Introduction

There has been recently some renewed interest in detailed analysis of edge states
occuring in semi-infinite quantum Hall systems, which play a basic role in the
analysis of the quantum Hall effect (for a general reference to the QHE, see e.g.
[PG]). Such edge states have been proved to carry currents at least in weak dis-
order regimes [DBP,FGW1,FGW2,FM1,FM2,CHS]. These discussions need to
be completed by an analysis of the quantization properties of these currents and
of the effect of various types of perturbations, like edge imperfections or random
impurities, on these quantized values. The role of edge states in quantization of
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Hall conductance has been widely discussed since the pioneering work of B.I.
Halperin [H] (see e.g. [HT,MDS,B,Th,CFGP] and references therein). It has
been shown recently in [SBKR,KRSB,EG,Ma] that for discrete Hamiltonians
with a magnetic field and under a gap condition of the bulk Hamiltonian the
edge theory and the bulk theory can be reconcilied and the edge conductance
as defined in Definition 1 equals the bulk conductance as given by Kubo’s for-
mula provided the Fermi energy lies in such a gap1. Let us recall that the bulk
conductance has received an interpretation both as a Chern number [BESB]
and as a topological invariant [Ku,AS2], thus providing an explanation for both
quantization and robustness of Hall conductance. In the ergodic case and un-
der a gap condition the edge conductance can also be expressed as a Fredholm
index [SBKR,KRSB,KSB]. However, as compared to the bulk theory (e.g. [Be,
Ku,AS2,BESB,AG,ES,BGKS]) some of the main arguments of the edge theory
for the quantum Hall effect have not been given yet a rigourous mathemati-
cal status, efficient enough quantitatively to deal with the questions mentioned
above. One goal of this paper is to compute the edge conductance in a simple
way, independently of a gap assumption, and to study its stability under per-
turbations. We note that the exact quantization is obtained here without any
covariant structure of the Hamiltonians.

One of our main results is a general sum rule linking the conductances of the
same system with and without the confining edge (Corollary 3). It is obtained as
a particular case of Theorem 2 which deals with general left and right media. We
shall provide two models with random impurities for which the edge conductance
either vanishes or keeps its ideal quantized value N , when the Fermi energy lies
between the N th and (N + 1)th Landau levels. The first model is the one of
Nakamura and Bellissard [NB] that we adapt to the edge geometry. We recover
in a simple way their result but from the “edge” point of view, i.e. we prove
the vanishing of the edge conductance. As a result this implies the existence
of a persistent current carrying states due to the impurity potential alone and
living near the boundary of the disordered region; these currents are shown to be
quantized as well. The second model is of Anderson type, and we investigate the
edge conductance in the regime of localized states, in which case a regularization
of the edge conductance is required2. We shall discuss this regularization issue,
and show that under a suitable condition of localization the regularized edge
conductance keeps its ideal quantized value N .

2. Statements of the general results

Throughout this paper 1X = 1(x,y) will denote the characteristic function of

a unit cube centered X = (x, y) ∈ Z
2. If A is a subset of R

2, then 1A will
denote the characteristic function of this set. Moreover 1− and 1+ will stand,
respectively, for 1x≤0 and 1x≥0.

We consider an electron confined to the 2-dimensional plane composed of two
complementary semi-infinite regions supporting potentials V1 and V2 respec-
tively, and under the influence of a constant magnetic field B orthogonal to the

1 While writing the revised version of this paper, we heard of the recent work of A. Elgart,
G.M. Graf, J. Schenker [EGS] concerning the equality of the bulk and edge conductances in a
mobility gap, namely in a region where one has localized states.

2 The regularization issue is also treated in [EGS] (see Footnote 1).
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sample. If V1, V2 are two potentials in the Kato class [CFKS] the Hamiltonian
of the system is given, in suitable units and Landau gauge, by

H(V1, V2) := HL + V11− + V21+ , (2.1)

a self-adjoint operator acting on L2(R2, dxdy), whereHL = p2
x+(py−Bx)2 is the

free Landau Hamiltonian. The spectrum of HL = H(0, 0) consists in the well-
known Landau levels BN = (2N − 1)B, N ≥ 1 (with the convention B0 = −∞).
For technical reasons it is convenient to assume the following control on the
growth at infinity of V1, V2: for some uniform constants C, p > 0,

‖1(x,y)V1‖∞ ≤ C〈x〉p, if x ≤ 0, and ‖1(x,y)V2‖∞ ≤ C〈x〉p, if x ≥ 0. (2.2)

For simplicity we further assume that the potentials V1, V2 are bounded from
below, so that H(V1, V2) is a bounded from below self-adjoint operator.

We shall say that V1, resp. V2, is a (left), resp. (right), confining potential with
respect to the interval I = [a, b] ⊂ R if in addition to the previous conditions
the following holds: there exists R > 0, s.t.

∀x ≤ −R, ∀y ∈ R, V1(x, y) > b, resp. ∀x ≥ R, ∀y ∈ R, V2(x, y) > b. (2.3)

The “hard wall” case where V1 is infinite and H = HL + V2 acts on L2(R+ ×
R, dxdy) with Dirichlet boundary condition at x = 0 can also be considered, and
our results still hold.

As typical examples for H(V1, V2) one may think of the right potential V2

as an impurity potential and of the left potential V1 as either a wall, confining
the electron to the right half plane and generating an edge current, or an empty
region (V1 = 0), in which case the issue is to determine whether or not V2 is
strong enough to create edge currents by itself. Another example is the strip
geometry, where both V1 and V2 are confining.

Following [SBKR,KRSB,EG,Ma] we adopt the following definition of an edge
conductance. Define a “switch” function as a smooth real valued increasing func-
tion equal to 1 (resp. 0) at the right (resp. left) of some bounded interval; then

Definition 1. Let X ∈ C∞(R2) be a x-translation invariant switch function
with suppX ′ ⊂ R × [− 1

4 ,
1
4 ], and let −g ∈ C∞(R) be switch a function with

supp g′ ⊂ I = [a, b] a compact interval. The edge conductance3 of H = H(V1, V2)
in the interval I, is defined as

σe(g,H) ≡ σe(g, V1, V2) := −tr(g′(H(V1, V2))i[H(V1, V2),X ]) (2.4)

= −tr(g′(H(V1, V2))i[HL,X ]) (2.5)

whenever the trace is finite (we shall use both expressions σe(g, V1, V2) and
σe(g,H(V1, V2))).

3 As suggested to us by one referee, one could also call σe(g, V1, V2) the interface conductance
between potentials V1 and V2. Concerning the physical interpretation of this quantity, see
comments below.
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Remark 1. Since [HL,X ] is relatively H(V1, V2) bounded with relative bound 0,
the operator g′(H(V1, V2))i[HL,X ] readily extends to a bounded operator on
L2(R2, dxdy). The only issue is thus the finiteness of the trace. In the strip
geometry the trace is always well defined, and is actually zero (Corollary 2). In
the one wall case, say V1 is left confining, the situation is very different: if I is
in a gap of H(0, V2) then g′(H(V1, V2))i[HL,X ] will be shown to be trace class
(Corollary 4); but without the gap condition the situation is more delicate, and
a regularized version of (2.4) is needed; we shall discuss this point in Section 7.

Remark 2. In the situations of interest σe(g, V1, V2) will turn out to be indepen-
dant of the particular shape of the switch function X and also of the switch
function g, provided suppg′ does not contain any Landau level.

In practice, in this paper, we shall mainly focus on the following two simple
situations: (i) the potential V1 plays the role of a potential barrier (soft wall),
(ii) V1 = 0 in which case we investigate the influence of the sole impurities
potential V2. So in both situations we are interested in the possible existence
of edge currents. In cases (i) and (ii) σe(g,H) can be understood in physical
terms as follows. Take g to be piecewise linear so that g′ = 0 outside [a, b] and
−g′(H) = EH (I)/|b− a|, with EH(I) the spectral projection of H on I = [a, b].
The edge conductance σe(g,H) is then seen as the ratio J(I)/|b − a|, where
J(I) = tr(EH (I)i[H,X ]) is the total current through the surface y = 0 induced
by states with energy support contained in I . We note that in case (i), i.e. the one
wall case, J(I) can be interpreted as the total current flowing in a strip whose
edges are at different chemical potential E− = a and E+ = b, as discussed in
[SBKR]; this assumes that edges are well-separated to prevent effective tunneling
between both edges, so that such a strip can in turn be represented by two copies
of one edge (half-plane) Hamiltonian with edge currents flowing in opposite
directions (for other discussions about this picture, see e.g. [H,HT,MDS,Th]).

Our first result is the

Theorem 1. Let H = H(V1, V2) be as in (2.1), and let W be a bounded potential
supported in a strip [L1, L2]×R, with −∞ < L1 < L2 < +∞. Then the operator
(g′(H +W ) − g′(H))i[HL,X ] is trace class, and

tr((g′(H +W ) − g′(H))i[HL,X ]) = 0. (2.6)

As a consequence:
(i) σe(g,HL +W ) = 0.
(ii) Assume V1 is a y-invariant potential, i.e. V1(x, y) = V1(x), that is left con-
fining with respect to I ⊃ suppg′. If I ⊂]BN , BN+1[, for some N ≥ 0, then

σe(g,HL + V1 +W ) = N. (2.7)

Remark 3. The hypotheses on the strip geometry of W in Theorem 1 can be
relaxed to some extent. It follows from the proof (see bound (4.16)) that a
fast enough decaying potential W in the x-direction works as well; for instance
supx1

〈x1〉k1‖W1(x1,y1)‖ < C〈y1〉k2 is fine provided k1 is large enough (but k2

can be anything).
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That σe(g, V1, 0) = N , with V1 a y-invariant left confining potential, is an easy
consequence of the spectral properties of H(V1, 0) (Proposition 1). In this case
the current is carried by edge states which are localized within a few cyclotron
radius from the edge [DBP,FGW1,FM1,FM2,CHS]. Property (2.6) implies that
a bounded perturbation localized in a strip will not affect the total current, but
only, possibly, the geometry of its flow. One can imagine in particular that a
strongly repulsive W will move all the current carrying states at the right of the
strip supporting W . On the other hand, if the potential is small, edge states will
survive near x = 0 and will still propagate along the wall V1.

As a first corollary of Theorem 1, we note that to a large extent edge conduc-
tances do not depend on the confining potential V1 so that irregular confining
boundaries are allowed.

Corollary 1. Let V
(i)
1 , i = 1, 2, be two left confining potentials with respect to

[a, b] ⊃ suppg′, and Hi := H(V
(i)
1 , V2). If V

(1)
1 − V

(2)
1 is supported in a strip,

then (g′(H1)− g′(H2))[HL,X ] is trace class with trace zero. In particular if one

conductance is finite, so is the second one, and σe(g, V
(1)
1 , V2) = σe(g, V

(2)
1 , V2).

Remark 4. Notice that we do not assume that these confining potentials are y-

invariant. So if V
(1)
1 is a y-invariant left confining potential, then any distortion

V
(2)
1 of the boundary that is supported in a strip or, according to Remark 3,

that decays fast enough as x → −∞, will leave the edge conductance invariant,

i.e. σe(g, V
(2)
1 , 0) = N . However the nature of the spectrum of H1 may change.

For instance the proof in [FGW2] of the absolutely continuity of the spectrum
of H(V1, 0) requires some smoothness of the boundary of the support of V1.

Our second corollary of Theorem 1 investigates the case of the strip geometry.

Corollary 2. Let Ṽ0(x, y) be a left and right confining potential, s.t. Ṽ0(x, y) ≥
v0 > BN+1 if |x| > R, and Ṽ0(x, y) = 0 if |x| ≤ R. Then for any electrostatic
bounded potential U(x, y) contained in |x| ≤ R, and any g, with suppg′ ⊂] −
∞, BN+1[, one has

σe(g,HL + Ṽ0 + U) = 0 . (2.8)

Remark 5. Eq. (2.8) states that there is no total current flowing in a strip at
equilibrium, even in presence of an electrostatic field. When U is zero, this result
also follows from the spectral analysis of H0 (see e.g. [CHS]) showing that both
edges carry opposite currents (if any). Impurities and electrostatic potential just
have the effect of modifying the geometry of the flow of edge currents, but in
such a way that they always compensate and sum up to zero.

So far we only considered perturbations located in a strip of the type [L1, L2]×
R. But what happens when the right boundary L2 of the strip potential is taken
to infinity? It is easy to check that Theorem 1 does not extend as it stands.
Consider W` = v01[0,`](x) and W∞ = v01[0,∞[(x), with the constant v0 ≥ BN+1,
then Theorem 1 yields σe(g, 0,W`) = 0 for all ` > 0 while σe(g, 0,W∞) =
−N . In other terms, adding a potential W that does not decay at infinity may
dramatically perturbe the existence of edge currents.
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However from Theorem 1 we get that for any bounded potential W supported
on a strip [L1, L2] × R, one has

σe(g, V1,W ) − σe(g, 0,W ) = σe(g, V1, 0) − σe(g, 0, 0) = N. (2.9)

Although Theorem 1 does not extend in the limit L2 → ∞, it turns out that
the difference rule (2.9) does. We shall give a rigorous content of this fact in
Corollary 3, which is a particular case of our second theorem.

Theorem 2. Let g be s.t. suppg′ ⊂]BN , BN+1[ for some N ≥ 0. Then the op-
erator {g′(H(V1, V2)) − g′(H(V1, 0)) − g′(H(0, V2))}i[HL,X ] is trace class, and

tr({g′(H(V1, V2)) − g′(H(V1, 0)) − g′(H(0, V2))}i[HL,X ]) = 0. (2.10)

In a similar way, let V0 be as in (2.3) a confining potential with respect to
suppg′ (left or right depending on where V0 is supported4), then the operator
{g′(H(V1, V2)) − g′(H(V1, V0)) − g′(H(V0, V2))}i[HL,X ] is trace class, and

tr({g′(H(V1, V2)) − g′(H(V1, V0)) − g′(H(V0, V2))}i[HL,X ]) = 0. (2.11)

In particular, if traces are separately finite then

σe(g, V1, V2) = σe(g, V1, 0) + σe(g, 0, V2) (2.12)

= σe(g, V1, V0) + σe(g, V0, V2). (2.13)

Remark 6. (i) If suppg′ contains one (or more) Landau levels, then the trace in
(2.10) is no longer zero, but is equal to tr(g′(HL)i[HL,X ]) = −σe(g,HL) 6= 0.
(ii) If V0 is not confining, then the operator in (2.11) should be replaced by
{g′(H(V1, V2)) − g′(H(V1, V0)) − g′(H(V0, V2)) + g′(H(V0, V0))}i[HL,X ].
(iii) If V1 is confining or if suppg′ lies in a gap of H(V1, V1) (so that in both cases
σe(g, V1, V1) = 0), then it follows from (2.12) that σe(g, V1, 0) = −σe(g, 0, V1).

As an immediate consequence of Theorem 2 we get a quantization rule for
the difference of the edge conductances with and without a confining potential
V1, that shows that they are simultaneously quantized.

Corollary 3. Let g be s.t. suppg′ ⊂]BN , BN+1[, for some N ≥ 0. Let V1 be a y-
invariant left confining potential with respect to suppg′ or a perturbation of such
a V1 as in Corollary 1. Then the operator {g′(H(V1, V2))−g′(H(0, V2))}i[HL,X ]
is trace class and

−tr({g′(H(V1, V2)) − g′(H(0, V2))}i[HL,X ]) = N. (2.14)

In particular, if either σe(g, V1, V2) or σe(g, 0, V2) is finite, then both are finite,
and

σe(g, V1, V2) − σe(g, 0, V2) = N. (2.15)

4 Strictly speaking if V0 is left confining, then V ∗
0

(x, y) = V0(−x, y) is right confining. With
some abuse of notations we still write V0 instead of V ∗

0
if we consider the right confining

potential.
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Note that σe(g, 0, V2) 6= 0 would imply the existence of current carrying states
due to the sole impurity potential. Since Corollary 3 would yield σe(g, V1, V2) 6=
N , we see that such “edge currents without edges” are responsible for the de-
viation of the Hall conductance from its ideal value N . An example of this
phenomenon is provided by the model of S. Nakamura and J. Bellissard in [NB]
that we shall revisit in section 6.

On the other hand, if the potential V2 is not strong enough to close the
Landau gaps and if the Fermi level falls into a gap of H(0, V2), then obviously
σe(g, 0, V2) = 0, and Corollary 3 immediately gives the exact quantized value
of the edge conductance. In particular we recover the fact that the conductance
remains constant if one increases the coupling constant while keeping the Fermi
level in a gap [AS2,BESB,ES]. We thus have the

Corollary 4. Let g and V1 as in Corollary 3, N ≥ 0. If suppg′ belongs to a gap
of H(0, V2), then σe(g, V1, V2) = N . As a consequence, let λ∗ > 0 s.t. ‖λ∗V2‖ < B
and g s.t. suppg′ ⊂]BN + ‖λ∗V2‖, BN+1 − ‖λ∗V2‖[, then

∀λ ∈ [0, λ∗], σe(g, V1, λV2) = N, (2.16)

If now suppg′ is no longer included in a gap of H(0, V2), but in a region of
localization, then one expects a regularized version of σe(g, 0, V2) to be still
zero (the aim of the regularization is to restore the trace class property of
g′(H(0, V2))i[HL,X ] that fails in a region of localization). In this case the analog
of Corollary 4 holds for the regularized conductances, i.e. σreg

e (g, V1, λV2) = N ,
thus recovering from the “edge point of view” the bulk picture [BESB,AG]. This
regularization issue is the content of Section 7.

Remark 7. As a by-product we recover a posteriori the equality “bulk-edge” of
the conductances for in the context of Corollary 4 the bulk conductance is also
known to be equal to N [BESB,AS2].

The plan of the paper is as follows. In Section 3 we recall by direct compu-
tation that the results stated in (2.7) hold in absence of impurities (free case).
In Section 4 we prove Theorem 1; we first show a simple invariance property for
σe(g,H) under a perturbation by a compactly supported potential; this invari-
ance property is extended to potentials supported in a strip (or more generally
decaying potential in the x direction) by Combes-Thomas arguments together
with Helffer-Sjöstrand functional calculus. In Section 5 we prove Theorem 2 on
the account of Theorem 1. In Section 6 we revisit the model of Nakamura and
Bellissard [NB] and get an example of a zero edge conductance due to a strongly
repulsive potential. Section 7 is devoted to the case where suppg′ does not lie any-
more in a gap, but in a region of localized states. We introduce a regularization
and recover the sum rule of Corollary 3 for the regularized edge conductances
together with the analog of Corollary 4 in mobility gaps. Appendices A and B
contain tools and estimates we shall make use of throughout the paper.

3. Edge conductance of the unperturbed operator

The following result is well-known. For the sake of completeness we shall provide
a short proof of it.
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Proposition 1. Let I = [a, b] ⊂]BN , BN+1[ be such that I ⊃ suppg′. We have

σe(g, 0, 0) = 0. (3.1)

Assume that V1 is a left confining potential with respect to I. Then the operator
g′(H(V1, 0))i[HL,X ] is trace class. If in addition V1 is y-invariant, then one has

σe(g, V1, 0) = N . (3.2)

Remark 8. In the next section, we will show that (3.2) also holds if the confining
potential V1 has imperfections (i.e. V1 may depend on y as well). See Remark 4.
Moreover, it actually follows from the proof that one can add to the confin-
ing potential V1 any bulk mean electrostatic field V2 depending only on x and
vanishing at +∞: one still has σe(g, V1, V2) = N .

Remark 9. The same proof with V ∗
1 (x) := V1(−x) gives σe(g, 0, V

∗
1 ) = −N .

Proof. That σe(g, 0, 0) = 0 is immediate since σ(HL) ∩ I = ∅. We turn to the
free edge Hamiltonian H0 := H(V1, 0) = HL + V11−. That g′(H0)i[HL,X ] is
trace class follows from the arguments developped in this paper (more precisely
those of Sections 4 and 5), and the proof is sketched in Appendix B, Lemma 5.

We now compute the trace itself. Due to the invariance by translation in the
y direction, we perform a partial Fourier transform in the y variable and write,

H0 '

∫ ⊕

R

H0(k)dk, H0(k) = p2
x + (k −Bx)2 + V1(x)1− . (3.3)

We refer to [DBP,FGW1,CHS] for details on this operator. Eigenfunctions of the
one-dimensional HamiltonianH0(k), k ∈ R, will be denoted ξn,k(x), n = 1, 2, · · · ,
with eigenvalue ωn(k) ordered increasingly. Assumption on V1 at ±∞ implies
that ωn(+∞) = limk→+∞ ωn(k) = (2n+ 1)B and ωn(−∞) = limk→−∞ ωn(k) >
b. It follows that g(ωn(+∞)) = 1 if n ≤ N and zero if n > N , while g(ωn(−∞)) is
always zero. Generalized eigenfunctions of H0 then read ϕn,k(x, y) = eikyξn,k(x),
n = 1, 2, · · · and k ∈ R. Note that from the Feynman-Hellman formula,

ω′
n(k) = 2〈ξn,k, (k −Bx)ξn,k〉 . (3.4)

It follows that (with some abuse of notation we denote again by X (y) the one-
dimensional function equal to X (x, y) for all x ∈ R)

σe(g,H0) = −2
∑

n≥1

∫

R

g′(ωn(k))〈ϕn,k , (k −Bx)X ′(y)ϕn,k〉dk (3.5)

=
∑

n≥1

(g(ωn(+∞)) − g(ωn(−∞))) =
∑

n≥1

g(ωn(+∞)) = N, (3.6)

where we used in (3.5) that
∫

R
X ′(y)dy = X (1) −X (0) = 1. �
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4. Perturbation by a strip potential

The aim of this section is to prove Theorem 1. But, given Theorem 1, we first
show how to get Corollary 2: by Theorem 1, σe(g,HL + Ṽ0) = σe(g,HL + Ṽ0 +

v01[−R,R]) = 0 (since g′(HL + Ṽ0 + v01[−R,R]) = 0); applying a second time

Theorem 1 gives σe(g,HL + Ṽ0 + U) = σe(g,HL + Ṽ0) = 0.
To prove Theorem 1, we proceed in two steps. First we show that edge con-

ductances are invariant under a perturbation by a bounded and compactly sup-
ported potential (Lemma 1); then we extend the result to strip potentials (or
decaying potential in the x-direction as pointed in Remark 3).

Lemma 1. Let Λ ⊂ R
2 be compact and W a bounded potential supported on Λ.

Let H be as in (2.1). Then (g′(H +W ) − g′(H))i[HL,X ] ∈ T1 and

tr((g′(H +W ) − g′(H))i[HL,X ]) = 0 . (4.1)

Proof. To compare the operators g′(H + W ) and g′(H), we shall make use of
the Helffer-Sjöstrand formula [HeSj,HuSi]. Let g̃n be a quasi-analytic extension
of g or order n ≥ 3 (see Appendix A). Then, writing R2

Λ(z) = (H +W − z)−2

and R2(z) = (H − z)−2, (A.2) reads

g′(H+W )−g′(H) = −
1

π

∫

∂̄g̃n(u+iv)(R2
Λ(z)−R2(z))dudv, z = u+iv. (4.2)

Note that Imz 6= 0. For further reference recall the second order resolvent: if H1

and H2 = H1 +W are two self-adjoint operators, Ri = (Hi − z)−1, then

R2
2 −R2

1 = −R2R1WR2 −R1WR2R1. (4.3)

Since W has a compact support, both operators RΛRW and RWRΛ are in
T1 according to Lemma 4. Moreover both RΛ[HΛ,X ] and R[H,X ] extend to
bounded operators. As a consequence, using (4.3),

tr
(

(R2
Λ −R2)[H,X ]

)

= −tr (RΛRWRΛ[H,X ]) − tr (RWRΛR[H,X ]) , (4.4)

each trace being finite for operators are actually trace class, and the first state-
ment of the Lemma follows. Suppose now we have shown that

tr (RΛRWRΛ[H,X ]) = tr (RWRΛ[H,X ]RΛ) . (4.5)

Since RWRΛ ∈ T1 and R[H,X ] is bounded, we also have

tr (RWRΛR[H,X ]) = tr (R[H,X ]RWRΛ) . (4.6)

Thus, taking advantage of R[H,X ]R = [R,X ], (4.4) reduces to

tr
(

(R2
Λ −R2)[H,X ]

)

= tr (RWRΛX ) − tr (XRWRΛ) = 0. (4.7)

Since by Lemma 4 the integral in (4.2) is absolutely convergent in T1, we can
pass the trace inside the integral and get (4.1).

We come back to (4.5). If M < inf σ(HΛ), then RΛ(M)1/2R(z)W can be
shown to be trace class. Indeed, by the resolvent identity

RΛ(M)
1
2R(z)W = RΛ(M)

3
2W +RΛ(M)

3
2 (z −M −W )R(z)W ; (4.8)
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now, since W is compactly supported, RΛ(M)3/2W ∈ T1 (e.g. [Si] or [GK2,

Lemma A.4]) and the operators RΛ(M)
3
2WR(z) and (z −M)RΛ(M)3/2R(z)W

belong to T1 by Lemma 4. Thus

tr (RΛRWRΛ[H,X ])

= tr
(

RΛ(z)(HΛ −M)RΛ(M)
1
2RΛ(M)

1
2R(z)WRΛ(z)[H,X ]

)

= tr
(

RΛ(M)
1
2R(z)WRΛ(z)[H,X ]RΛ(z)(HΛ −M)RΛ(M)

1
2

)

= tr (R(z)WRΛ(z)[H,X ]RΛ(z)(HΛ −M)RΛ(M)) = tr (RWRΛ[H,X ]RΛ) .

We applied the cyclicity property of the trace twice: the first time thanks to
RΛ(M)1/2R(z)W ∈ T1, and the second time because RWRΛ ∈ T1 according to
Lemma 4. �

Proof (Proof of Theorem 1). The potential W is now supported on a strip
[L1, L2]× R. We decompose W in the y direction and write, with obvious nota-
tions, W = W>R +W≤R, for R > 0. It follows from Lemma 1 that (g′(H+W )−
g′(H+W>R))i[H,X ] ∈ T1 and its trace is zero, for the difference between H+W
and H + W>R is the compactly supported potential W≤R. It thus remains to
show that ‖(g′(H +W>R)− g′(H))i[H,X ]‖1 goes to zero as R tends to infinity.

As in Lemma 1, we use the Helffer-Sjöstrand formula (A.2) together with the
second order resolvent equation (4.3). We denote respectively by R and R>R the
resolvents of H and H +W>R. One has

‖(g′(H +W>R) − g′(H))i[H,X ]‖1 (4.9)

≤
1

π

∫ ∫

|∂̄g̃(u+ iv)|
∥

∥(R>R(u+ iv)2 −R(u+ iv)2)i[H,X ]
∥

∥

1
dudv.(4.10)

Write, with z = u+ iv,

−(R2(z) −R2
>R(z)) = R(z)R>R(z)W>RR(z) +R>R(z)W>RR(z)R>R(z),

(4.11)

Let X̃ be a smooth function such that X̃ = 1 on R × [− 1
4 ,

1
4 ] and X̃ = 0 outside

R × [− 1
2 ,

1
2 ] (in particular X̃ = 1 on the support of X ′). So [H,X ] = [H,X ]X̃ .

We divide X̃ into cubes by writing X̃ =
∑

x2∈Z
1(x2,0), with 1(x2,0) being smooth

functions. Let us also write

1[L1,L2]×[−R,R]c =
∑

x1∈Z∩[L1,L2]

∑

y1∈Z, |y1|>R

1(x1,y1). (4.12)

For any (x1, y1) ∈ Z
2 ∩ ([L1, L2] × [−R,R]c), we have

‖RR>R1(x1,y1)WR[H,X ]X̃ ‖1 (4.13)

≤
∑

x2∈Z

‖RR>R1(x1,y1)‖1‖W1(x1,y1)‖‖1(x1,y1)R[H,X ]1(x2,0)‖ (4.14)

≤
C

η
‖RR>R1(x1,y1)‖1‖W1(x1,y1)‖

∑

x2∈Z

〈x2〉 e−cη(|x1−x2|+|y1|), (4.15)
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where to get the last inequality we used Lemma 3, Eq. A.8, together with the
Combes-Thomas estimate (A.4) and η = dist(z, σ(H)). Summing over x2, we
get from (4.15) and Lemma 4,

‖RR>R1(x1,y1)VΛR[H,X ]‖1 ≤
C

ηκ
‖W1(x1,y1)‖〈x1〉e

−cη|y1|, (4.16)

where κ stands for a positive integer (its value will vary, like the one of the
constant C). It remains to sum over x1 ∈ [L1, L2] and |y1| ≥ R. It yields

‖RR>RW>RR[H,X ]‖1 ≤
C(L2 − L1)‖W‖∞

ηκ
e−cηR. (4.17)

We turn to the second term coming from the decomposition of R2
Λ(z)−R2

>R(z)
in (4.11). As above we have to control

‖R>R1(x1,y1)WRR>R[H,X ]1(x2,0)‖1. (4.18)

The trace class property will follow from the part R>R1(x1,y1)WR, but we
also need the term 1(x1,y1) to extract the required decay in y1. We thus first
pass a smooth version of 1(x1,y1) through the resolvent R. Let χ̃(x1,y1) be a
smooth characteristic function of the unit cube centered at (x1, y1), so that
χ̃(x1,y1)1(x1,y1) = 1(x1,y1). We get

‖R>R1(x1,y1)WRR>R[H,X ]1(x2,0)‖1 (4.19)

≤ ‖R>R1(x1,y1)WRχ̃(x1,y1)R>R[H,X ]1(x2,0)‖1 (4.20)

+‖R>R1(x1,y1)WR[H, χ̃(x1,y1)]RR>R[H,X ]1(x2,0)‖1 . (4.21)

The term in (4.20) is estimated as previously, as for the one in (4.21) note that
it follows from Lemma 3 Eq. A.8 and the Combes-Thomas estimate (A.4) that

‖[H, χ̃(x1,y1)]RR>R[H,X ]1(x2,0)‖ (4.22)

≤
∑

(x3,y3)∈R3

‖[H, χ̃(x1,y1)]R1(x3,y3)‖‖1(x3,y3)R>R[H,X ]1(x2,0)‖ (4.23)

≤
C

η3
(〈x1〉 + 〈y1〉)〈x2〉e

−cη(|x2−x1|+|y1|) . (4.24)

The rest of the argument follows as above. It allows us to conclude that

∥

∥(R>R(u+ iv)2 −R(u+ iv)2)i[H,X ]
∥

∥

1
≤
C(L2 − L1)‖W‖∞

ηκ
e−cηR, (4.25)

for some integer κ. Following (A.2), it remains to integrate the latter estimate
multiplied by |∂̄g̃n(z)|, z = u+ iv. By Lemma 2, it follows that for any integer
m ≥ 1 there exists Cm such that for any R ≥ 1,

‖(g′(H +W>R) − g′(H))i[H,X ]‖1 ≤ CmR
−m. (4.26)

So (2.6) holds, and (2.7) is a direct consequence of (2.6) and Proposition 1. �
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5. Estimating differences of a priori non finite edge conductances

This section is devoted to the proof of Theorem 2

Proof. The main task is to prove (2.10), and that the operator coming in is
trace class. Assuming this, let us sketch how to derive the second part of the
statement, and in particular (2.11). If V0 is a confining potential, then, with the
abuse of notations of Footnote 4, it follows from (2.10) that (in addition to the
trace class property)

tr((g′(H(V1, V0)) − g′(H(V1, 0)) − g′(H(0, V0)))i[HL,X ]) = 0 , (5.1)

tr((g′(H(V0, V2)) − g′(H(V0, 0)) − g′(H(0, V2)))i[HL,X ]) = 0 , (5.2)

tr((g′(H(V0, 0)) + g′(H(0, V0)) − g′(H(V0, V0)))i[HL,X ]) = 0 . (5.3)

Substract these equations to (2.10) and note that, V0 being confining, Corollary 2
implies that g′(H(V0, V0)))i[HL,X ] is trace class with trace zero. This yields the
announced (2.11).

We now prove the first part of the statement. For R ≥ 0, set

D(R) = { g′(H(V1, V2)) − g′(H(0, V2))

−g′(H(V1, V21x≤R)) + g′(H(0, V21x≤R))}i[HL,X ] (5.4)

Since g′(H(0, 0)) = 0 (suppg′ is included in a gap of H(0, 0) = HL), (2.10) of
the theorem is proved if we show that D(0) is trace class with trace zero. Now,
that D(R) − D(0) is trace class with trace zero is an immediate consequence
of Theorem 1. It is thus enough to show that D(R) is trace class and that
limR→+∞ |trD(R)| = 0.

As previously we use the Helffer-Sjöstrand functional calculus to write opera-
tors of the type g′(H) in term of second power of resolvents, and then make use
of the second order resolvent equation (4.3). We shall make use of the following
notations: H = H(V1, V2), H2 = H(0, V2), as for the operators with a trun-
cated V2 we set H≤R = H(V1, V21x≤R), H2,≤R = H(0, V21x≤R); with respective
resolvents R, R2, R≤R, R2,≤R. We get

(R2 −R2
2) − (R2

≤R −R2
2,≤R) =

−RR2V1R−R2V1RR2 +R≤RR2,≤RV1R≤R +R2,≤RV1R≤RR2,≤R.(5.5)

We first treat the term RR2V1R − R≤RR2,≤RV1R≤R. Bounding the remaining
one will be done in a similar way, and it is discussed below. since H −H≤R =
H2 −H2,≤R = V21x>R ≡ V2,>R, one has

RR2V1R−R≤RR2,≤RV1R≤R = −RR2V1RV2,>RR≤R (5.6)

−RR2V2,>RR2,≤RV1R≤R −RV2,>RR≤RR2,≤RV1R≤R. (5.7)

Let us first prove that ‖RR2V1RV2,>RR≤R[H,X ]‖1 decays faster than any poly-
nomial in R. With Xi = (xi, yi), i = 1, 2, write V1 =

∑

X1∈S1
V11X1 with

S1 = Z
− × Z, V2,>R =

∑

X2∈S2
V21X2 with S2 = (Z∩]R,+∞[) × Z, and
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[H,X ] =
∑

x3∈Z
[H,X ]1(x3,0) as in Section 4, Proof of Theorem 1. Then, with

1i = 1Xi
, i = 1, 2, and κ some integer that will vary from one line to another:

‖RR2V1RV2,>RR≤R[H,X ]‖1

≤
∑

(x1,y1)∈S1
(x2,y2)∈S2

x3∈Z

‖RR2V111‖1‖11R12‖‖12V ‖‖12R≤R[H,X ]1(x3,0)‖

≤
∑

(x1,y1)∈S1
(x2,y2)∈S2

x3∈Z

C

ηκ
‖11V1‖ ‖12V ‖e−η(|x1−x2|+|y1−y2|+|x2−x3|+|y2|)

≤
C‖V ‖∞
ηκ

∑

x1∈Z−

x2∈Z∩]R,+∞[

‖1(x1,0)V1‖e
−η|x1−x2|

≤
C‖V ‖∞
ηκ

∑

x1∈Z−

‖1(x1,0)V1‖e
−η(|x1|+R). (5.8)

We used Lemma 4, the Combes-Thomas estimate (A.4), as well as Lemma 3.
We also used the invariance of V1 in the y-direction. Since by Assumption 2.2
we have the bound ‖1(x1,0)V1‖ ≤ C〈x1〉p, for some p < ∞, it follows from (5.8)
that for some constant C and integer κ > 0 (depending on p) that

‖RR2V1RV2,>RR≤R[H,X ]‖1 ≤
C‖V ‖∞
ηκ

e−ηR (5.9)

The second term coming from (5.7) is estimated exactly as the first one. The third
contribution from (5.7) requires an extra argument. If one is only interested in the
decay (in R) of its trace, and not of its trace norm, then the above argument ap-
plies again if one notices that by cyclicity tr(RV2,>RR≤RR2,≤RV1R≤R[H,X ]) =
tr(R≤RR2,≤RV1R≤R[H,X ]RV2,>R).

Let us now briefly comment how to control the remaining contribution from
(5.5), that is the one coming from the difference R2V1RR2−R2,≤RV1R≤RR2,≤R.
One first decomposes it in three terms as in (5.7). To get the decay of the trace
of each of the three contribution one can use cyclity of the trace and apply the
argument above. These estimates lead to |trD(R)| ≤ CmR

−m for any m > 0. �

We note that actually the stronger ‖D(R)‖1 ≤ CmR
−m for any m > 0 can

be proven. It is indeed sufficient to use a similar argument to the one given in
(4.19) and subsequent.

6. The Nakamura-Bellissard model revisited

In [NB] Nakamura and Bellissard showed that the bulk Hall conductance σb

vanishes in any Landau band for sufficiently large coupling constant in a pos-
itive potential exhibiting non degenerate wells locally identical (e.g. a periodic
potential). Their proof is based on semi-classical analysis at large coupling and
non commutaive geometry methods. It turns out that the vanishing of σe can
be obtained in a simple way from Theorem 1.
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Assume that the bulk potential Vb satisfies the assumptions of [NB]. Namely
and with irrelevant simplifications (we set X = (x, y)):
(i) inf Vb(X) = 0 and supVb(X) <∞;
(ii) there is a countable set {Xn, n = 1, 2, · · · } such that one has |Xn−Xm| ≥ 1
if n 6= m;
(iii) Vb has identical potential wells located at the Xn’s, i.e., there exists ε ∈]0, 1

2 [,

and V ∈ C2(R2), such that for all n = 1, 2, · · · , Vb(X +Xn) = V(X) if |X | ≤ ε;
(iv) 0 is the unique minimum of V and it is non degenerate;
(v) if |X −Xn| > ε for all n, then Vb(X) > δ, for some δ > 0.

Then by a semi-classical analysis patterned according to the method devel-
opped in [BCD], it is shown that for large µ then spectrum of Hb(µ) = HL +µVb

consists, in the range ]−∞, µ
1
2 [, of bands Bn,m centered around the eigenvalues

En,m(µ) of the one well Hamiltonian

h(µ) = HL + µV , (6.1)

which, in the large µ regime, satisfies the harmonic approximation:

En,m(µ) = µ
1
2 ((n+ 1)W1 + (m+ 1)W2) + O(1), (6.2)

where W1,2 are the eigenvalues of the Hessian of V at x = 0. The bands Bn,m

have width

∆n,m(µ) < e−aµ
1
2 , (6.3)

where a is a lower bound on Agmon’s distance between different wells (see The-
orem 6.1 in [NB]). So everything only depends on ε and δ. This implies that this
spectral structure is not changed under the following modifications of Vb:
a) fill the well at Xn up to δ if Xn ∈ S1 = {(x, y), |x| < 1};
b) replace Vb in the half plane {x < 0} by some constant potential v0 > δ.

Accordingly if I ⊂]BN , BN+1[, N ≥ 0, satisfies dist(I, σ(h(µ))) > e−aµ
1
2 and

sup I < µδ, then for µ large enough, I is in a gap of

He(µ) := HL + µ(v01− + Vb1+ +W ), (6.4)

where

W (X) =
∑

Xn∈S1\S0

(δ − V(X −Xn))1|X−Xn|≤ε(X). (6.5)

So, as long as suppg′ ⊂ I , one has σe(g,He(µ)) = 0, and according to Theorem 1
one also obtains

σe(g, µv0, µVb) = 0.

This is the “edge picture” of [NB]’s result. Indeed equality of bulk and edge
conductances then yields that the bulk conductance is zero if the Fermi energy
belongs to I , which is [NB]’s result. Moreover in virtue of Theorem 2 this in turn
implies that

σe(g, 0, µVb) = −N,

and thus that HL + µVb1+ has current carrying edge states for large µ.
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7. Regularizing the edge conductance in presence of impurities

Let V be a potential located in the region x ≥ 0. If the operator H(0, V ) has
a gap and if the interval I falls into this gap, then the edge conductance is
quantized by Corollary (4). A more challenging issue is to show quantization if I
falls into a region of localized states of H(0, V ). In the latter case, conductances
may not be well-defined, and a regularization is needed. This is the content
of this section. We propose some basic conditions that a “good” regularization
should fulfill and discuss some candidates.5.

Let V0 be a y-invariant left confining potential with respect to I = [a, b] ⊂
]BN , BN+1[, and assume suppg′ ⊂ I . Let (JR)R>0 be a family of operators s.t.

C1. ‖JR‖ = 1 and limR→∞ JRψ = ψ for all ψ ∈ EH(0,V )(I)L
2(R2).

C2. JR regularizes H(0, V ) in the sense that g′(H(0, V ))i[HL,X ]JR is trace
class for all R > 0, and limR→∞ tr(g′(H(0, V ))i[HL,X ]JR) exists and is finite.

Then it follows from Corollary 3 that

lim
R→∞

−tr ({g′(H(V0, V )) − g′(H(0, V ))}i[HL,X ]JR) = N.

In other terms, if C1 and C2 hold, then JR also regularizes H(V0, V ). Defining
the regularized edge conductance by

σreg
e (g, V1, V2) := − lim

R→∞
tr(g′(H(V1, V2))i[HL,X ]JR), (7.1)

whenever the limit exists, we get the analog of Corollary 3:

σreg
e (g, V0, V ) = N + σreg

e (g, 0, V ). (7.2)

In particular, if we can show that σreg
e (g, 0, V ) = 0, for instance under some

localization property, then the edge quantization for H(V0, V ) follows:

σreg
e (g, V0, V ) = − lim

R→∞
tr(g′(H(V0, V ))i[HL,X ]JR) = N. (7.3)

To start the discussion, consider as the simplest candidate for JR, the multi-
plication by the characteristic function of the half plane x < R (or a smooth ver-
sion of it). One checks that C1 holds and that the trace class condition in C2 is
fulfilled (to see this consider the difference {g′(H(0, V ))− g′(H(0, 0))}i[H,X ]JR

and proceed as in the proof of Theorem 1). As for the limit R → ∞ of the trace in
C2, we do not expect it to exist in full generality. However, if Hω = H(0, Vω,+) is
a random operator with i.i.d. variables, then it follows from our previous results
that the limit exists. Indeed, consider

Hω = H(0, Vω,+) = HL + Vω,+, Vω,+ =
∑

i∈Z+∗×Z

ωiu(x− i), (7.4)

a random operator modeling impurities located on the positive half plane (the
(ωi)i are i.i.d. random variables, and u is a bump function). The following propo-
sition shows that the current flowing far from the edge x = 0 is negligible (in
the expectation sense).

5 In [EGS], related questions are adressed. We thus also refer the reader to their preprint
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Proposition 2. Let Hω = H(0, Vω,+) as in (7.4), and JR = 1x≤R. For all
p ∈ N

∗, there exists Cp > 0 finite, such that, for all R > 0,

|E (tr {g′(Hω)i[HL,X ](JR+1 − JR)})| ≤ CpR
−p . (7.5)

As a consequence, for P-a.e. ω, limR→∞ tr(g′(Hω)i[HL,X ]JR) exists and is fi-
nite. In other terms, for P-a.e. ω, JR satisfies C1 and C2 and the rule (7.2)
holds. Moreover, if Hω has pure point spectrum in I for P-a.e. ω, then denot-
ing by (ϕω,n)n≥1 a basis of orthonormalized eigenfunctions of Hω with energies
Eω,n ∈ suppg′ ⊂ I, one has

σreg
e (g, 0, Vω,+) = − lim

R→∞

∑

n

g′(Eω,n)〈ϕω,n, i[Hω,X ]JRϕω,n〉. (7.6)

Proof. Let H1
ω be obtained from Hω by setting ωi = 0 for all i ∈ {1} × R. The

random variables ωi being i.i.d., one has

E (tr {g′(Hω)i[HL,X ]JR}) = E
(

tr
{

g′(H1
ω)i[HL,X ]JR+1

})

. (7.7)

Moreover since the operator H1
ω −Hω leaves in a vertical strip of finite width,

it follows by Theorem 1 that

E
(

tr
{

(g′(Hω) − g′(H1
ω))i[HL,X ]

})

= 0 . (7.8)

On the other hand, using arguments as in the proof of Theorem 1, one has that
for any p > 0 there exists Cp <∞ s.t.

∣

∣E
(

tr
{

(g′(Hω) − g′(H1
ω))i[HL,X ](1 − JR+1)

})∣

∣ ≤ CpR
−p . (7.9)

By (7.8) and (7.9),
∣

∣E (tr {g′(Hω)i[HL,X ]JR+1}) − E
(

tr
{

g′(H1
ω)i[HL,X ]JR+1

})
∣

∣ ≤ CpR
−p .
(7.10)

Plugging (7.7) into the latter yields (7.5). The expression in (7.6) follows by
expanding the trace other the basis of eigenfunctions. �

However although the limit exists it is very likely that the quantity in (7.6)
will not be zero, even under strong localization properties of the eigenfunctions
such as (SULE) (see [DRJLS]) or (WULE) (see Definition 2 below)6. This can
be understood from the fact that the frontier of JR = 1x≤R intersects classical
orbits, creating thereby spurious contributions to the total current. The quantum
counter part of this picture is that although the expectation of i[H(0, V ),X ] in
an eigenstate of H(0, V ) is zero by the Virial Theorem this is not true anymore
if this commutator is multiplied by JR = 1<R. Of course if JR commutes with
H(0, V ) then the sum in (7.6) is zero.

One way to prevent spurious contributions to the current, is to select the
eigenfunctions living in the region {x ≤ R}, rather than multiplying the velocity
term i[HL,X ] by 1≤R. In (7.13) below we shall introduce the regularization
JR =

∑

En∈I EH(0,V )({En})1x≤REH(0,V )({En}). Roughly, it yields a factor of

the form 〈ϕn,m,1x≤Rϕn,m〉 that is small for eigenfunctions ϕn,m living far from
the region {x ≤ R}. What we need is therefore (i) a sufficient decay in |X−X ′| of

6 We note that a similar quantity appears in [EGS].
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‖1XEH(0,V )({En})1X′‖ and (ii) a summability condition over En’s in I . Such a
signature of localization has been discussed in [Ge], and has been called (WULE),
for Weakly Uniformly Localized Eigenfunctions.

Let T (X) = (1 + |X |2)ν , ν > d/4. It is well known for Schrödinger operators
that tr(T−1EH(0,V )(I)T

−1) <∞, if I is compact (e.g. [KKS,GK3]). We set

µ(J) := tr(T−1EH(0,V )(J ∩ I)T−1) <∞. (7.11)

Definition 2 (WULE). Assume H(0, V ) has pure point spectrum in I with
eigenvalues En. Let µ be the measure defined in (7.11). We say that H(0, V ) has
(WULE) in I, if there exist a mass γ > 0 and a constant C such that for any
En ∈ I and X1, X2 ∈ Z

2,

‖1X1EH(0,V )({En})1X2‖ ≤ Cµ({En})‖T1X1‖‖T1X2‖e
−γ|X1−X2|. (7.12)

Remark 10. The measure µ in (7.11) is the one that appears in the General-
ized Eigenfunctions Expansion (GEE) as in [Si,KKS], its kernel being given by
Pλ := EH(0,V )({λ})/µ({λ}). So (7.12) asserts that ‖1X1PEn

1X2‖ decays ex-
ponentially. We further note that alternatively to (7.12), one could assume that
‖1X1ϕn,m‖L2‖1X2ϕn,m‖L2 ≤ C‖T−1ϕn,m‖2‖T1X1‖‖T1X2‖e

−γ|X1−X2|, with the
(ϕn,m)’s being an orthonormalized basis of eigenfunctions of eigenvalue En ∈ I .

Theorem 3. Assume that H(0, V ) has (WULE) in I. Then

JR =
∑

En∈I

EH(0,V )({En})1x≤REH(0,V )({En}) (7.13)

regularizes H(0, V ), and thus also H(V0, V ), in the sense that C1 and C2 hold.
Moreover the edge conductances are quantized, and one has: σreg

e (g, 0, V ) = 0
and σreg

e (g, V0, V ) = N if I ⊂]BN , BN+1[ for some N ≥ 0.

Remark 11. An other possible regularization is to use the stronger localization
signature called (SULE) introduced in [DRJLS] (see also [GDB,GK1]). It re-
quires an exponential decay of the eigenfunctions of the form ‖1Xϕn‖L2 ≤

Ce(log |Xn|)2e−γ|X−Xn| with centers of localization Xn = (xn, yn) ∈ Z
2. Then

one can show that JR =
∑

xn≤R |ϕn〉〈ϕn| satisfies C1 and C2, with in addition

σreg
e (g, 0, V ) = 0 and σreg

e (g, V0, V ) = N if I ⊂]BN , BN+1[, N ≥ 0.

Remark 12. Let H(0, Vω,+) = HL + Vω,+ be a random operator as in (7.4) and
hypotheses on u and the ωi’s are as in [CH,Wa,GK3] (also [DMP]). It can be
noted that the percolation estimates due to [CH,Wa] are still effective in the
region where the potential is zero. The Wegner estimate given in [CH] is in-
sensitive to this modification as well. Since for energies away from the Landau
levels no eigenfunction can live in the left region, it is natural to expect a mod-
ified version of the multiscale analysis performed in [CH,Wa,GK3] to hold (or
equivalently a version of the fractional moment method developed in [AENSS]
if the support of the single bump u covers a unit cube). This is done in [CGH]
where localization is proved away from the Landau levels. In particular the fol-
lowing result holds true: For N ∈ N, there exists constants KN (depending on
the parameters of the model, except B), so that for B large enough, and if g is

s.t. dist(suppg′, {BN , BN+1}) ≥ KN
log B

B for some N ≥ 0, then H(0, Vω,+) has
(WULE) in I for P-a.e. ω and Theorem 3 applies.
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Proof. To show C1, note that for all φ ∈ H and A ⊂ R
2:

∥

∥

∥

∥

∥

∑

En∈I

EH(0,V )({En})1AEH(0,V )({En})φ

∥

∥

∥

∥

∥

2

(7.14)

≤
∑

En∈I,m≥1

‖1Aϕn,m‖2 |〈ϕn,m, φ〉|
2 ≤ ‖φ‖2. (7.15)

where (ϕn,m)m≥1 denotes an orthonormalized basis of eigenfunctions of energy
En ∈ I . With A = {x ≤ R} the last bound yields ‖JR‖ ≤ 1. Next, use the
first bound in (7.15) with A = {x > R} together with the Lebesgue Dominated
Convergence Theorem to get that JR → EH(0,V )(I).

We turn to C2. Write [HL,X ] =
∑

x2∈Z
[HL,X ]1(x2,0) as in Section 4. We get

‖g′(H(0, V ))i[HL,X ]JR‖1

≤
∑

En∈I

∑

X1,x2

∥

∥g′(H(0, V ))i[HL,X ]1(x2,0)EH(0,V )({En})1X1EH(0,V )({En})
∥

∥

1

≤ C
∑

En∈I

∑

X1,x2

‖1(x2,0)EH(0,V )({En})1X1‖2‖1X1EH(0,V )({En})‖2, (7.16)

where the summation is over X1’s s.t. x1 ≤ R; in the last bound we used that
‖g′(H(0, V ))i[HL,X ]‖ ≤ C. Next, the exponential decay due to (7.12) carries
over to Hilbert-Schmidt operator kernels, since

‖1X1EH(0,V )({En})1X2‖
2
2 ≤ µ(I)‖T1X1‖‖T1X2‖‖1X1EH(0,V )({En})1X2‖.

It ensures that for any given x1 ≤ R, the sum over y1, x2 ∈ Z converges, while
∑

n µ({En}) = µ(I) < ∞ takes care of the summation over n. To complete the
argument it is thus enough to show summability in x1 ≤ −2. This will come
from the fact that eigenfunctions cannot live far inside the region {x ≤ 0}. More
precisely, for x1 ≤ −2, let Λ be a box centered at X1 = (x1, y1) and of radius
|x1| − 1, and 1̃Λ be a smooth version of 1Λ, s.t. 1̃ΛV 1+ = 0. Pass 1̃Λ through
H(0, V ) = HL + V 1+ in 1̃Λ(H(0, V ) − En)EH(0,V )({En}) = 0; multiply on the

left by 1X1(HL −En)−1; use Combes-Thomas to control the resolvent of HL. It
follows that ‖1X1EH(0,V )({En})‖ decays exponentially in |x1|

7. �

Remark 13. Notice that the JR of (7.13) considered in Theorem 3 also reads

JR = s− lim
T→∞

1

T

∫ T

0

eitH(0,V )EH(0,V )(I)1x≤REH(0,V )(I)e
−itH(0,V )dt. (7.17)

We expect that one can contruct a regularization in the spirit of (7.17), assuming
only that H(0, V ) exhibits dynamical localization [A,GDB,GK1] in I .8

7 An alternetive to this last step is to exploit the decay in the region {x ≤ 0} coming from
g′(H(0, V )) = g′(H(0, V )) − g′(H(0, 0)).

8 Note that the form (7.17) is close to the regularization considered in [EGS].
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A. Appendix A: Some decay estimates

For g ∈ C∞
c (R), let g̃n be a quasi-analytic extension of g of order n ≥ 1 of the

form

g̃n(u+ iv) = ρ(u, v)Sng̃(u+ iv), Sng̃(u+ iv) =

n
∑

k=0

1

k!
g(k)(u)(iv)k, (A.1)

where ρ(u, v) = τ(v/〈u〉); the function τ is smooth such that τ(t) = 1 for |t| ≤ 1
and τ(t) = 0 for |t| ≥ 2. For H as in (2.1), the Helffer-Sjöstrand formula [HeSj,
HuSi] reads

g′(H) = −
1

π

∫

∂̄g̃n(u+ iv)(H − u− iv)−2dudv, ∂̄ =
1

2
(∂u + i∂v) . (A.2)

One has ∂̄g̃n(u+ iv) = (∂̄ρ(u, v))Sng̃(u+ iv)+ρ(u, v)∂̄Sng̃(u+ iv). But a simple
computation yields: ∂̄(Sng̃)(u+ iv) = 1

2n!g
(n+1)(u)(iv)n. As a consequence,

∂̄g̃n(u+ iv) = ∂̄ρ(u, v)
n

∑

k=0

1

k!
g(k)(u)(iv)k +

ρ(u, v)

2

1

n!
g(n+1)(u)(iv)n. (A.3)

Since u takes values in suppg′ compact, the usual Combes-Thomas estimate
is sufficient for our purpose [CT], namely,

‖1x(H − z)−11y‖ ≤
(

C
η

)

exp (−cη|x− y|) , η = dist(u+ iv, σ(H)) , (A.4)

with constants C, c > 0 depending on g. In practice, (A.4) will be used in com-
bination with Lemma 4 and Lemma 3. To conclude we shall use the following
lemma.

Lemma 2. Let H and g be as above, g̃ be the quasi-analytic extension of g to
the order n given by (A.1), and η = dist(u+ iv, σ(H)). Let fL,κ(η) = η−κe−cηL

for some κ ≥ 0 and L > 0. For any m ≥ 1, if n ≥ m + κ, there exists a
constant c depending only on n,m, κ and on g (through its support and ‖gk‖∞,
k = 0, 1, · · · , n+ 1), such that

∫

∣

∣∂̄g̃n(u+ iv)
∣

∣ fL,κ(η)dudv ≤
c

Lm
. (A.5)

Remark 14. If g is chosen to be Gevrey of class a > 1, then following [BGK] the

integral in (A.5) decays sub-exponentially like exp(−cL1/a′

) with any a′ > a.

Lemma 3. Let χ1 and χ2 be two smooth functions localized on compact regions
of R

2. Let χ̃2 be a smooth function s.t. χ̃2 = 1 on the support of χ2, and denote
by R(z) the resolvent of HL + V = Π2

x + Π2
y + V . Then, with α standing for

either x or y,

‖χ1R(z)Παχ2‖
2 (A.6)

≤ 2(|z| + ‖V ‖∞ + 2‖pxχ2‖
2
∞ + 4‖pyχ2‖

2
∞ + ‖Bxχ2‖

2
∞)‖χ1R(z)χ̃2‖

2

+2‖χ1χ̃2‖∞‖χ1R(z)χ̃2‖.
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As a consequence, let X̃ be a smooth function equal to 1 on the support of X ′

(typically, X̃ = 1 on R × [− 1
4 ,

1
4 ], and X̃ = 0 outside R × [− 1

2 ,
1
2 ]), then

‖χ1R(z)[H,X ]χ2‖
2 (A.7)

≤ (C + 2|z|+ 2B‖xχ2X‖2
∞)‖χ1R(z)X̃ χ̃2‖

2 + 2‖χ1X̃χ2‖∞‖χ1R(z)X̃χ2‖,

where C depends on V , X ′, X ′′, X̃ and χ2 as in (A.6), i.e. through their sup

norm. In particular, if the supports of χ1 and X̃χ2 are disjoints, one has

‖χ1R(z)[H,X ]χ2‖ ≤ (C + 2|z|+ 2B‖xχ2X‖2
∞)

1
2 ‖χ1R(z)X̃ χ̃2‖ . (A.8)

Proof. We have to bound ‖χ2ΠαR(z)χ1ϕ‖2, with ϕ ∈ C∞
c . We get

‖χ2ΠαR(z)χ1ϕ‖
2

= 〈R(z)χ1ϕ,Παχ
2
2ΠαR(z)χ1ϕ〉

= 〈R(z)χ1ϕ, (Παχ
2
2)ΠαR(z)χ1ϕ〉 + 〈R(z)χ1ϕ, χ

2
2Π

2
αR(z)χ1ϕ〉. (A.9)

Using that (Παχ
2
2) = (2(pyχ2) − Bxχ2)χ2 = χ̃2(2(pyχ2) − Bxχ2)χ2, and that

ab ≤ 1
2a

2 + 1
2b

2, we have

|〈R(z)χ1ϕ, (Παχ
2
2)ΠαR(z)χ1ϕ〉|

≤ ‖2(pyχ2) −Bxχ2‖∞‖χ̃2R(z)χ1ϕ‖‖χ2ΠαR(z)χ1ϕ‖

≤
1

2
‖2(pyχ2) −Bxχ2‖

2
∞‖χ̃2R(z)χ1ϕ‖

2 +
1

2
‖χ2ΠαR(z)χ1ϕ‖

2(A.10)

Combining (A.9) and (A.10) with α = x, y, yields

1

2
‖χ2ΠxR(z)χ1ϕ‖

2 +
1

2
‖χ2ΠyR(z)χ1ϕ‖

2

≤
1

2
(4‖pxχ2‖

2
∞ + (2‖pyχ2‖∞ + ‖Bxχ2‖∞)2)‖χ̃2R(z)χ1ϕ‖

2

+
∣

∣〈R(z)χ1ϕ, χ
2
2(Π

2
x +Π2

y )R(z)χ1ϕ〉
∣

∣

≤
1

2
(4‖pxχ2‖

2
∞ + 8‖pyχ2‖

2
∞ + 2‖Bxχ2‖

2
∞)‖χ̃2R(z)χ1ϕ‖

2

+(|z| + ‖V ‖∞)‖χ2R(z)χ1ϕ‖
2 + ‖χ2χ1ϕ‖‖χ2R(z)χ1ϕ‖.

Inequality (A.6) follows. As for (A.7), notice that [H,X ] = −2iΠyX ′ − X ′′ =

(−2iΠyX ′−X ′′)X̃ . We thus apply (A.6) with (X ′χ2) in place of χ2. The lemma
follows. �

B. Appendix B: Some trace estimates

Lemma 4. Let V be a bounded potential, and denote by R1 and R2 the resolvents
of operators H1 and H2 as in (2.1). Set ηi = dist(z, σ(Hi)), i = 1, 2. There exists
C1, C2 > 0 such that for any (x, y) ∈ R

2, and H1 and H2 s.t. ‖V1 − V2‖∞ <∞,

‖R1(z)R2(z)V 1(x,y)‖1 ≤
C1‖V 1(x,y)‖∞

η1η2
(1 + C2‖(V1 − V2)‖∞) , (B.1)
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and

‖R1(z)V 1(x,y)R2(z)‖1 ≤
C1‖V 1(x,y)‖∞

η1η2
(1 + C2‖(V1 − V2)‖∞) . (B.2)

Proof. First note that setting χ(x,y) = V 1(x,y)/‖V 1(x,y)‖∞, it is enough to

bound ‖R1(z)R2(z)χ(x,y)‖1 and ‖R1(z)χ(x,y)R2(z)‖1 with |χ(x,y)| ≤ 1 and sup-

ported on the unit cube centered at (x, y). Now choose M ∈ R below the spec-
trum of H1 and H2.

We first prove (B.2). By the resolvent identity,

‖R1(z)χ(x,y)R2(z)‖1 ≤
C(M)

η1η2
‖R1(M)χ(x,y)R2(M)‖1

≤
C(M)

η1η2
‖R1(M)χ(x,y)R1(M)‖1(1 + ‖(V2 − V1)R2(M)‖)

≤
C(M)

η1η2
‖R1(M)|χ(x,y)|R1(M)‖1(1 + ‖(V2 − V1)R2(M)‖).

And (B.2) follows since ‖R1(M)|χ(x,y)|R1(M)‖1 = ‖R1(M)
√

|χ(x,y)|‖2 < C uni-

formly in (x, y), e.g. [Si] [GK2, Lemma A.4]. We turn to (B.1). By the resolvent
identity,

‖R1(z)R2(z)χ(x,y)‖1 ≤
C(M)

η1
‖R1(M)R2(z)χ(x,y)‖1

≤
C(M)

η1
‖R2(M)R2(z)χ(x,y)‖1(1 + ‖R1(M)(V2 − V1)‖)

≤
C(M)

η1η2
‖R2(M)2χ(x,y)‖1(1 + ‖R1(M)(V2 − V1)‖).

And (B.1) follows since ‖R2(M)2χ(x,y)‖1 < C uniformly in (x, y), e.g. [Si][GK2,

Lemma A.4]. �

Lemma 5. Suppose I = [a, b] ⊂]BN , BN+1[, and pick a switch function g s.t.
suppg′ ⊂ I. Suppose that V1(x, y) > b if x < −R for some R > 0 (i.e. V1 is a
left confining potential). Then g′(H(V1, 0))i[HL,X ] is trace class.

Proof. Technical details are similar to the ones used to prove Theorem 1 and
Theorem 2. We thus only sketch the main ideas. We split g′(H(V1, 0))i[HL,X ]
in two terms: g′(H(V1, 0))1x<−Ri[HL,X ] and g′(H(V1, 0))1x≥−Ri[HL,X ]. Let
β = BN+1 + inf(V11−). Note that g′(H(V1, 0) + β1x>−R) = 0 for I does not in-
tersect the spectrum of H(V1, 0)+β1x>−R (which starts above b). The first term
can thus be seen to be trace class by decomposing {g′(H(V1, 0))− g′(H(V1, 0) +
β1x>−R)}1x<−Ri[HL,X ] with the Helffer-Söjstrand formula and using the re-
solvent identity in the spirit of the proof of Theorem 1 and Theorem 2. The
second term is seen to be trace class by noting that g′(HL) = 0 and by consid-
ering {g′(H(V1, 0))− g′(HL)}1x>−Ri[HL,X ] in the same way (taking advantage
of H(V1, 0) −HL = V11−). �
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