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ABSTRACT. We justify the linear response theory for an ergodic Schrodinger
operator with magnetic field within the non-interacting particle approxima-
tion, and derive a Kubo formula for the electric conductivity tensor. To achieve
that, we construct suitable normed spaces of measurable covariant operators
where the Liouville equation can be solved uniquely. If the Fermi level falls
into a region of localization, we recover the well-known Kubo-Stfeda formula
for the quantum Hall conductivity at zero temperature.
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1. INTRODUCTION

In theoretical works, the electric conductivity tensor is usually expressed in terms
of a “Kubo formula,” derived via formal linear response theory. The importance
of this Kubo formula is enhanced by its links with the quantum Hall conductivity
at zero temperature. During the past two decades a few papers managed to shed
some light on these derivations from the mathematical point of view, e.g., [P, Ku, B,
NB, AvSS, BES, SB1, SB2, AG, Na, ES, AES]. While a great amount of attention
has been brought to the derivation of the quantum Hall conductivity from a Kubo
formula, and to the study of this conductivity itself, not much has been done
concerning a controlled derivation of the linear response and the Kubo formula
itself; only the recent papers [SB2, Na, ES, AES, CoJM] deal with this question.

In this article we consider an ergodic Schrodinger operator with magnetic field,
and give a controlled derivation of a Kubo formula for the electric conductivity ten-
sor, validating the linear response theory within the noninteracting particle approx-
imation. For an adiabatically switched electric field, we then recover the expected
expression for the quantum Hall conductivity whenever the Fermi energy lies either
in a region of localization of the reference Hamiltonian or in a gap of the spectrum.

To perform our analysis we develop an appropriate mathematical apparatus for
the linear response theory. We first describe several normed spaces of measurable
covariant operators which are crucial for our analysis. We develop certain analytic
tools on these spaces, in particular the trace per unit volume and a proper def-
inition of the product of two (potentially unbounded) operators. (Similar spaces
and their relevance were already discussed in [BES].) We then use those tools to
compute rigorously the linear response of the system forced by a time dependent
electric field. This is achieved in two steps. First we set up the Liouville equa-
tion which describes the time evolution of the density matrix under the action of
a time-dependent electric field, in a suitable gauge with the electric field given by
a time-dependent vector potential. In a standard way, this evolution equation can
be written as an integral equation, the so-called Duhammel formula. Second, we
compute the net current per unit volume induced by the electric field and prove
that it is differentiable with respect to the electric field at zero field. This yields the
desired Kubo formula for the electric conductivity tensor. We then push the anal-
ysis further to recover the expected expression for the quantum Hall conductivity,
the Kubo-Stteda formula.

Our derivation of the Kubo formula is valid for any initial density matrix { =
f(H) with a smooth profile of energies f(F) that has appropriate decay at high
energies. In particular, the Fermi-Dirac distributions at positive temperature are
allowed. At zero temperature, with the Fermi projection P(¥F) as the initial profile,
our analysis is valid whenever the Fermi energy FEp lies either in a gap of the
spectrum or in a region of localization of the reference Hamiltonian. The latter
is actually one of the main achievements of this article. There is indeed a crucial
difference between PPr) with Er in a gap (or similarly f(H), with f smooth with
decay at high energies) and P(Pr) with Ep in a region of localization: in the first
case the commutator [z, P(FF)] is a bounded operator while it is unbounded in the
second case. Dealing with the unbounded commutator [z, p(Er )], which appears
naturally in the Kubo-Stfeda formula, forces us to use the full theory of the normed
spaces of measurable covariant operators we develop.
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We now sketch the main points of our analysis. We consider a system of non-
interacting quantum particles in a disordered background, with the associated one-
particle Hamiltonian described by an ergodic magnetic Schrodinger operator

Hy,=(—iV —A,)? +V, on H:=L*R%, (1.1)

where the parameter w runs in the probability space (2,P), and for P-a.e. w we
assign a magnetic potential A, and an electric potential V,,. The precise require-
ments are described in Assumption 4.1 of Section 4. Briefly, A, and V,, belong to
a very wide class of potentials which ensures that H,, is essentially self-adjoint on
C%°(R%) and uniformly bounded from below for P-a.e. w. In particular no smooth-
ness assumption is required on V,. The probability space (2, P) is equipped with
an ergodic group {7(a); a € Z%} of measure preserving transformations. The cru-
cial property of the ergodic system is that it satisfies a covariance relation: there
exists a unitary projective representation U(a) of Z? on L?(R?), such that for all
a,b € Z¢ and P-a.e. w we have

U(a)H,U(a)" = Higw, (1.2)

Ula)xpU(a)" = Xbta, (1.3)
where y, denotes the multiplication operator by the characteristic function of a unit
cube centered at a. Operators that satisfy the covariance relation (1.2) will be called
covariant operators. If A, = A is the vector potential of a constant magnetic field,
the operators U(a) are the magnetic translations. Note that the ergodic magnetic
Schrédinger operator may be random, quasi-periodic, or even periodic.

At time t = —oo, which we take as reference, the system is in equilibrium in
the state given by a one-particle density matrix ¢, = f(H,) where f is a non-
negative function with fast enough decay at infinity. At zero temperature, we have
(o = pLEr) = X(—o0,Er](Hy), the Fermi projection. It is convenient to give the
technical statement of the condition on (, in the language of the normed spaces
developed in Section 3. Hence we postpone it to Section 5 where it is stated as
Assumption 5.1. We note here, however, that the key point in that assumption is
that

IE{ka CwX0||§} < 00, or equivalently IE{H[xk, Cw]XO”;} < 00, (1.4)

for k =1,---,d, where ||S||2 denotes the Hilbert-Schmidt norm of the operator S.
(This is essentially the condition identified in [BES].)

Of course, if (, = Pu(,EF) where Ef falls inside a gap of the spectrum of H,,
or {, = f(H,) with f smooth and appropriately decaying at high energies, then
(1.4) is readily fulfilled by general arguments (e.g. [GK2]). The main challenge is
to allow for the Fermi energy Er to be inside a region of localization, as described
for random operators in [AG, GK1, GK3, AENSS|. Note that the existence of
these regions of localization has been proven for random Landau Hamiltonians
with Anderson-type potentials [CH, W, GK4], and that assumption (1.4) holds in
these regions of localization [GK1, BoGK].

Under this assumption, as expected, the current is proved to be zero at equilib-
rium (Lemma 5.7):

T{Vj,wa} =0, j =1,2,.. .7d7 (15)

where the velocity operator v, is the self-adjoint closure of i[H,,,x;], initially
defined on C°(R?). Here 7 denotes the trace per unit volume, and reads, for
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suitable covariant operators Y,, (applying the Birkhoff ergodic theorem),
T(Yy) =E{tr{xoYuxo}} = j:leoo ﬁtr {xa,Yoxa,} forP-ae. w, (1.6)

where Ar denotes the cube of side L centered at 0.

We then slowly, from time ¢ = —oco to time ¢t = 0, switch on a spatially homoge-
neous electric field E; i.e., we take (with t_ = min {¢,0}, ¢4+ = max {¢,0})
E(t) =™ E. (1.7

In the appropriate gauge, the dynamics are now generated by an ergodic time-
dependent Hamiltonian,
H,(t) = (—iV - A, — F(t))> + V,,(z) = Gt)H,G(t)*, (1.8)

where
t

F(t) :/ E(s)ds = (e";‘ +t+) E, (1.9)

— 00

and G(t) = e®F®? is a gauge transformation on L?(R%). (Note that, if ¥y is a
solution of i0ypy = H,,(¢)1(t) then, at least formally,

10, G* ()b = (Hy + E(t) - 2)G* (1)r

which represents E(t) in a more familiar way via a time dependent scalar potential.
This fact is made precise for weak solutions. See Subsection 2.2.)

It turns out that for all ¢ the operators H,(t) are self-adjoint with the com-
mon domain D = D(H,), and H,(t) is bounded from below uniformly in t.
Thanks to these facts, a general theory [Y, Theorem XIV.3.1] of time evolution for
time-dependent operators applies: there is a unique unitary propagator U, (t, s),
i.e., a unique two-parameters family U, (¢, s) of unitary operators, jointly strongly
continuous in ¢ and s, and such that U, (t,7)U,(r,s) = U,(t,r), U,(r,r) = I,
U, (t,s)D =D, and i0, U, (t, s)p = H(t)U,(t, s)y for all ¢ € D.

A crucial advantage of our choice of gauge is that H,(t) is a covariant opera-
tor for all ¢, which ensures that the unitary propagator U, (t,s) is also covariant.
This is of great importance in calculating the linear response outside the trace per
unit volume, taking advantage of the centrality of this trace, a key feature of our
derivation.

To compute the time evolution of the density matrix g, (t), we shall have to set
up and solve the Liouville equation which formally reads

1010w (t) = [Hu(t), 0w (t)]
{ lim; oo 00 (t) = Cu ' (1.10)

where (, is the initial density matrix at ¢ = —oo. (Thus (, = Pu(,EF ) at zero

temperature.) We shall also give a meaning to the net current per unit volume
(area) in the j-th direction, j = 1,---,d, induced by the electric field, formally
given by
Jj(ﬁ, E; Cw) = T(Vj,w (O)Qw(o)) - T(Vj,wa) = T(Vj,w(o)gw(o))a (1'11)
with v;,(0), the self adjoint closure of i[H,,(0), z;] defined on C°(R%), being the ve-
locity operator in the j-th direction at time ¢. Note that v; ., (0) = G(0)v;,G(0)* =
Vjw = 2F;(0).
We remark that there is an alternative approach [ES, AES] to a derivation of the
Kubo-Streda formula for the quantum Hall current in a two dimensional sample,
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based on the calculation of a conductance rather than a conductivity. Conductance
is the linear response coefficient relating a current to the electric potential difference,
whereas conductivity relates a current density to the electric field strength. In
[ES, AES] the affect of a finite potential drop is analyzed by considering the affect
of adding to the Hamiltonian a term g(t)A; with g(¢) a time dependent scalar
coupling and A (z) = Ai(x1) — £1 as 1 — +oo a smooth switch function. This
term models the effect of a modulated (in time) potential difference between the
left and right edges of a physical sample, with the edges formally considered to be
located at x; = +o00. With g(¢) of the form g(¢t) = ¢(t/7) with ¢ a fixed function,
an expression for the net current across the line o = 0 has been derived, which
in the adiabatic (7 — o0) limit gives the corresponding Kubo-Stfeda formula for
continuum operators with a gap condition [ES] and for discrete operators with a
localization assumption [AES].

Let us now briefly describe the normed spaces of measurable covariant operators
we construct to carry out this derivation — see Section 3 for their full description.
We let H. denote the subspace of functions with compact support, and set £ =
L(H., H) to be the vector space of linear operators on H with domain H,. (not
necessarily bounded). We introduce the vector space K,,. of measurable covariant
maps Y, : Q — L; where we identify maps that agree P-a.e. We consider the
C*-algebra

Koo ={Yu € Kine; IYolloo <00}, where Vo[l = Yol lLe@p - (1.12)

Bounded functions of H,(t) as well as the unitary operators U, (t, s) belong to this
algebra.

However, since we must deal with unbounded operators (think of [z, pLEF )] with
EF in a region of localization), we must look outside K., and consider subspaces

of IC,,c which include unbounded operators. We introduce norms on K, given by

1
IYol, = Etr{xolYolxo}: 1Yol = {ElYoxoll3}? (1.13)
and consider the normed spaces
K = {Y, € Koo, |Yoll; < 00}, i=1,2. (1.14)

We denote the (abstract) completion of ICEO) in the norm ||-||, by K, i = 1,2. In
principle, elements of the completion /; may not be identifiable with elements of
Kme: they may not be covariant operators defined on the domain H.. Since it is

important for our analysis that we work with operators, we set KC; = Kpne N K;.
That is,

Ki ={Y, € K, Yo, < o0} . (1.15)

(We are glossing over the technical, but important, detail of defining the norms
1Y ll; on Kpne. In fact, we shall do this only for locally bounded operators Y,, — see
Definition 3.1(iii) — for which the absolute value |Y,,| may be defined.)

It turns out that Cy = Ko (Proposition 3.7), and the resulting set is a Hilbert
space with inner product ((Y,,, Z,)) = Etr{(Y,x0)*(Zox0)}. However, K; # K;
(Proposition 3.13), and the dense subspace Kp is not complete. Nonetheless, it
represents a natural space of unbounded covariant operators on which the trace per
unit volume (1.6) is well defined. The trace per unit volume 7 is naturally defined
on K1, where it is bounded by the Xy norm, and hence it extends to a continuous
linear functional on Ky; but (1.6) is only formal for Y, € K; \ K;.
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There is a natural norm preserving conjugation on the spaces K;, given by Y, b=
(Yw*)\Hca which extends to a conjugation on IC;. Moreover, the spaces K;, i = 1,2,
are left and right o,-modules, with left and right multiplication being explicitly
defined for B, € K, and Y, € K5 or K1 by

B, 1Y, =B,Y,, Y,0rB,=(B:o,Y.,H =Y, "B,. (1.16)
(It is not obvious that the latter equality makes sense!) The properties of left and
right multiplication, as well as the fact that they commute, can be read immediately
from (1.16). There is also a bilinear map ¢ : Kox Ky — K; with dense range, written
O(Yy, Zy,) = Yo, © Z,, such that T(Y,, o Z,,) = (Yo, F, Z.)).
Another crucial ingredient is the centrality of the trace per unit volume: if either
Y,, Z, € KyorY, €Ki and Z, € Koo, we have either

T(YyoZy) =T(ZuoY,) or T(Y,OrZy)=T(ZyoLY.). (1.17)

There is a connection with noncommutative integration: K, is a von Neumann
algebra, 7 is a faithful normal semifinite trace on Koo, K; = L (Ko, 7) for i = 1,2
— see Subsection 3.5. But our explicit construction plays a very important role in
our analysis.

The Liouville equation (1.10) will be given a precise meaning and solved in the
spaces IC; and Cy. Note that the assumption (1.4) is equivalent to [z;,(.] € Ko
for all j =1,2,...,d. (We will also have [z;,(,] € K; for all j =1,2,...,d. See
Remark (i) following Assumption 5.1, and Proposition 4.2.)

IfY, € K;, i =1,2,00, is such that RanY,, C D = D(H,(t)) and H,(t)Y, € K;,
and similarly for Y,,*, we set

[Hw(t)7yw]i = Hw(t)yw - (Hw(t)Ywi)i €.
Our first main result is

Theorem 1.1. Under Assumptions 4.1 and 5.1, the Liouville equation
100w (1) = [Ho(t), 0w (t)]3
{ limtﬂfoo Qw(t) = Cw (118)
has a solution in K1 N Ky, unique in both K1 and Ko, given by

o(t) = Tm Ults)(G) = lim U(ts) (Guls) (1.19)
= (o) — z[ dre™-U(t,r) ([E-x,(r)]), (1.20)

where
U(t,s)(Yo) =Us(t,s) O Yo OrUy(s,t) forY, e Ki,i=1,2, (1.21)
Cw(t) = G(t)ng(t)* = f(Hw(t)) (Cw = f(ch)) . (1'22)

We also have

0u(t) =U(L, 8)(2w(s)) s llew®ll; = lIcll; » (1.23)

for all t,s and i = 1,2,00. Furthermore, o,(t) is non-negative and if ¢, = PEr
then 0, (t) is an orthogonal projection for all t.

We actually prove a generalization of Theorem 1.1, namely Theorem 5.3, in which
the commutator in (1.18) is replaced by the Liouvillian (defined in Corollary 4.12),
the closure of Y,, — [H,(t),Y,]; as an operator on K;, i = 1,2. As a by-product
of the theorem, we prove that Ran g,,(t) € D and v, ,(t)o.(t) € K1, and hence the
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current 7 (v; ., (t) 0w, (t)) is well-defined for any time ¢. In particular, the net current
per unit volume J;(n,E; () is well defined and, since g,(¢) is non-negative, is a
real number.

Our next main contribution states the validity of the linear response theory, and
provides a Kubo formula.

Theorem 1.2. Letn > 0. Under Assumptions 4.1 and 5.1, the map E — J(n, E; ()
is differentiable with respect to E at E = 0 and the deriwative o(n; () is given by
0

Ujk(n; Cw) = a%k‘]j (na 0; Cw) =-7 {f—oo dr enrvj,w u(O)(_T) (i[mkv Cw])} ) (124)
where U (1) (Y,) = 7" e 01 Y, O e v,

Note that we prove a result stronger than the existence of the partial derivatives
of J(n,E; () at E = 0: we prove differentiability at E = 0.

Next, taking the limit  — 0, we recover the expected form for the quantum
Hall conductivity at zero temperature, the Kubo-St¥eda formula [St, ThKNN, B,
NB, BES, AG, Nal.

Theorem 1.3. Under Assumptions 4.1 and 5.1, if (, = Pu(,EF), an orthogonal
projection, then for all j,k=1,2,...,d, we have

oj5 )i lim o L) = i {PLE0) o [, P50 [, PP

},(1.25)

where [Z,,Yyolo = Zy, oY, =Y, 0 Z, € Kiif Z,,Y, € Ky. As a consequence, the
conductivity tensor is antisymmetric; in particular the direct conductivity is zero in
(BEr) _

all directions, i.c., o, ; 0 forj=1,2,...,d.

<

If the system is time-reversible the conductivity is zero in the region of localiza-
tion, as expected.

Corollary 1.4. Under Assumptions 4.1 and 5.1, if A, = 0 (no magnetic field),

we have O'](»iF) =0 foral j,k=1,2,...,d.

We remark that under Assumptions 4.1 and 5.1 ij,Pu(,EF)},[xk,PugEF)H is

JR— <&
an element of /C;, but may not be in Ky. (That is, it may not be representable as

a covariant operator with domain H.). In particular, the product ®r in (1.25) is
defined via approximation from C; and may not reduce to an ordinary operator
product. However, under a stronger localization assumption such as

E pr(EF)X 2 < Ceflmfyla, 1.26
w yli2

which holds throughout the regime in which (1.4) has been verified [GK1, BoGK],
the products in (1.25) reduce to ordinary products of operators, and we have
o\ = =T { P | |25, PO |, PP [} (1.27)

2. MAGNETIC AND TIME-DEPENDENT ELECTROMAGNETIC SCHRODINGER
OPERATORS

In this section we review some well known facts about Schrédinger operators
incorporating a magnetic vector potential A, and present a basic existence and
uniqueness result for associated propagators in the presence of a time-dependent
electric field.
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2.1. Magnetic Schrodinger operators. Let
H=H(A,V)=(-iV—-A)?+V on L*R%), (2.1)

where the magnetic potential A and the electric potential V' satisfy the Leinfelder-
Simader conditions:

e A(z) € L (R%:RY) with V- A(z) € L2 _(R?).
o V(z)=V,(x)-V_(z) with Vi (z) € L _(RY), Vi(z) > 0, and V_(x) relatively

loc

bounded with respect to A with relative bound < 1, i.e., there are 0 < a < 1
and (8 > 0 such that

IV_ul < allAg] + Bllwll for all ¥ € D(A). (2.2)

Leinfelder and Simader have shown that H(A,V) is essentially self-adjoint on
C>(R9) [LS, Theorem 3] (see also [CyFKS, Theorem 1.15], [Si2, Theorem B.13.4]),
with

Hyp = —Ap+2iA -V + (iV- A+ A%+ V)¢ for ¢ € CZ(RY). (2.3)
Note that (2.2) implies that for all o/ > a we have [RS2, Proof of Theorem X.18]
0.< (1, Vo) < o'(, —A¢) + e Bllwl*. (2:4)

A similar bound holds for H(A,V,) [LS, Eq. (4.11)]: for all &/ > a we have
V-l < o'[|H(A, V)i + 5255 Bllv - for all & € D(H(A, VL)), (2.5)

a’'—a

from which we immediately get the lower bound [K, Theorem V.4.11][RS2, Theorem
X.12]
o' B B
HA)V) > — i = — . 2.6
(AV) =z - A=) (= vaP (26)
But we can get a better lower bound. We have the a.e. pointwise inequality [LS,
Proof of Lemma 2] [BeG]

V(D] < [(=iV = A)9|  for all € CZ(RY). (2.7)
Thus it follows for all o/ > « that we have (using (2.4))
(W, Vo) < (9], Volbl) < o/ (o], —Al]) + 325 Bl19] 12 (2.8)

=o' |VIY[|]° + 2= Bl < o [|(=iV — A) 9|* + 2= 8| [¢]]?
< o/ (3, H(A, Vo)) + =2 Bl|w]?
for all ¢ € C°(R?). We conclude that

: o g
H(A,V) > RN vy Bl g (2.9)

For convenience we write

=@ f) =Pt (210)

and note that
H+~v>1. (2.11)
We also have the diamagnetic inequality

‘e—tH(A,V)w} < e HOV)|y| (2.12)
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for all ¢ € L2(R%) and ¢ > 0, see [CyFKS, Proof of Theorem 1.13]. Note that the
diamagnetic inequality and (2.9) imply (using [ t%e=*+)dt = I'(q)(z + A)~9)

(H(AV) + 06| < (HO,V) + X)) (2.13)

for all ¢ € L2(R%), A > ﬁ and ¢ > 0.

An important consequence of (2.13) is that the usual trace estimates for —A+V
are valid for the magnetic Schrodinger operator H (A, V'), with bounds independent
of A and depending on V only through a and 3. We state them as in [GK3, Lemma
A.4]. (We do not need the Leinfelder-Simader conditions here, just the conditions
for the diamagnetic inequality: A(x) € L2 _(R%4GRY), Vi(z) € L (R%RY), and
V_(z) relatively form bounded with respect to A with relative bound < 1. See
[CyFKS, Theorem 1.13] where this is shown for V_ = 0. The general case, with
V_ relatively bounded as above, is proved by an approximation argument, see [F,
Theorems 7.7, 7.9].)

Proposition 2.1. Let v > %. There is a finite constant T, 4 4.8, depending only
on the indicated constants, such that

tr{ @) (H(A,V) +7) 8 @) < T, (2.14)
where [[%]] is the smallest integer bigger than % and 7y is the constant defined in
(2.10). Thus, letting

Puas(E) = X[ o) (B) (B -+ 7)), (2.15)
we have

tr ()7 F(H) (2)7) < Tyl f @i ll oo < 00 (2.16)

for every Borel measurable function f > 0 on the real line.

Proof. The proposition follows once the estimate (2.13) is converted into an esti-
mate on traces, because then the well known trace estimates for —A + V', e.g.,
[GK3, Lemma A.4], finish the argument. Hence (2.14) follows from the following
lemma, with

A= (@)% (H(A, V) +7) 280 ()=

. (2.17)
B = (z)"* (H(0,V) +~) 5 z)7 |

using the fact that the operator (H(0,V) + ) —280 4 positivity preserving. O

Lemma 2.2. Let A and B be bounded positive operators on L2(R?), with B a
positivity preserving operator, such that

(v, A) <[], Bly]) for all ¥ € L*(RY). (2.18)
Then trA <trB.
Proof. First note that the lemma is obvious if we replace L2(R%) by ¢2(Z%), since
in this case we have a basis of positive functions (|d,| = d,). Note also that we may

assume tr B < oo without loss of generality.
For L2(R%), let H,, be the sub-Hilbert space with ortho-normal basis

- nd
{Xn,e =27 XA, n(2-mx); T € Zd}7
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where Ay (z) denotes the cube centered at x and of length L; and let P, be the
orthogonal projection onto H,. Note that P, is positivity preserving. Set

A, =P,AP, and B, =PF,BP, (2.19)

It follows from (2.18) and the fact that both B and P, are positivity preserving
that

(0, Ant) < (| Putp], BIEwtp) < ([, Bul])  for all ¢ € Hy,. (2.20)
Since H,, has a basis of positive functions, we get
trA, <trB, <trB. (2.21)
Thus VAP, is Hilbert-Schmidt, and it follows that
trv/AP,VA < trB. (2.22)
Since P,, — I strongly, we conclude that tr A < tr B. O
The velocity operator v = i[H,x], where x is the operator from L?(R?) to

L2(R%; C%) of multiplication by the coordinate vector x, plays an important role in
the linear response theory. To give precise meaning to v, we note that on C2°(R%)
we have

i[H,x] = 2(—iV — A). (2.23)

We let D = D(A) be the closure of (—iV — A) as an operator from L?(R%) to
L?(R% C?) with domain C2°(R?). Each of its components D; = D;(A) = (—i% -
Aj), j=1,....,d, is essentially self-adjoint on C°(R?) since A(z) € L (R%RY)
(see [Sil, Lemma 2.5]). We define

v=v(A)=2D(A) . (2.24)

Proposition 2.3. We have
(1): D(VH +v) C D(D). In fact there exists Co g < 00 such that

HD(H+7)_% < Cop. (2.25)

(ii): For all x € C°(R?) we have XD(H) C D(H) and
Hxy = xHyY — (Ax)Y —2i(Vy) -Dvy  for all € D(H). (2.26)
(iii): Let
Pa0p(E) = (B+7)3Ruas(B) = X[ o) (B) (B+7)HH2 L (27)
If f is Borel measurable function on the real line with ||f<T>d’,l,g||C>O < 00, the
- 1
bounded operator |D f(H)| = {f(H)D*Df(H.,)}> satisfies
tr {{a)"> [DFE)| (@)} < Todap (2.28)
where i,d,a,ﬁ < oo for v > d/4 and depends only on the indicated constants.

Proof. To prove (i), note that D*D = (—iV — A)? and by (2.8)
/ /

* 8< H+—
a— a—

/DD < (1+6)d(—iV—-A)?*-V_+ -6 (2.29)
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for o/ € (o, 1) and J such that (1 +0)a’ < 1. Choosing o/ and § such that

O/

B=v and (1+d)d' =1, (2.30)

a—ao

we have
(1-a/\D*D < H++ (2.31)
as quadratic forms. Since o/ = o/(«, 3) is strictly less than one, it follows that

D(D) C D(VH + ) and furthermore

_1 _1 1
(H+7) ?D*D(H+7)" % <

e —— 2.32
- 1—a'’ (2.32)

which gives (2.25) with Cf 5 = /==

1—a’ *
Part (ii) follows from (2.25), since the identity holds for ¢ € Cg° by (2.3). Part
(iii) is a result of combining Proposition 2.1, and the estimate

IDF(H)| < Cap(H+7)%|fI(H), (2.33)

which follows from (2.31) and monotonicity of the square root. O

We shall also need to consider commutators [z, f(H)] with functions of H. For
smooth functions, the easiest way to do this is to use the Helffer-Sjostrand formula
[HS, D]. Specifically, we restrict our attention to functions which are finite in one
of the following norms:

1o =3 [ 1@l du  m=12,.... (2:34)
r=0
If | fllm < oo with m > 2, then we have [HS, D]

f() = / af )z - H)Y, (2.35)

where the integral converges absolutely in operator norm:

IS < [ 1FE

Im

< e flfllm < o0, (2.36)

with ¢ independent of m > 2. Here z = x + 1y, f(z) is an almost analytic extension

of f to the complex plane, and df(z) = —%8—]‘(2’) dz dy, with 0; = 0, +40,. For
various purpose it is useful to note that

Juasen et

|Tm z|P
for m > p+ 1. (See [HuS, Appendix B| for details. Notation: <y >= /1 + [y|?.)
Note that if f € S(R) we have || f||m < oo for all m =1,2,....

< ¢ [ fllm < 00, (2.37)

Proposition 2.4. Let f € C(R) with || f||3 < oo . Then
(i): f(H)LZ(RY) c D(H)N D(x).
(ii): The operator [x, f(H)] is well defined on LZ(R?) and has a bounded closure:
there ewists a constant Co 3 < 00 such that

| || < Casllfls- (2:38)
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Proof. The Combes-Thomas argument [CT] shows that R(z)H. C D(x), with
R(z) = (H — 2)~ !, whenever Imz # 0 . In fact, we have R(2)H. C D(et)xl)
with the explicit estimate

where pu(z) = Cqo plImz|/((Rez) + |Imz|). (See [GK2, Theorem 1] for details in
this context. We denote by the same C,, g possibly different constants depending
only on the parameters « and ( given in (2.2).) We conclude that

1
Cu(z)lx—y|R(z)XyH < Cap Tma] for every unit cube yx, (2.39)

(Re z)
1 5, |Imz| < (Rez),
R < C < C [Im 2| 2.40
[xR(2)xyll < B ] = Gt {Iniz’ lIm z| > (Re z) , (2.40)

which gives (i) in light of (2.37).
Furthermore, we see that [x, R(z)] is well defined on H.. In particular, for
1 € H. N'D we have

[x,R(2)](H—2)¢Y = x¢p — R(z)x(H — 2)¢ , (2.41)

where (H — 2)¥ € H,, since H is local. As 1 is compactly supported, the compo-
nents of xv¢ are in D by Prop. 2.3ii. Thus

(H=-2)[x,R(2)](H—2)y = (H—2)x¢—x(H—z)yp = 2iD(A)y, (2.42)

where to obtain the last equality it is useful to consider ¢ € C¢° initially and pass
to 1 € H.ND by a limiting argument. Thus

[x,R(2)](H — 2)y = 2iR(z)D(A)R(z)(H — 2)¢ , (2.43)

whenever ¢ € H. N D, which is a domain of essential self-adjointness for H. Thus
(H — z)H.ND is dense, and we conclude that [x, R(z)] is a bounded operator with

x,R(z)] = 2iR(z)D(A)R(2) . (2.44)

Specifically we have

xR < 2||RE)VE+4])- ‘ﬁ

with the middle factor bounded by Proposition 2.3(iii), and the first and last factors
bounded by +/|z + 7v|/|Imz| and 1/|Imz| respectively. Plugging these bounds into
the Helffer-Sjostrand formula (2.35), and using (2.37), we find

D) IR (29

b U < Cop [IUFIMET < CopIfla<oo. (240
O

2.2. Time-dependent electric fields. Consider a quantum particle in the pres-
ence of a background potential V(z), a magnetic vector potential A(xz), and a time
dependent spatially uniform electric field E(t). We will refer to the time-dependent
self-adjoint generator of the unitary evolution as the Hamiltonian.

One’s initial impulse might be to add the electric potential E(¢)-z to the magnetic
Schrédinger operator H(A, V) and consider the Hamiltonian:

H(t)=HA,V)+E(t) -z = (—iV—A(@)? + V(z) + E(t) - . (2.47)

However, this choice is not dictated by the physics under consideration. In fact,
there is an infinite family of choices for the Hamiltonian, related to one another by
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time-dependent gauge transformations, all equally valid from the standpoint of the
underlying physics.

The operators defined by (2.47) suffer from the fact that they are unbounded
from below, and for general A,V it is not obvious if there is a unitary propagator
U(t, s) obeying

{060 = Hole)

However, there is a physically equivalent choice of Hamiltonian:
H(t) = (—iV — A —F(t)* +V(z) = HA+F(t),V), (2.49)
with F(¢ f Iy s)ds (with perhaps tg = —o0), for which the propagator can be

shown to exist for quite goncral A V. It turns out that there is a general theory of
propagators with a time dependent generator [Y, Theorem XIV.3.1] which applies
to H(t) but does not obviously apply to H(t). Note that H = H(to).

What is the justification for taking the Hamiltonian (2.49)?7 In classical elec-
trodynamics (Maxwell’s equations), one expresses the electric and magnetic field
E(z,t) and B(z,t) in terms of a “scalar potential” ¢(x,t) and a “vector potential”
A(z,t):

E(z,t) = —-0;A(x,t)— Vo(x,t),

B(z,t) = VxA(z,t). (2.50)

The key observation is that E and B are not changed if A and ¢ are perturbed by
a “gauge transformation”:

A(z,t) — A(z,t)+ Va(z,t),
d(x,t) +—  ox,t) — ra(x,t) .

In particular, A and ¢ are not uniquely determined by the “observable” fields E
and B. Note that a spatially uniform electric field E(¢) may be obtained from the
time dependent vector potential F(t).

This non-uniqueness carries over to one particle quantum mechanics. Consider
a Hamiltonian associated to an electron in the presence of the electromagnetic field
described by A(x,t) and ¢(z,t):

H(A(z,t),¢(x,t) = (—iV — A(z,1))* + ¢(x,t) , (2.52)

(2.51)

acting on L2(R%) (in units with the electric charge equal to one). To implement the
gauge transformation (2.51), we must also transform the wave function (x,t) by

(x,t) — @Dz t) . (2.53)
Indeed, if ¥ (x,t) obeys the Schrédinger equation
10 (x,t) = H(A(x,t), d(x,t))(z,t) (2.54)
then it is easy to check that, formally,
0@ (2, t) = —(8to¢(x,t))em(‘”’t)w(z t) + e @D9p(x,t)
S H(A (e, 1), (e, 0)e~C) — dyae, )] (e, 1)
= H(A(z,t) + Va(z,t), ¢(z,t) — dya(z, t))e’ @Dy (x, 1) . (2.55)
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Effectively the gauge transformation (2.53) implements a “moving frame” in L?(R4),
and we must transform the Hamiltonian accordingly to account for the shift in the
time derivative in Schrodinger’s equation.

The possibility always exists to “choose a gauge” with ¢ = 0 and work only
with A: take dia(z,t) = ¢(x,t), effectively replacing ¢ by zero and A by A +
ftto V(z,s)ds. Generally, this gauge transformation is not used in time independent
quantum mechanics, since it replaces a time-independent scalar potential with a
time-dependent vector potential, introducing an extra level complexity. However,
our Hamiltonian is intrinsically time-dependent, and there is not really any greater
complexity to be found working with A(z,t) in place of ¢(z,t).

For the problem at hand, we do not want to take the extreme step of setting the
scalar potential identically to zero. Instead it is convenient to fix a time independent
scalar potential ¢(z,t) = V(z) and a time dependent vector potential A(x,t) =
A(z)+ F(t) with F(¢) = ftto E(s)ds. This leads to the Hamiltonian H(t) presented

in (2.49). Note that on C°(R?) we have
H(t) = G(t) [(—iV - A)?+V]|G®)*, (2.56)
where G(¢) denotes the gauge transformation

[G(t)Y)(z) = T Te(z) . (2.57)

Repeating the formal calculation leading to (2.55), we find that if ¥ (¢) obeys
Schrodinger equation

i0pp(t) = H(t)y(1), (2.58)
then, formally,
iGH)* () = [(—iV — A)? + V +E(t) - 2] GA)*y(t) = HOGH)* (), (2.59)

although this begs the question of whether G(t)*1(t) is in the domain of either
E(t) -z or H(t).

While there is no physical reason to work with one particular gauge, it is com-
forting to know that the choice truly does not affect the results. One difficulty is
that we do not know (in general) if strong solutions to the Schrodinger equation

i0phr = H(t)y (2.60)

exist with H(t) given by (2.47). Thus we must consider weak solutions. Given a
time dependent Hamiltonian K (t) with C2°(R%) C D(K(t)) for all t € R, a weak
solution to the Schrédinger equation i0vy; = K (1) is a map t — v, € L?(R?) such
that

i0:(d, ) = (K(),¢br) forall ¢ e CE(RY). (2.61)

It is easy to see that the weak solutions of the Schrodinger equations (2.58) and
(2.60) are related by the gauge transformation G(t): 1) is a weak solution of (2.58)
if and only if the gauge transformed G(t)*1; is a weak solution of (2.60).

2.3. Time-dependent Hamiltonians and their propagators. We assume through-
out that A(xz) and V(x) satisfy the Leinfelder-Simader conditions and E(t) €
C(R;R?). (If in addition E(t) € L*((—o0,0];R?) we take ty = —00.)
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Proposition 2.5. H(t), given in (2.49), is essentially self-adjoint on C2°(R?) with

H(t) = H-2F(t)-(—iV —A)+F(t)? on C=(RY), (2.62)
= H-2F(t)-D(A)+F(t)* on D(H). (2.63)
Hence
D:=D(H)=D(H(t)) forallteR, (2.64)
and on D we have that for all t and s,
H(t) = H(s) — 2(F(t) — F(s)) - D(A) + (F(t)*> — F(s)?). (2.65)

In addition, all H(t) satisfy the lower bound given in (2.9):
H(t) > — 1L for allt € R. (2.66)
-«

Proof. Clearly A(z) + F(t) and V(z) satisfy the Leinfelder-Simader conditions
with the parameters a, 3 independent of ¢, hence H(t) is essentially self-adjoint
on CX(R?), (2.62) follows from (2.3), and we have (2.66). The equality (2.63)

follows from (2.62) and Proposition 2.3(i), and implies (2.64). O
Lemma 2.6. Let G(t) be as in (2.57). Then
Gt)D = D, (2.67)
H(t) = G@HG()*, (2.68)
D(A + F(t)) = D(A)-F()=G@t)DA)G(#)". (2.69)
Moreover, i[z;, H(t)] = 2D(A + F(t)) as quadratic forms on D N D(xj), j =
1,2,....d.
Proof. The lemma follows from (2.56) and Propositions 2.5 and 2.3. O
We now discuss the existence of a propagator U(t, s) satisfying
10U (t,s) = H(tH)U(t,s), U(s,s)=1. (2.70)
We note that
H(t)+~v>1 forallteR, (2.71)

where v is given in (2.10). We also set
Clt,s) = (H(t) — H(s)) (H(s) +7) " (2.72)
= (F(t) —F(s))- {-2D(A) + (F(¢t) + F(s))} (H(s) + 7).
By Proposition 2.3(i), we have
D) (H(s) + ) 7'|| < [DA) (4 9) 7|+ IF6) < Cas + [Fs)L (273)

with C,, s a finite constant. Since F(t) € C'(R;R?), we conclude that both C(t, s)
and -C(t,s) (with ¢ # s) are uniformly continuous and uniformly bounded in
operator norm for ¢, s restricted to a compact interval. Moreover,

C(t) = hm —C(t s) = 2E(@)-(D(A)—=F(@))(H(t)+ 7)_1 (2.74)
2E(t) - G(t)D(A) (H +7) " G(t)*
exists and is continuous in operator norm, and

[C@) < 2CaplE()]. (2.75)
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Theorem 2.7. The time-dependent Hamiltonian H(t) has a unique unitary prop-
agator U(t, s), i.e., there is a unique two-parameter family U (t,s) of unitary oper-
ators, jointly strongly continuous in t and s, such that

U, r)U(r,s) = U(ts) (2.76)
Uui,t)y = I (2.77)
Ut,sD = D, (2.78)
10U, s)y = H@U(, s)y forallyy €D, (2.79)
0 U(t,s)p = —U(t,s)H(s)y for allp € D. (2.80)

In addition, W(t,s) = (H(t)+~)U(t,s) (H(s)+~)" " is a bounded operator,
jointly strongly continuous in t and s, with

max{s,t}
[W(t,s)] < emmeeay IO, (2381)

the operators U(t,s) (H(s) +~) " and (H(t) +~) ' U(t,s) are jointly continuous
in t and s in operator norm, and

0 {U () (H(s) +7) 7} = HOUs) (Hs)+7)7, (282)
0 {(Ht) +7) 2 Ults)} = — (HO+9) *UE)H(s),  (2:89)
i operator norm.
Furthermore, if we define the unitary operators Uy (t, s), k=1,2,..., by
, i—1 A ,
Us(t, s) = it H (m+ 1) if m+ 5L <st<m+i, (2.84)
wherem € Z, i =1,2,... ,k, and
Uk(t,r) = Ug(t,s)Uk(s,r) for all t,s,r, (2.85)
then
U(t,s) (H(s)+~)"" = Jim U (t,s) (H(s) + y) (2.86)

in operator norm, uniformly for t, s restricted to a compact interval.

Proof. The uniqueness and unitarity of the propagator U (¢, s) follows from existence
and the fact that i9;¢; = H(t)¢; with H(t) self-adjoint implies 9 ||¢:||? = 0.

To prove the existence of the propagator we apply [Y, Theorem XIV.3.1] (see
also [RS2, Theorem X.70]) with

A(t) = —i(H(t) + 7). (2.87)

Note that
C(t,s) = A(t)A(s) ™t — T = (A(t) — A(s))A(s) L. (2.88)
The hypotheses of [Y, Theorem XIV.3.1] (and [RS2, Theorem X.70]) require that (a)
0 ¢ a(A(t)), (b) A(t) have a common domain, and (c) C(t, s) and C(t) = lim;_,s(t—
5)71C(t, s) are uniformly bounded and strongly continuous for ¢, s restricted to a
compact interval. Clearly D(A(t)) = D(H(t)) = D for all ¢, and it follows from
(2.71) that 0 ¢ o(A(t)) for all t. Boundedness and continuity of C(¢,s) and C(t)

were discussed before the statement of the theorem.
Thus the hypotheses of [Y, Theorem XIV.3.1] are satisfied. If we set

U(t,s) = e =70, s), (2.89)
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where ﬁ(t7s) is the propagator for the A(t) given in [Y, Theorem XIV.3.1] (and
[RS2, Theorem X.70]) if s < t, and U(t,s) = U(s,t)* if s > ¢, we obtain unitary
operators U(t, s), strongly continuous in ¢ and s, satisfying (2.76)-(2.79). To prove
(2.80), we use the chain rule: Since U(t,s)U(s,t) = I, it follows from (2.78) and
(2.79) that for ¢ € D we have, with ¢ = U(s,t)p,

0 = 09U, s)U(s,t)p =0sU(t,s)y +Ul(t,s)0sU(s,t) (2.90)
since D = U(s, t)D.

The estimate (2.81) is given in [Y, Theorem XIV.3.1]. A careful reading of the
proof of [Y, Theorem XIV.3.1], using our stronger hypotheses on C(t, s), shows that
the operators U(t, s) (H(s) + )" and (H(t) 4+ )~ ' U(t, s) are jointly continuous
in ¢t and s in operator norm, and we have (2.82). Since the adjoint operation is an
isometry in operator norm, (2.83) follows from (2.82). O

To compute the linear response, we shall make use of the following “Duhamel
formula”.

Lemma 2.8. Let U0 (t) = e~ For ally) € D and t,s € R we have

Ut,s)Y = Ut — s)p + i/t Ut —r)2F(r) - D(A) — F(r))U(r, )¢ dr.
) (2.91)
Moreover,

éimo Ut,s) = U (t —s) strongly. (2.92)

Proof. Eq. (2.91) follows simply by calculating 8,U) (s — t)U(t, )1 with ) € D,
using (2.78), (2.79), and (2.63). The strong limit in (2.92) follows from (2.91) for
vectors in D, and hence everywhere since all the operators are unitary. l

3. COVARIANT OPERATORS AND THE TRACE PER UNIT VOLUME

3.1. Measurable covariant operators. We fix the notation H = L2(R%) and let
‘H. denote the dense linear subspace of functions with compact support. We set
L = L(H.,H) to be the vector space of linear operators on H with domain H..
Elements of £ need not be bounded.

We also fix “magnetic translations”: for each a € Z? we define a unitary operator

Ula) = e %% T(a), with (T(a)y)(z) =¥(x —a), (3.1)
where S is a given d X d real matrix. Note that a — U(a) is a projective represen-
tation of the translation group Z¢ since

Ua)U () = e~ *5U(a+ ), (3.2)
and that U(a) leaves H,. invariant, in fact
Ula)xoU(a)" = Xota - (3.3)

Let (Q,P) be a probability space equipped with an ergodic group {7(a); a € Z%}
of measure preserving transformations. We study operator—valued maps A: Q — L,
which we will simply call operators A,. We identify maps that agree P-a.e., and
all properties stated are supposed to hold for P-a.e. w.
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Definition 3.1. Let A= A,: Q — L. Then

(i): A, is measurable if (o, A W) is a measurable function for all @, € He.
(Or, equivalently, if A, is strongly measurable on He, i.e., A v is a mea-
surable H-valued function for all € H..)

(ii): A, is covariant if

U(a)Au,U(a)" = Aray for all a € Z°. (3.4)
(iii): A, is locally bounded if
|AuXell < 00 and || x.Au| < 0o for all x € 7. (3.5)

We let K, denote the vector space of measurable covariant operators A,,, with
Kmep being the subspace of locally bounded operators. We define the Banach
space

’Coo = {Aw € ’Cmc; H|AwH|oo < OO} C ch,lba (36)

where

lAullce = A Lo .y - (3.7)

If A, € Koo, we identify A, with its extension to H (i.e., with its closure A). If we
define multiplication in Ko by A,B, = A,B,, and the adjoint by (A,)* := A,
then K., becomes a C*-algebra.

Whenever A, € Ky, we have D(A]) D He, since x5 A, is bounded for all x.
We define Aff, to be the restriction of A¥ to H.. It follows that Af) € Kme,v, and
the map A, — Af) is a conjugation in Ky,c ;5. (Note that A, € Kpep if and only if
there exist symmetric operators By, C,, € Kp such that || Byxz| + [|Coxz] < o0
for all z € Z¢ and A, = B,, + iC,,. In this case AZ*; = B, —iCy.)

Thus, given A, € Kb, we have that A} is densely defined and therefore A,
is closable. The closure of A, denoted A, has a polar decomposition and H, is
a core for the self-adjoint operator |A,|. We will abuse notation and denote the
restriction of |Ay| to He by |A,|. It is not hard to see that |A,| is covariant, i.e., it
satisfies (3.4). Similarly, local boundedness of |A,| is a simple consequence of the
identities

[ Aw|xzll = |AwXell and [[xz|Awl | = || [Aw|xz]l- (3.8)

It is also true that |A,| is measurable, so |Ay| € Kpep, but this requires a little
more work.

Lemma 3.2. Let A, € Kpen , and consider the polar decomposition A, = U, |A,|.
Then |Ay| € Kmeay and U, € Koo. We also have f(|Ay]) € Koo for any bounded
Borel function f on the real line.

Proof. Let Ay, € Kynep. We start by proving that (|A,[?+1)~! is strongly measur-
able on ‘H, from which it follows that g(|A,|?) is also strongly measurable for any
bounded Borel function g on the real line. It then follows that f(|A,|) € Koo for
any bounded Borel function f on the real line (covariance is easy to see). Picking
fa(t) = tX[—nn(t), it is clear that f,,([A,|) — |Ay| strongly on He, and hence |A,|
is strongly measurable. We conclude that [Ay,| € Kpe -

To prove measurability of (|A,|?>+ 1)~!, we pick an ortho-normal basis {©, }nen
for the subspace Ho = xoH = L*(R?, xo(z)dz) of H, and set @%a) = T(a)py for
a € Z%. Then {gp%a)}neN@eZd is a an ortho-normal basis for H, which we relabel as
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{qbn}neN, and let H be the subspace of finite linear combinations of the ¢,’s. Note

that H is a dense subspace of H. and hence is a core for A, since A, is locally
bounded.
Let P,, be the orthogonal projection onto the finite dimensional subspace spanned

by ¢1,¢2,... ,¢n. We set
MY = (AuPo)* AuPy . (3.9)

Then Mf)") is a bounded operator since A, is locally bounded. Because (i, Mu(,")’z/)) =

(AyPhp, A, Pptp) for o, € H, we conclude that M is weakly, and hence
strongly, measurable on H. Proceeding as in [PF, Proof of Lemma 2.8], we see

that (MU(J”) +1)~! is measurable on H (basically, because a matrix element of the
inverse may be expressed as a ratio of determinants, which are measurable func-
tions). We now show that ( M4 D™t — (JA,|1? + 1)t weakly as n — oo, and
hence (|A,|? + 1)t is measurable on H.

For this purpose, let p, 9 € 7/-(\0 For sufficiently large n we have

(Aup, Au(MSY +1)719) = (AuPagp, Ay Po(MEY +1)7'0)
(. MEV(MEY + 1)1y (3.10)
and hence
(Avp, Ao (MY +1)719) + (o, (MEY + 1) 71) = (2, 9). (3.11)
Now let ¢ € D(A,). Given £ > 0 we pick ¢ € H, such that
16 = o)l + I[Au(d — @)l <& . (3.12)
Since
1A Pa(MEY + 1) 7Y = [[(MEY + 1)~ M (MY + 1) 71| < % ; (3.13)
we have
(Aa(d = ), Aw (MY + 1) 71) + (¢ — o, (MEY + 1)71) = (6 — ¢, )
< 3ellyll, (3.14)

whenever ¢ € 7? and n is correspondingly large. Therefore, it follows from (3.11)
that for all ¢ € D(A,) we have
lim (A, Au(MEY +1)719) + (¢, (MY + 1)) = (9,) (3.15)

n—oo

for all ¢ € H,.
Taking ¢ € D(AXA,) C D(A,), we get

Tim ((ALAL + )¢, (MIY +1)71) = (6,4) (3.16)
for all 1 € H,, and hence for all ¢/ € H. Writing n = (A% + 1), we get
Tim (n, (MEY +1)719) = (AP + 1) "', 0) (3.17)

for all 1,1 € H. We conclude that (MS +1)=1 — (A% + 1)~! weakly.
We now turn to the partial isometry U,. We recall that

U, = hrr%)A_w(|A_w| +e)7 strongly on H . (3.18)

Thus U, is clearly covariant and measurable, so U,, € K. O
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Lemma 3.3. Let A, € Kyep- Then, for each n,
A = (1AL + 1)7% Au € Koo, (3.19)
with HAEJL) | <n, and AN A, strongly on H..
Proof. We clearly have Al € Kme since <%|A_£,|2 + 1>_% € Ko by Lemma 3.2.

S 1
As (%|AE}|2 + 1) f T strongly, we conclude that Aﬁ,”) — A, strongly on H..
Thus we only need to show that ||A£,n) || <n. To do so, let

—1
2

AL = (x4 1) A, (3:20)

and recall ||A£,n) | < n. Since A% is the restriction of A* to H.., we have |A%|? < |A_fj|2
as quadratic forms (see [RS1, p. 375]) and hence

— 1 »
(1452 +1) < (RlAzl+1) (3.21)

by [RS1, Theorem S.17]. We conclude that
1AG | < |ASY ) < n. (3.22)
O

Lemma 3.4. If A, € Kpnew, By € Koo, and ByA, € Kew, we have that
D(AX) D BXH,. and

(BuAy)ro=A*B ¢ forall o € H,. (3.23)

Remark 3.5. Note that B, A, is not necessarily in Kup,c1p, since we have no con-
trol on || Xz BwAy|| for x € Z4.

Proof. For any ¢, € H. we have

(¢, BoAuy) = (BuAu) o, v). (3.24)

On the other hand,
(¢, BuAuY) = (B, Aut) . (3.25)

It follows that
Blp € D(AY) for all p € H, (3.26)
and (3.23) holds. O
Let us define

Ko = {Au € Kmew; BuAw, BoAL € Kineaif By € Koo} - (3.27)

Note that g C Kyuep is a vector space, and in K we can define left and, using
Lemma 3.4, right multiplication by an element of Ku:

B, oL A, = BuA., (3.28)
A,OrB, = AYBuln., (3.29)

where A, € Kg and B, € K. Note that for B, € Ko we have Bff,* = B, since
we identify B,, with its closure, so (3.28) could also have been written as

B, Gp A, = B¥ A, . (3.30)
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Proposition 3.6. Let A, € Kg and B,,,C,, € K. We then have B,Op Ay, Au®Rr
B, € K. Moreover,

Ay Or B, = (B, oy Ab)F (3.31)

B, ®or A, ©OrC, = (B, O A,) ©r C, = B, & (A, ©r C,,) , (3.32)

(B, ©1 A, O C,) = C* o AL 0 B, (3.33)

{B, 1 A, Or Cu}p = BLAYCLp for all p € H, . (3.34)

Proof. The proof is a simple exercise. O

3.2. The Hilbert space ;. Let

Ko = {A, € Kne; [Aully < o0}, (3.35)
P = KynKa, (3.36)
where
1
IAully = {E ([ Auxoll3) }* - (3.37)
Proposition 3.7. (i) Ko is a Hilbert space with the inner product
((Aw, By,)) = E{tr {(Auxo)"Buxo}} (3.38)
and || ||, is the corresponding norm, i.e.,
I4u11; = ({Au, A0)) (3:39)
(ii) Ko C Kpep and the conjugation A, — Al s antiunitary in KCa, i.c.,
(A, Bu)) = ((BL, AL)) . (3.40)
(iii) For all A, € Ky we have
(Awxo)" = XoAL = xoAL (3.41)
and hence
(A, B.)) = E{tr {xoALBuxof} . (3.42)
Al = {E(IxoAbI3)}? = {E (IxoAul3)}” - (3.43)

(iv) Kéo) is dense in Kq.
Proof. We first note that Ko is a vector space, since

1o + Bull} <E{(14uxoll2 + [ Boxoll)’ } <2 (J4ul} + 1B.IZ) - (3.44)

Since the right hand side of (3.38) is well defined for A,,, B, € Ka, it clearly defines
an inner product.
To show that Ky is complete it suffices to show that every summable series in
Ko converges. So consider the series
(o)

Z lAnwlly <00, Apw € Ks. (3.45)

n=1
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It follows that

o0 o0 o0
E (z AmW) S Bl €3 My <0, (346)
n=1 n=1 n=1

and hence

o0

> [ Anwxoll2 < oo (3.47)

n=1
Using the completeness of H and the covariance property we conclude that > | A,, .,
converges strongly in H. to an operator A, € K. Since the Hilbert-Schmidt op-
erators on H are also complete, we also conclude that A, xo = Zf;l An wXo with
convergence in Hilbert-Schmidt norm. Thus, using Fatou’s lemma,

2 N
Z An,wXO
n=1

N 2

Z An,wXO
n=1

4.3 = E| lim <liminfE
N—oo N—oo

2 2

N 2 00 2

n=1 n=1
. N
and hence A, € Ky. Since A, — Y1 Apw = > 0" niq Anw, the same argument
gives
2

fore) 2
= ( > IIAn,wHQ) — 0 as N — o0, (3.49)
2

n=N+1

N
Aw - Z An,w
n=1

and hence Ky is complete.

To show Ko C Ky it suffices to show A% xo is well defined and almost surely
bounded, since A, xo is almost surely Hilbert-Schmidt and thus bounded. Given
A, € Ko, we set Ay 4y = XaAwXy for z,y € Z?, a Hilbert-Schmidt operator. Then
note that (A, z.4)* = Xy(Aw.zy) Xz and

Z E{tr (Au,e,y(Aw,zy)*)} = Z E{tr (XeAw,eyXy(Awzy) Xa )}

yEZ? yEZL?
= Z E {tI‘ (Xx—yAT(y)w7x—’£/70XOA:(y)w,x—y,OXiC—ZI)} (350)
yeZ2
* 2
= 3 E{tr (X0AL oy 0Xo—yAuay.0%0) } = 14ul} ;
yeZ2

we used (3.4), the invariance of the expectation under the transformations {r(a); a €
Z}, and cyclicity of the trace, plus the fact that, as all terms in the expressions
are positive, we can interchange the sum with the trace and the expectation. Pro-
ceeding as in (3.46)-(3.49) we conclude that the operator By, = }_,  c72(Ay2)" is
in k2. (Note that covariance only holds for the sum over all x,y € Z?). It is easy
to see that B, C A¥, so D(AX) D H, and B, = A}. Thus

4515 = 3 E{tr (Auoy(Auos))} = 140l (3.51)
yEZ2

by (3.50), and (3.40) follows using the polarization identity.
The equality (3.41) is an easy consequence of D(A*) D H,.; (3.42) and (3.43)
then follow from (3.38) and (3.40).
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It remains to show that ICéO) is dense in Ky. Let A, € Ko, then Aw,AE) €
Kone,iv, and A™ | defined in (3.19), is clearly in IC(20), and H‘ALu — AW

dominated convergence argument.

— 0 by a
2

Left and right multiplication by elements of K leave Ky invariant.

Proposition 3.8. Ky C K. Moreover, if A, € Ko and B, € K. we have
B, ®p Ay, A, ©r B, € Ko with

I1Bo Or Aully, < [1Bull 14wl » (3.52)
4w ©r Bull, < I1Bollo 1Al - (3.53)

Proof. Since we clearly have B, ©r A, € K2 with (3.52), Proposition 3.7(ii) gives
Ko C Kiee- The estimate (3.53) follows from (3.31), (3.52), and (3.40). O

The following lemma will be very useful.

Lemma 3.9. Let B, ., be a bounded sequence in Ko such that By, ., — B,, strongly.
Then for all A, € Ko we have By, ,©1 Ay — B,OrA, and Ay,OrBy . — AuOrB.,
m ICQ.

Proof. Tt suffices to prove the result for left multiplication in view of (3.31). By

considering the sequence B, ., — B, we may assume B, = 0. We have, with
A, € /cg°>,
IBrw OL Au ”@ =Etr{xoA}B; . BnwAuxo} — 0 (3.54)

by dominated convergence. Since B, is bounded and IC;O) is dense in Ky, this
extends to general A, € Ks. O

3.3. The normed space K;. Let

’Cl = {Aw S }an,lb; |HALUH|1 < OO} y (355)
K = KinKe. (3.56)

where
lAwlly = E {tr {xo[Aw|xo}}. (3.57)

Note that || A, |, is well defined (possibly infinite) for A,, € Kyyep by Lemma 3.2.
Lemma 3.10. Let A, € Ki. Then

E{tr [xoAuwxol} < |Aully < oo, (3.58)
and hence E{tr {xoAuxo0}} is well defined.
Proof. Let A, = U,|A,| be the polar decomposition of A,. We have

—— k=L
XOAwXO = XOUw|Aw|2|Aw|2XO . (359)

Since A, € K1, |A_w|% € Ky and, by Lemma 3.2, U, € K. (More precisely, the
restriction |A,|? of [Ay|% to He is in Ka. Note that M, is a core for |A,|2.) Thus
U,|Au|% € Ky, and xoU,|A,|? is a Hilbert-Schmidt operator by (3.41). Hence it

follows from (3.59) that xoAwxo is trace class. The inequality (3.58) now follows
from (3.59), Holder’s inequality, and (3.43). O
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Lemma 3.11. Let A, € K1 and B, € K. Then B, A, € K1 and
1B Aully < I1Bull o llAwll; - (3.60)
Proof. We have
|BuAy| = WrByA, = W*B,Uy|Au| = WEBLU,|AL|?|Au|? (3.61)

where W, and U, are partial isometries coming from the polar decompositions
of ByA, and A, respectively. Since |A,|2 € Ky and B,Uu|Au|2 € K2, we may
proceed as in Lemma 3.10 to conclude that B, A, € Ky and (3.60) holds. O

Proposition 3.12. (i) Ky is a normed vector space with the norm || |;. .
(ii) The conjugation A, — A} is an isometry on Ky, i.e.,

4Ll = 1Asl, - (3.62)

(iii) ICEO) is dense in Ky
Proof. We first prove the triangle inequality for || ||,. So let A, B,, € K1. We have
|Ay + Bo| = W (A + By) = Wi A, + WB,, (3.63)

with W, a partial isometry. It follows from Lemmas 3.10 and 3.11 that A, + B, €
K and ||As, + Bull; < lAwll; + 1Boll;- We conclude that K; is a normed space.
Given A, € K1, we have

xolAkIxo = xoViALxo = xoViALxo = xoVii AU x0
(xoVzlAulF) (14u o) (3.60)

where A, = U,|A,| and A_f, =V, \A_E,|, and the operators in parentheses are Hilbert-
Schmidt by Propositions 3.7 and 3.8. It also follows that

AL, < 1AL, - (3.65)

Since A = A¥ | the reverse inequality follows, yielding (3.62).

Finally, we prove that ICEO) is dense in ;. Given A, € K1, let AE,") € Koo be as
in (3.19). Since

1
2

Ran (3[4L]2 +1) * = (b)) = D(4L) € D(AL), (3.66)
we have
AP” = Ay (RlALR +1) (3:67)
and
J— —1
AR = A5 (1ALP +1)  Au < AP, (3.68)

—

and hence |A&")\ < |Ay|. It follows that A‘(Un) IS ngO). To prove that H‘Aw - A&n) )

0, we first remark that by a similar argument we have
Ay — AV < Ay (3.69)

So let {¢k}ren be an ortho-normal basis for the subspace xoH, we have

-]

~F {Z«% Ao - A&">|sok>} < Al <oo,  (370)

keN
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since A, € K1 and

{ons 140 = AL ok} < (ions | Aulion) (3.71)
On the other hand, using Jensen’s inequality we get
(o, 140 = ADor) < (o 14w — AL Ppr) ® (3.72)

= (Aw — AZ)pk|| = 0 as k — oo.
Thus H‘Aw - A&")‘

‘ — 0 by the Dominated Convergence Theorem. O
1

We will denote the (abstract) completion of Ky by K;.
Proposition 3.13. The normed space K is not complete, i.e., K1 # K.

Proof. Let us denote by Kfiitl)b and K {CSt) the subset of constant operators in K,cp
and /Cq, respectively. In view of (3.4), A € leﬁitgb can always be written in the

form
A= ) xU@)SeyU(-y)xy (3.73)
x,yE€Z4

where S = {S;}seze is a family of bounded operators in xoH such that the se-
ries Y cza X2U(2)SzXo converges strongly to a bounded operator. A sufficient
condition for the latter is

> 11Sa)? < oo (3.74)
r€Z9

Operators A as in (3.73) can be partially diagonalized by a Floquet transform
given by

F=02m)"%Y " U(-)x,, (3.75)
z€Z4

a unitary map from H = L*(R% dz) to L*(T¢, dk; xoH), where T? = [-Z,Z)% is

the d-dimensional torus. Its inverse, F*, is given by

£3 _4d 1k-x
Fr=(2m)" 2 Z XzU () (e™ )12 (T4, dk) (3.76)
T€L4
For A as in (3.73) with >, .74 [|Sz||* < 0o we have
(FAF*®)(k) = A(k)®(k) for all ® € FH, , (3.77)
where
Ak) = (2m) =% Y eteg, . (3.78)
TEZ

Since F is unitary, in this case we also have
(FIA|F*®)(k) = |121(k)|<1>(k) for all ® € FH,, (3.79)

and

Al = trxolAlxo = (2m) ™ /Td tr |A(k)| dk. (3.80)

It follows that the completion ngCSt) of ngCSt) is isomorphic to the Banach space

LY(TY, (27) ~4dk; Ta (xoH)) ,
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where 77 (xoH)) denotes the Banach space of trace class operators on xoH.

To see that there are elements in L'(T¢, (27r)~¢dk; 71 (xoH)) that do not cor-
respond to operators in IC%CSt), let us consider A as in (3.73) with S, = s,V
for all z € Z%, where Y € T;(xoH)) and the scalars {s,},cz¢ are chosen such
3(k) € LY(T9,dk) but §(k) ¢ L2(T? dk), where §(k) is defined as in (3.78). (This
can always be done.) We clearly have A(k) € L'(T?, (2r)~%dk; T; (xoH)), but for
each ¢ € xoH we have

1Al = | D s | 1Y @l® = I8(R)IZ 2 ra, ap Y 01 = 00 (3.81)

zEZ

unless Yo = 0. Thus A ¢ ICECSt) as it does not contain H, in its domain. (In fact,

Ag K )

Note that we proved that for any ¢ € xoH we can find A € :ECSt) which cannot

be represented by an operator with ¢ in its domain. In fact, we proved more: for
appropriate Y the constructed A has the property that its domain is disjoint from
He. O

Remark 3.14. More generally, it follows from (3.4) that A, € Kmep can always
be written in the form

A=) XaU@)Sr oy U9y (3.82)

z,y€L

where Sy, = {Sw .z }weza s a family of bounded operators on xoH such that the series
Y wezd XaU (%) Sw 2 X0 converges strongly to a bounded operator. As in (3.74), we
have

[Axzl? < Y 1S capoyll?s and also Auxall3 = D [1Sr—ajwyll}- (3.83)
y€ezZd yeZa
In particular,
2
ALl = D E([1Swyll3) - (3.84)
yeZa

In the constant case we could write || A, as in (3.80), but we do not have a
simalarly simple expression for ||Au]; .

Although K is not complete, it is closed in the following sense:

Proposition 3.15. Let A, € Ky and suppose there exists a Cauchy sequence
Ao in Ky such that A, oxo — Awxo weakly. Then A, € Ky and A, — Ay in
K.

Proof. Let A, = U,|A,| be the polar decomposition. It follows that

U:;An,wXO - |Aw|XO weakly. (385)
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Thus, if {¢;}jen is an ortho-normal basis for the subspace xoH, we have, using
Fatou’s Lemma,

Il Aull; = EZ<‘Pj’ |Awlips) = EZ nh_{lgo [{@s, UsAn,wi)l (3.86)
JjEN jEN
s A g
< lhning%I@waAn,w@M <liminf | Ap o, < oo,
J

and hence A, € ;.

For fixed m we have that A, , — A, is a Cauchy sequence in Ky, and that
(Anw — Am.w)xo — (Aw — Am,w)xo weakly as n — oco. Thus the above argument
gives

lAw — Amoll, <liminf |4, o — Apmwll, — 0 as m — oo. (3.87)
n—oo
O
Corollary 3.16. Let K12 = K1 N Ko with the norm || [l o = | I, + Il lo- Then

K12 is a Banach space.

The corollary is an immediate consequence of Propositions 3.7(i) and 3.15. Tts
value is that given a sequence A, . € K, which converges in Ky, if it also
converges in Ko then its limit in K; is actually in /Cy.

Left and right multiplication by elements of K, leave Ky invariant.
Proposition 3.17. K1 C Kg. Moreover, if A, € K1 and B, € Ky we have
B, O Aw,Aw Or B, € K1 with

1B, ©r Aully 1Bl 1Al (3.88)
Ao ©r Bolly < I1Bullo 14ull; - (3.89)
Proof. We have B, ©p, A, € K3 and (3.52) from Lemma 3.11, so it follows from

Proposition 3.12(ii) that 3 C K. The estimate (3.89) follows from (3.31), (3.88),
and (3.62). O

A CIA

We consider one other sort of multiplication, namely the bilinear map ¢ : ICgO) X
ICgO) — K1 given by

A, ¢ B, = 0(As,B,) = AuB. . (3.90)
Proposition 3.18. We have
lAw o Bully < lAwlly 1Bolly — for all Ay, B., € ’Cg))- (3.91)

Thus <>_e$tends by continuity to a bilinear map (we do not change notation) §: KaXx
Ko — K1, which satisfies (3.91) and has dense range. In fact,

K =0 (1 < k8 (3.92)
and
K1 ¢ Ran¢. (3.93)
Moreover, given A, B, € Ko, we have
A 0B, = A,®pB, if A, ek, (3.94)
A,0B, = A,®rB, if B,k (3.95)

(AwoB.,)' = BioAl. (3.96)
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Proof. To prove (3.91) we proceed as in the proof of Lemma 3.11. The inclusion
in (3.93) was exhibited in the proof of Lemma 3.10; note that it also gives (3.92).
(3.94) is proven by an approximation argument. (3.96) follows from the special case

when A, B, € K and (3.62). (3.95) follows from (3.94), (3.96) and (3.31).

To show that we do not have equality in (3.93) we proceed as in the proof of
Proposition 3.13. Let A be as in (3.73) with S, = s,Z for all x € Z¢, where
Z € To(xoH)) and 3(k) € L2(T9,dk) but 3(k) ¢ L4(T? dk). (This can always be
done.) Then A € Ky but Ao A ¢ Ky since §(k)? ¢ L2(T¢, dk). d

Lemma 3.19. Let B, ., be a bounded sequence in Ko such that B,, — B,
strongly. Then for all A, € Ky we have By, ,©1 A, — B,Or A, and A,OrBp, —
A, ®Or B, in K.

Proof. Again it suffices to prove the result for left multiplication in view of (3.31).
Since the sequence B, ., is bounded and ICgO) is dense in Xy it suffices to prove
the result for A, € ngO). But then we can write A, = C,D, = C, ¢ D,,, with
C,,D, € ICéO). Since

Bn,w Or Aw - Bn,waDw = (Bn,wcw)Dw - (Bn,w Or Cw) <& Dw 3 (397)

the desired conclusion follows from Lemma 3.9 and Proposition 3.18. O

3.4. The trace per unit volume. Given A = A, € K; we define

T(A) =E{tr {xoAuxo}}- (3.98)
Lemma 3.10 says that 7 is a well defined linear functional on Ky such that
T(A)] < A - (3.99)

In fact, 7 is the trace per unit volume.
Proposition 3.20. Given A = A, € K1 we have
T(A) = Jim ot ixa Auxa,}  for P-ae w, (3.100)
where A, denotes the cube of side L = 1,3,5,... centered at 0.
Proof. We have

tr {XALAUJXAL} = Z tr {XmAwa} = Z tr {XOAT(I)wXO} . (3101)

T€ZINAL TEZINAL
Thus (3.100) follows from (3.58) and the ergodic theorem. O
Lemma 3.21. Let A, B, € K3. Then
T (A, < B,) = (A}, B,)). (3.102)
In particular we have centrality for the trace per unit volume:
T(A, o B,) =T (B, Ay). (3.103)
Moreover, given C,, € Ko, we have

T((C O Aw) 6 Bu) = T(Aw o (B ©r Cu)). (3.104)
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Note that if A, B,, € ICgO) equation (3.103) reads
T(A,B,) = T(B,A), (3.105)
and equation (3.104) reads
T(CoALB.) = T(ALB.CL). (3.106)

Proof. 1t suffices to prove the Lemma for A,, B, € /Céo), in which case it follows
from Propositions 3.7 and 3.8 O

We also have a “K,, K17 version of centrality for the trace per unit volume:

Lemma 3.22. Let A, € K1 and C, € K&, then
T(C, 0L A,)=T(A, OrCy,). (3.107)

Proof. Just use A, = (Uy|Awu|?) o |Au|2, with Uy[Ay| the polar decomposition of
A, and (3.104). O

We will also use the following lemmas.

Lemma 3.23. Let A, € K1 be such that T(C,©®r Ay) =0 for allC,, € Koo. Then
A, =0.

Proof. Let U,|A,| be the polar decomposition of A,,. Then U, € Ko and [| A, =
T(U:Ay) = 0. O

Lemma 3.24. Let B, ., be a bounded sequence in Ko such that By, ., — B,, weakly.
Then for all A, € K1 we have T (B, O A,) — T(B, O Ay) and T(A, Or
Bmw) - T(Aw Or Bw)~

Proof. Tt suffices to consider the case B, = 0. If U,,|A,| is the polar decomposition,
T(Bn,w OL Aw) = T(|Aw‘% < {Bn,w Or (Uw‘Awﬁ)}) —0 (3108)
by dominated convergence. The other limit then follows from Lemma 3.22. O

3.5. The connection with noncommutative integration. There is a connec-
tion with noncommutative integration: K is a von Neumann algebra, 7 is a
faithful normal semifinite trace on Ko, and K; = L{(Ko,7) for i = 1,2. (We
assume that ICEO) is not trivial, which is guaranteed by Assumption 4.1 in view of
Proposition 4.2.) But our explicit construction plays a very important role in our
analysis.

That Ko is a von Neumann algebra can be seen a follows. Let H = L2((€2, P); H) =
féa HdP (see [RS4, Section XIIL.16] for the notation). Then the collection Koo
of strongly measurable maps A = A, : @ — B(H) with |A.|., < oo, where
lAull., is as in (3.7), form the von Neumann algebra of decomposable operators
on H [RS4, Theorems XII1.83 and XIIL84]. If we define unitary operators U(a)
on H for a € Z by (U(a)®)(w) = Ula)®(r(—a)w) for ® € H, it follows that
Koo = {As € Koo; [U(a), A,] = 0 for all a € Z9}, and hence K is a von Neumann
algebra.

7 is a faithful normal semifinite trace (e.g., [T, Definition 2.1]) on K. That
T is faithful is clear; to see that 7 is normal note that the condition given in
[BrR, Theorem 2.7.11(i)] can be verified using properties of the usual trace and the
monotone convergence theorem. To show that 7 is semifinite, pick a self-adjoint
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0+#B, € ICEO), note that we have the orthogonal projections Qn . := X[—n,n](Bw) €
ICgO) by Lemma 3.2, and hence we conclude that 7 is semifinite since Qp . /" 1
strongly. L

Note that if A, € Kpe 1 then its closure A, is affiliated with Ko by Lemma 3.2.
The converse cannot be true in view of Proposition 3.13.

4. ERGODIC MAGNETIC MEDIA

4.1. The ergodic Hamiltonian. We now state the technical assumptions on our
ergodic Hamiltonian H,,,.

Assumption 4.1. The ergodic Hamiltonian w — H,, is a measurable map from
the probability space (2, P) to the self-adjoint operators on H such that

H, =H(A,,V.) = (—iV — A+ V, , (4.1)

almost surely, where A,, (V,,) are vector (scalar) potential valued random variables
which satisfy the Leinfelder-Simader conditions (see Subsection 2.1) almost surely.
It is furthermore assumed that H,, is covariant:

U(a)H,U(a)* = Hy(q), for alla € Z° . (4.2)

Measurable in this context means that (1, H,¢) is a Borel measurable function
for every 1,6 € C2°(R%). As a consequence f(H,,) € Ko for every bounded Borel
function f on the real line. (The only subtle point here is measurability, but that
is well known. See [PF].)

Note that it follows from ergodicity that V,,_ satisfies (2.2) almost surely with
the same constants «, 3.

We remark that much more detailed knowledge of H,, is required to verify As-
sumption 5.1 below, at least for (, = PU(JEF ). In particular, one might require V,,
to be of the form V,,(z) = Y, .4 Nau(z — @), where 7, are independent, identically,
distributed random variables and u is a function of compact support. However, the
only fact we need here regarding localization for ergodic Schrédinger operators is
(5.2) below for suitable functions h. Thus we prefer to take the general Assump-
tion 4.1 and note that Assumption 5.1 for ¢, = PLSEF ) follows, for suitable A, V,,
and Er, by the methods of, for example, [GK1, BoGK, AENSS].

It is absolutely crucial to our analysis that the parameters «, § in the Leinfelder-
Simader conditions may be chosen independently of w. In particular, this allows us
to prove:

Proposition 4.2. Let f be a Borel measurable function on the real line such that
| fPa,a,8lloo < 00, where ®g o g is given in (2.15). Then
(i): We have f(H,) € ICgO), and if || f*®g,a,8/lc0 < 00 then f(H,) € IC%O).
(ii): If f(Hw) = g(Hw) for some g € S(R), we have [z;, f(Hy)] € ngO) ﬂngO),
i=1,2,....d.
(iii): If f(H,) = g(Hy)h(H,) with g € S(R) and h a Borel measurable function
with |h2®g,6. 8] < o0, and for some j € {1,2,...,d} we have [z;,h(H,)] €
Ko, then we also have [z}, f(H,)| € K1 N Ka.
(iv): We have P ¢ ngO) N IC;O), where P = X(=o0,E](Hy), i.e., pP =
J(Hy) with [ = X(—co,p]- If in addition we have {xj,Pu(,E)} € Ky for some

je{l,2,...,d}, then we also have [xj,Pu(,E)} € K.
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(v): If f is as in either (ii), (iii), or (iv), we also have

T {lwj, f(Ho)]} = 0. (4.3)

Proof. (i) is an immediate consequence of (2.16). To prove (ii), first note that
[, f(Hy)] is in Ko by Proposition 2.4(ii). We recall that [GK3, Eq. (3.8)]

—k+2v
X f (Ho)Xo0ll3 < Caor ke I1f P, pll g Mg llisa ()~ (4.4)

for P-a.e. w and all £k = 1,2,... and v > %, and set a to be a step function

approximation to the operator x; i.e., a is the operator given by multiplication by
the discretized coordinates a € Z%: a = > qczd @Xa- Note that multiplication by
zj — a; is a bounded operator for each j € {1,2,...,d}; in fact, |lz; — ;|| < 3.
Since

[z, f(Ho)] = [a; f(Ho)] + [2; — a;, f(H)], (4.5)

to prove [z, f(H,)| € K2 it suffices to prove [a;, f(H,)] € K2. This follows from
(4.4) with sufficiently large k:

2
ay, f(Ho)xolls = || Y Xalay, f = lIxalay, F(H)xoll, — (4.6)
acZd IS4
2 —k+2
= lajl” Ixaf (Ho)xoll < Caopk ||f‘1>d,a,ﬁ|\oo lgllkve D lag|* (@)~
acz4 aczd

That [z;, f(Hy,)] it is also in Ky follows from (iii), since we can write g(t) =
((t)"g(t))(t) ™ with n € N, ((t)"g(t)) € S(R) and h(t) = (t)~™ is as in (iii) for n
large.

To prove (iii), we note that [z}, g(H.,)] € Ks by (2.38) and, since [z;, h(H,)] €
Ko, xjh(H, )Xo is a bounded operator. Hence

[z, F(Ho) xo =[5, 9(Ho)h(Ha)] Xo (4.7)
= [ g(Ho) h(Hy)xo + 9(Ho) [, h(Ha)] Xo -

Noting that g(H, ), h(H,) € K2 by (i), we conclude that

[j, f(Ho)] = [z, 9(Ho)] ©r h(Hy) + 9(Hy) O [25, h(Hy)] € K2, (4.8)
and, as [z;, g(Hy)] € Ko by (ii),
[z, f(Ho)| = [z, 9(Hy)] 0 h(Hy) + g(Hy) © [z, h(Ho)] € K1 (4.9)

Item (iv) is an immediate consequence of (i) and (iii). To see (v), note z;xo =
XoZ;Xo is bounded and xof(Hu)zixo = (xof(Hw)xo)(z;Xo0) is trace class. Since
[z, f(Hy)] € K1, we conclude that xoz; f(H,)xo is also trace class, and

T {[zj, f(Ho)]} = Etr (xoz; f(Hu)xo) — Etr (xof(Hw)zjxo0) =0 (4.10)

using centrality of the ordinary trace tr. O

4.2. Commutators of measurable covariant operators. In this subsection,
H,, stands either for the time independent H,, or for H,(t) incorporating a time-
dependent electric field. By H, A, € K; we mean A, H. C D and the operator
H,A, with domain H,. is in K,.

Definition 4.3. We define the following (generalized) commutators:
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(i): If A, € K and B, € K, then

[Buw,Aule = BwOr A, — A, Or B, € Ko, (4.11)
[Au,Bulo = AwOrB,—B, 0oL Ay=(B5Ae) €Ko.  (4.12)
(ii): If A,, B, € Ko, then
[B.,Aule = B,o A, —A,oB, €K;. (4.13)
(iii): If A, € K is such that H, A, and H, A% are in Kg, then
[H,, A)y = H,A, — (H, AL € K . (4.14)

Remark 4.4. These commutators agree when any two of them make sense. More
precisely:
(a): If Ay, B, € Ku then [By,,ALle = [Bw, Aw] = BuA, — AuBy,, the usual
commutator.
(b): (4.13) agrees with either (4.11) or (4.12) if either B,, or A, are in K.
(c): (4.14) should be interpreted as an extension of (4.11) to unbounded B,,,.
Note that (4.11) can be rewritten as [B,, Au]e = BuwAw — (B ALY, and the
right hand side makes sense as long as B,A, and B:,AE, are mn Kmep. In
addition, (4.14) reduces to the usual commutator on H.ND, as shown in the
following lemma.

Lemma 4.5. Let A, € Kg be such that H,A, € Kg. Then

(H,AL)p = AYHoab for allp € H.ND. (4.15)

In addition, we have D((H,A,)*) "D =D(A%H,) and
(HyAu)*v = AL H,w  for all € D((H,AL)*)ND. (4.16)

As a consequence, if H,A, and H,A% are in Ko, then
[Hy, AJ)ptp = Hy Ayt — AyHyp for allp € H.ND. (4.17)

Proof. If H, A, € Kg, for all ¢y € H. N'D and & € H, we have

(Ho Au)ib, &) = (, HyAu€) = (Hotb, Au) = (ALH,€) (4.18)
where we used the fact that H,¢ € H, since H,, is a local operator. Thus (4.15)
follows. A similar argument proves (4.16). O

The following lemma will also be useful.
Lemma 4.6. Let A,, B, € K2, C,, € Kso. Then
T{[Cuw,Au)e ¢ B} =T{C, ©r [Au, Buls} - (4.19)
Proof. Tt follows from (4.11), (4.13), and Lemma 3.21. O

4.3. Time evolution on spaces of covariant operators. For P-a.e. w let
U, (t, s) be the unitary propagator given by Theorem 2.7. Note that U, (¢, s) € Koo
(Since we apply Theorem 2.7 independently for each w, there is the subtle question
of measurability for U, (t, s). However, measurability follows from the construction
(2.86), since the propagator U, (t,s) is expressed as a limit of “Riemmann prod-
ucts,” i.e., multiplicative Riemmann sums, each of which is manifestly measurable
since it is a product of finitely many propagators e’iAtHw(tk))
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It will be important at times to keep track of the dependence of U, (¢, s) on the
electric field E, in which case we will write U, (E,t, s). Note that

U,(E=0,t,5) = U (t - 5) := e i t=)Ho (4.20)
We omit E from the notation in what follows.
Proposition 4.7. Let
U(t,s)(Aw) = Uu(t,s) Or Ay Or Uy(s,t) for A, € Ko . (4.21)

Then U(t, s) is a linear operator on Kg, leaving Ko, Koo, K1, and Ko invariant,
with

Ui, mU(r,s) = Ut s), (4.22)
ui,t)y = 1, (4.23)
{Ut,s)(A)} = Ut s)(AL). (4.24)

Moreover, U(t, s) is unitary on Ko and an isometry in K1 and K ; it extends to
an isometry on K1 with the same properties. In addition, U(t, s) is jointly strongly
continuous in t and s on K1 and Ks.

Proof. The first part of the proposition follows from Propositions 3.6, 3.8, and 3.17.

U(t,s) is clearly an isometry on K. To see that U(¢,s) is an isometry on K; and
K2, note that from Propositions 3.8 and 3.17 we have

et 8) (Al < ALl < A (E; ) (Al (4.25)

for i = 1,2, where we used A, =U(s,t) (U(t,s)(A)). As for (4.24), it follows from
(3.33).

The joint strong continuity of U(t, s) on K1 and Ko follows from the joint strong
continuity of U, (¢, s) on H and Lemmas 3.9 and 3.19. O

Lemma 4.8. Let A, € K; be such that H,(ro)A, € K; for some ry € [—00,00),
where i € {®,1,2,00}. Then H,(r)A, € K; for all r € [—00,00).

Proof. In view of (2.65) it suffices to show D, A, € K; if H,(r9)A, € K; for some
rog € [—00,00). But this follows immediately from (2.73). O

Proposition 4.9. Let A, € K; be such that H,(ro)A, and H,(ro)AL are in K;
for some rg € [—00,00) Then the map r — U(t,1)(Ay) € K; is differentiable in KC;,
and

0 Ut ) (Ay) = —U(t, ) ([Hu(r), Ault) (4.26)
with [Hy (), Ayt defined in (4.14).

Proof. Fix i =1 or ¢ = 2. All the expressions make sense as elements of ;. Write

= (Ut + B) (L) —UET)(AL)) (4.27)
= % (Uu(t,r +h) = Uu(t,r) O Ay Or Uy (r + h, t) (4.28)
+ Uy (t,7) O Aw Or % (Us(r + hyt) — Un(r, ) . (4.29)
We first focus on (4.28). Since H,(r)A, € K; by Lemma 4.8, one has
Bw Or Aw = BwAw = Bw(Hw(T) + 7)_1(Hw(r) + PY)AW (430)

B, (Hy(r) +'7)71 Or (Hy(r) +7)As .
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Theorem 2.7 asserts that

% (Ut 7+ h) = Us(t,7)) (Hoo(r) +7) 7" = iU (tr) Ho (r) (Ho(r) + 7)™

strongly with uniformly bounded norm, as h — 0. Using either Lemma 3.19 or
Lemma 3.9, and the strong continuity of U, (r,t) in r, we get

lim = (U (8,7 4+ h) = U (£,7) O1 A O Uu(r + o) (4.31)

~Us(t,r)Ho(r) (Ho(r) +7) 7! OL (Ho(r) +7)Aw Or Uy (7, 1)
= —U,(t,r) ©p H,(r)A, ®r U, (r,t).
We now turn to (4.29). Note that if B, € K then
Ay Op B = (B: ©p ALY = (Ho(r) +7) " Bu)* @5 (Hu(r) +7)AL)" . (4.32)
Since the map A, — A} is an isometry on K;, the same argument as above implies

that

lim U, (t,7) O Au O % (U (t,7+h) — Un(t,)) (4.33)

= Uu(t.r) On ((Ho(r) +9) " Ho(r)Us(r,1)* O (Hu(r) +7)AL)"
= U,(t,r)Or (Ho(r) AL Or Usy(r,t).
Ol
Proposition 4.10. Let A, € K; be such that H, (o)A, and H,(ro) AL are in K;
for somerg € [—00,00), , wherei € {1,2,00}. Then H,,(t)U,(t,7)A,, H,(t)U,(t, )AL
H,(OU(t,7)(AL), and H,(t)U(t,r)(AL) are in K;, and the map t — U(t,7)(A,) €
K; is differentiable, with
O Ut m)(Ay) = [Ho (1), Ut r)(Au)]; (4.34)
with the proviso that in Ks the meaning of the derivative is as a bounded and

P-a.e.-weak limit.
Moreover, we have

I(Hw (&) + ) Ut ) (Au)ll; < ATVt 1)l I(Ho (1) + ) Aull; 5 (4.35)
T (8), Ut ) (Al < MW (8, 7) oo (HCH (1) + 1) Aull; + (|| (o (r) + V)Ai(mi) )
4.36

and, for all p € H. N D,
[Ho (0, U(t,7)(Au)]sp = Ho()Uu (t, )AL Us (r, 1) — U (t,7) AL Uss (r, £) Hoo (£
(4.37)

We need the following lemma. (Recall that A, = A¥ for Ay € Kmen-)

Lemma 4.11. Let A, € K; with H,(t)A, € K; (i € {®,1,2,0}). If o € D(A¥)N
D((H, (t)A,)¥), it follows that A¥*¢ € D and

(Ho()Au) "o = Ho(t) AL p. (4.38)
As a consequence, H,,(t)(A, Or C,) € K; for any C, € Koo, and
(H,(t)A,) Or C, = H,(t)A¥*C,, = H,(t)(A, Or C.,). (4.39)

Lemma 4.11 can be seen as a generalization of (3.32), where B,, € K is replaced
by the unbounded operator H,,(t) whose domain does not contain H..
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Proof of Lemma 4.11. Let ¢ € D(A¥)ND((H,(t)A,)) and ¢ € H,ND, we have,
using Lemma 4.5,

(Ho () Au) o, 00) = (@, (Ho (1) Au) ') = (@, ALH, (t)) = (ALF o, Ho (1)) .

Since H. N D is a core for H,(t), it follows that A¥*¢ € D and
(Ho () Au)t 0, ¥) = (Hu(t) AL 0, ). (4.41)
Since D N H, is dense in H (it contains C°(R%)), (4.38) follows.

Proof of Proposition 4.10. Since H,(rg)A, € K;, AuH. C D. Since U, (t,r)D C
D, the operator H, (t)U,(t,r)A, is well-defined on H,. and (use Lemma 4.8)
Hw(t)Uw(taT)Aw = Hw(t)Uw(ta T)(Hw(r) + 7)_1 oL (Hw(r) + ’Y)Acu € Ki ; (442)

as H,(O)U, (t,7)(Hy,(r) + )t = W, (t,r) — YU, (t,7)(H,(r) +v)~! is an element
of K. The estimate (4.35) follows.
Furthermore, as in (4.31), on account of Theorem 2.7 we have

Jim % (Ut + hyr) — Us(t,1) O1 Auy O U (1t + h) (4.43)
= H,(t)Uy,(t,r)(Hy(r) + 7)_1 Or (Hu(r) +7)Aw Or Uy(r,t)
(Hu(t)Uu(t, 1) Aw) O Uu(r,t),

where we used associativity of left and right multiplication in IC; according to
Proposition 3.6, and in K., we took a bounded and P-a.e.-weak limit.

By the same reasoning as above H,, (1)U, (t,7)A} € K;, and we have an estimate
similar to (4.35). Thus we can differentiate the second term as in (4.43) simply by
using the conjugates:

lim A, Or % (U (r,t + h) — Us(r, 1)) (4.44)

—0

, 1
= <lim % (Uy(t+ hyr) — Uy (t, 7)) OL Ai) = (H,(t)U,(t,7)A})*.

Combining (4.43) and (4.44) we get
0, U(t,7)(Av) = (Ho(Uu(t, 1) Au) Or Us(r,t) = Uu(t,7) O (Ho (1)U (t,7) AL

(4.45)
Recalling that H, (t)U,(t,7)A, € K;, it follows from Lemma 4.11 that
(H,(H)Uy(t,7)AL) Or Uy(r,t) = Hy (U (t,r) AT U, (r,1)
= H,{t)U,(t r)(Ay). (4.46)
Likewise, since H,,(t)U, (t,r) A} € K;, we conclude that
Uo(t,r) Or (Ho () Uy (t, )AL = (Ho(t)Uu(t,1)AL) ©p Uy(r, 1))’
= (H,(OU(t,r)(AL)) (4.47)
Eq. (4.34) follows. Furthermore, by Lemma 4.5 we have
(H U, (t,r) A Yo = (U, (t,7) AL H, 0 = AU (r, t) Hyp (4.48)

for any ¢ € DN H,, so (4.37) holds.
The bound (4.36) follows from (4.35) and its counterpart for Af. O
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In the special case when E = 0 we have the following corollary, with
UV ) (A) =T (1) or Ay 0r UV (~t) for A, € Ko, (4.49)

where U (t) = e""He asin (4.20). The operator £; introduced in the following
lemma is usually called the Liouvillian.

Corollary 4.12. 4 (t) is a one-parameter group of operators on Kg, leaving K;
invariant fori=1,2,00. YO (t) is unitary on Ko and an isometry on K1 and Koo,
so it extends to an isometry in KCi. It is strongly continuous on K, and Kq; we
denote by L;, i = 1,2, the corresponding infinitesimal generators :

UO () =e ™ forallt eR. (4.50)
Let
DY = (A, € Ki; HyAu, H,AL €K}, i=1,200. (4.51)

Then DZ{O) is an operator core for L;, i = 1,2 (note that Lo is essentially self-adjoint
on Déo)), and

Li(A,) = [Hy, Ay)y  forall A, €D, i=1,2. (4.52)

Moreover, for every B, € K there exists a sequence B,, ., € D(()g) such that B, ., —
B, as a bounded and P-a.e.-strong limit.

Proof. Most of the Corollary follows immediately from Propositions 4.7, 4.9, 4.10,

and Stone’s Theorem for the Hilbert space Ko, the Hille-Yosida Theorem for the
Banach space K;. Since f(H,)A,g(H,) € DEO) for all f,g € CZ(R) and A, € K,,
1= 1,2, 0o, we conclude that elements in K, can approximated by sequences in DS}Q)
as a bounded and P-a.e.-strong limit, and also that Dfo) is a core for £; fori = 1,2,

as in the usual proofs of Stone’s Theorem and the Hille-Yosida Theorem, O
4.4. Gauge transformations in spaces of measurable operators. The map
G(t)(As) = G(1)ALG(1)" (4.53)

with G(t) = B g iy (2.57), is an isometry on Koo, ICEO), and ICéO), and
hence extends to an isometry on Ki and on K. Moreover, since G(t) and x,
commute, (4.53) holds for A, either in K7 or Ks.

Lemma 4.13. The map G(t) is strongly continuous on both K1 and on Kz, and
, lim G(t) =1 strongly (4.54)

on both Ky and on Ky. Moreover, if A, € IC;, i = 1 or 2, with [z, A,] € K; for
j=1,...,d, then G(t)(Ay) is continuously differentiable in KC; with

9G(t)(Au) = 1 [E(t) - x,G(t)(Au)] =G (1) ([E(?) - x, Au]) - (4.55)
Proof. We start by proving the lemma on Cs. For A, € Ko, we have
Gt +h)(Aw) = G(t)(Au) = G(O)(G(t + R)G(—t) — 1)(Ay). (4.56)

Since G(t) is an isometry, continuity follows if we show that

lim [[(Ge(h) = 1)(Au)ll; =0, (4.57)
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where G¢(h)(A,) = Gi(h)(Au)Gi(h)*, with G¢(h) = G(t + h)G(—t) being the uni-
tary operator given by multiplication by the function e~ i ST E(s)xds | Thyg

(Ge(h) = 1)(Aw) = Ge(h) [(1 = Gi(h)")Aw + Au(Gi(h)" —1)] (4.58)

Since G¢(h) is unitary, we have

2 * 2 * 2
G () ~ DA < 2 {E 1 = Gu(h))Auxoll3 + B [ 4u(Ga()” — Dxoll3}
=2{E (1 = G ) Auxoll} + E [Auxo(Gelh)” = DIFY . (4.59)
Although Gi(h)* ¢ Ko because it is not covariant, we can use the argument in
the proof of Lemma 3.9 to conclude that both terms in (4.59) go to 0 as h — 0,
obtaining (4.57). The limit in (4.54) is just continuity at ¢ = —oo and is proven in
the same way.

The result in £ now follows from the result in K using the { map, since for
B,,C, € ICéO), we have on K7 that

G(1)(BuCy) = G(1)(BL)G(t)(Cu) = (G(t)(BL)) ¢ (G(1)(Cu)) (4.60)

and, as G(t) are isometries, it suffices to prove strong continuity on a dense subset.

It only remains to prove differentiability and (4.55) assuming [z}, A,] € K,
since continuity of the derivative follows from (4.57) and the strong continuity just
obtained for G(t). We see by (4.56) that it suffices to show

i (G(h) — 1) (Aw) =i [B(1) %, Au] (461)

with convergence in ;. Since [x, A, ] € K;, the (Bochner) integral

h
B(h) = z% /O du Gy (u) ([E(t +u) - x, A]) (4.62)

is, for each h > 0, a well defined element of /C;. Furthermore, as G;(-) is strongly
continuous, the integrand is continuous and

lim ®(h) = i [E(t) - x, A] - (4.63)

We claim that ®(h) = b= (G,(h) — 1) (Ay). Indeed it suffices to verify

hXx(I)(h)Xy = (gt(h> - 1) (XwAwXZI)) (4'64)

for each z,y (since Xy, x, commute with G(¢)). But this identity follows since
the derivatives of the two sides are equal, and both expressions vanish at h = 0.
(Derivation is permitted here because of the cut-off induced by x4, xy-) O

5. LINEAR RESPONSE THEORY AND KUBO FORMULA

In this section we prove our main results. We assume throughout this section
that Assumptions 4.1 and 5.1 (stated below) hold.
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5.1. Adiabatic switching of the electric field. We now fix an initial equilib-
rium state of the system, i.e., we specify a density matrix (., which is in equilibrium,
so [Hy,(,] = 0. For physical applications, we would generally take ¢, = f(H,)
with f the Fermi-Dirac distribution at inverse temperature § € (0, c0] and Fermi
energy Ep € R, ie., f(E) = HT}W if 3 < oo and f(E) = X(—oo,pr(E) if
0 = oo; explicitly

B,E L 1
¢ = {Fug R TreF =B B < oo,
w

(5.1)
PP = X(=o0,Ep](Hw), B =o00.

The fact that we have a Fermi-Dirac distribution is not so important at first, al-
though when we compute the Hall conductivity we will restrict our attention to the
zero temperature case with the Fermi projection PEF),

The key property we need is that the hypothesis of either Proposition 4.2(ii) or
Prop. 4.2(iii) holds:

Assumption 5.1. The initial equilibrium state (., is non-negative, i.e., ¢, > 0,
and, either

(a): Cw = g(Ho) with g € S(R),

(b): ( decomposes as (, = g(Hy)h(H,) with g € S(R) and h a Borel measur-
able function which satisfies ||h*®q,q,5]/c0 < 00 and

E{lxh(H)xol} < oo (5.2)
(Condition (5.2) is equivalent to [x;, h(H,)] € Kg for all j =1,2,... ,d.)

Remark 5.2. We make the following observations about Assumption 5.1:
(i): By Proposition 4.2, either (i) or (iii), we have [z;,(,] € K1 N Ky for all
j=1,2,....d.
(ii): The equivalence between (5.2) and [x;, h(H,)] € Ko forj =1,...,d follows
from the facts that h(H,,) € Ko by Prop. 4.2(i) and

Ixh(Ho)xoll, < M3, h(Ho)lxolls + Ih(Ho)xolls - (5:3)

Although |x|? = x-x is not covariant, it follows from (5.2) that for any a € 7%
we have

E {lx h(Ho)xall3} < o0 (5.4)

and hence the operators [z, h(H,)] are well defined on H. forj=1,...,d.
(iii): The Fermi-Dirac distributions fPFr)(E) := (14+eBE=Er))=1 with finite
B satisfy Assumption 5.1(a). Just take g(E) = k(E)fFr)(E), where k(E)
is any C function which is equal to one for E > —v (defined in (2.10)) and
equal to 0 for E < —~ for some v1 > 7.
(iv): For a Fermi projection piEr) (B = ), it is natural to take h(H,) =
PER) and for g any Schwartz function identically 1 on [—v, Er]. Condition
(5.2) does not hold automatically in this case; rather it holds only for Ep in
the “localization regime,” as discussed in the introduction. The existence of a
region of localization been established for random Landau Hamiltonians with
Anderson-type potentials [CH, W, GK4].
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Let us now switch on, adiabatically, a spatially homogeneous electric field E, i.e.,
we take (with ¢_ = min {¢,0}, t; = max{¢,0})
E(t) =" E, (5.5)
and hence

F(l) = / t B(s)ds = (£ 4 1,) B, (5.6)

— 00

The system is now described by the ergodic time dependent Hamiltonian H,,(t), as
in (2.49). We write

() =G)CWGE[E)" =G(t)(Cw), e, Cu(t)=f(Hu(t)). (5.7)

Assuming the system was in equilibrium at ¢ = —oo with the density matrix

0w(—00) = (,, the time dependent density matrix g, (¢) would be the solution of
the following Cauchy problem for the Liouville equation:

{ 10100 (t) = [Hu(t), 0w (t)] (5.8)
lim; o 04 (t) = Cu ’
where we have written the commutator [-, -] in anticipation of the fact that this is

to be understood as an evolution in /C;, i = 1,2. The main result of this subsection
is the following theorem on solutions to (5.8), which relies on the ingredients intro-
duced in Sections 2 and 3. In view of Corollary 4.12, we replace the commutator
in (5.8) by the Liouvillian at time ¢:

Li(t) =61 L:G(—t), i=12. (5.9)
Note that £;(¢) has Dgo) as an operator core for all ¢, since it follows from Lemma 4.8

that DI = G(t)D" for i = 1,2, 00.
We have the following generalization of Theorem 1.1.

Theorem 5.3. The Cauchy problem
101 0 (t) =L; (t)(gw (t))
{ hmt—»—oo Qw(t) = Cw ’ (510)
has a unique solution in both KC; and Ko, with L;(t), i = 1,2, being the corresponding

Liouvillian. The unique solution g,,(t) is in Dgo) ) n Dgo) (t) € KiNKy for all t,
solves the stronger Cauchy problem (5.8) in both K1 and K, and is given by

oolt) = lm U(t5)(C) (5.11)
= i U (G0) (.12
= (o) — z[ dre™-U(t,r) ([E-x,{(r)]) . (5.13)

We also have

0u(t) =U(L, 8)(2w(s)) s llew®ll; = lIcll; » (5.14)

for all t,s and i = 1,2,00. Furthermore, o, (t) is non-negative, and if ¢, = PEr,
then 0, (t) is an orthogonal projection for all t.

Before proving the theorem we need a technical but crucial lemma. We write
Dj. =D;(Ay).

Lemma 5.4. Let j=1,---,d.
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(i): For all ¢ € H. we have z;{,p € D and
2D; G = iH,2 ;G0 —ixjH,Cup = i[Hy, 2;]Cup . (5.15)

(ii): Hylzj, (] € K1 N Ko, In fact, the operators Hylx;, (] and (x5, H, (o] are
well defined (as commutators) on H., we have

H, [:17]-, Qu} = [xja HwCuJ] - QiDj,wa on H,, (5'16)

and the two operators in the right hand side of (5.16) are in K1 N Ks.
(iii): HL[E - x,(,] € K1 N Ks.

Proof. Tt follows from (2.3) that
H,zj¢ =x;H,¢—2iD;,¢ forall p € C2(RY). (5.17)

Thus if ¢ € DN D(z;) with H,¢ € D(z;), we conclude by an approximation
argument that z;¢ € D and (5.17) holds for ¢.

That [z, H,(,] € K1 NIy follows from Assumption 5.1 and Proposition 4.2(ii)-
(iil) since the function Eg(E) € S(R). In particular, this tells us that H,(, H. C
D(x;). Thus, given ¢ € H., we set ¢ = (,¢ € D(z;), so we have H,¢ € D(x;) and
¢ € D(z;) (because [z;,(] € K2). We conclude that (5.15) follows from (5.17).
This proves (i).

Since (¢ € D for all ¢ € H,, the operator H, [z}, (] is well defined on H., and
(5.16) follows from (5.15). That D; (., € K1 N Ky follows from Proposition 2.3(i).
Thus (ii) is proven, and (iii) follows immediately. O

We now turn to the proof of Theorem 5.3.

Proof of Theorem 5.3. Let us first apply Proposition 4.9 and Lemma 4.13 to

0w(t,s) :=U(L, s)(Cu(s)). (5.18)
We get
0.0u(t5) = —Ult.s) ([Hols). Cl8)]) +U(E.) (~ [B(s) - x,Cols))
= Ut ) ([E(s) - %, Cu(s)]) (5.19)
where we used (5.7). As a consequence, with E(r) = e"~E,
0w(t,t) — 0, (t,8) = z/ dre™-U(t,r) ([E - %, ,(r)]) - (5.20)
Since
lled () (B - %, Co (D = NE - x, Gl (5.21)

the integral is absolutely convergent and the limit as s — —oo can be performed. It

yields the equality between (5.12) and (5.13). Equality of (5.11) and (5.12) follows
from Lemma 4.13 which gives

(w=lim (u,(s) in both K; and Ks. (5.22)

Since U(t, s) are isometries on K;, i = 1,2, 00 (Proposition 4.7), it follows from

(5.11) that [Jow ()], = [ICulli- We also get 0,(t) = 0, (t)*, and hence g, (t) = 0, (t)*

as ow(t) € Koo. Moreover, (5.11) with the limit in both Ky and s implies that
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0, (t) is nonnegative. Furthermore, if {, = then g,,(t) is a projection, since

denoting by lim the limit in Ki, 1 =1,2, we have

0u(t) = im® U(t, 5) (P}ffﬂ) = lim ™ u(t, s) (PUSEF>> oU(t, 5) (ngF>)

= { lim® U(t, 5) (PUSEF))} o { L@ U(t, 5) (P;Eﬂ)} = o,(t)?. (5.23)
55— — 00 ——00

To see that g, (t) is a solution of (5.8) in K;, we differentiate the expression
(5.13) using Proposition 4.10 and Lemma 4.13; the hypotheses of Proposition 4.10
are satisfied in view of Lemma 5.4(iii) and the fact that i[E-x, {,(7)] is a symmetric
operator. Moreover, it follows from (4.36) that

I[He (), U(t,7) ([E-x, (DIl < (5.24)
2[[Wo (&, ) I (Hes (r) + ) [E - x, o ()]l = 2IWe(t, )l [(Ho + ) [E-x, G]ll;
where

sup [[Wo(t,7)|| < Cp < o0 (5.25)

r; r<t

by (2.81) and (2.75). Recalling (5.13), we therefore get

00, (t) = —i/_ dre™= [Hy, (t),U(t,r) ([E - %, Cu(r)])]; (5.26)

- [Hw(t), {z/t dre™=U(t,r) ([E - x,gw(r)])}] (5.27)

— oo T

0. fe-i [ " e U ) (B x, w.on}]

—0o0

:
= [Ho(1), 0()]; (5.28)

the integrals being Bochner integrals in ;. We justify going from (5.26) to (5.27)
as follows: Since H,,(t)(H,(t) + 7)™ ! € Ko and (Hy () + )"t € Koo, we have, as
operators on H,,

/_ dre™= Hy,(OU(t, ) ([E - x, Cu(r)]) (5.29)

= (Hu(t)(Ho(t) +7)7") QL/ dre”= (Hy(t) + VUt ) ([E - %, Cu(r)])

—00
t

— (1) ((Hw@) s o [ drem (L0 + () (B, @(rm)

—00

t

—H.(0) [ drem-u ) (B-x.G.0)
—0o0

Since the map A, — A is an antilinear isometry, we also have the identity conju-

gate to (5.29). We thus have (5.28).

It remains to show that the solution of (5.10) is unique in both K; and K. It
suffices to show that if v, (¢) is a solution of (5.10) with ¢,, = 0 then v, (t) = 0 for all
t. We give the proof for Ky, the proof for Iy being similar and slightly easier. For
any s € R, set D&S)(t) =U(s,t)(v,(t). If A, € DY, we have, using Lemma 4.10 in
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Koo and (5.10), that
i, T {Aw o 7% (t)} — 0, T U1, s)(A) O, vu(t)} (5.30)
=T {[Ho (), U(t, )(Au)ly OL v (D)} + T {U(t, 5)(A) OL L1(8)(vu(t))}
= —T{U(t,5)(As) OL L1(t)(n(8)} + T{U(EL, 5)(Au) OL L1(8) (1 (1))} = 0.
In the final step we have used the fact that for A, € DE}? and B, € D; we have
T {[Ha(t), Ay O1 Bo} = ~T {Au 01 L(6)(B.)) (5.31)
Indeed, since Dgo) is a core for £4(t) it suffices to consider B,, € D§°). For such

B, (5.31) follows by cyclicity of the trace, with some care needed since H,(t) is
unbounded:

T{[H,(t), Aul; ©L Bu} (5.32)
= T{H,(t)A, ©r B} — T {(H.,()AL)} ©r B.}
T {(Ho(t) +7)Aw 01 (Ho(t) +7)BE)* Or (Ho(t) + 7)1}
= T {((Ho(t) + 1AL O (Ho(t) +7) 7 (Hu(t) + ) Bu }
= —T{A, O [Hu(t),Buli} = =T {A, O L1(¢)(Bw)}.
We conclude that for all ¢t and A, € Dég) we have
T{a, 0010} =T {A, 00 7(s)} = T {Au 01 n(9)} (5.33)

and hence (5.33) holds for all A, € K by Corollary 4.12 and Lemma 3.19 (or
Lemma 3.24) . Thus fo)(t) = 1,(s) by Lemma 3.23, that is, v, (t) = U(t, s)(Vw(S)).
Since limg_, oo Yy (s) = 0 by hypothesis, we get v, (t) = 0 for all ¢. O

5.2. The current and the conductivity. ;From now on g, (¢) will denote the
unique solution to (5.10), given explicitly in (5.13). We set

D, (t) = D(A,, + F(t)) = Gt)D(AL)G(1)" = Gt)DLG(1)". (5.34)

Since H,(t)o.(t) € K1,2 we have g, (t)H. C D, hence the operators D, ., (t)o.(t)
are well-defined on H., j =1,2,... ,d, and we have

Djw(t)0w(t) = (Djw(t)(Ho(t) +7)7") O (Ho(t) +7)0u(t)) € Krz.  (5.35)

Definition 5.5. Starting with a system in equilibrium in state (,,, the net current
(per unit volume), J(n,E; () € R, generated by switching on an electric field E
adiabatically at rate n > 0 between time —oo and time 0, is defined as

J(ﬁ, E; Cw) =T (Vw (O)Qw (0)) -7 (Vwa) s (536)
where the velocity operator v, (t) at time t is as in (2.24), i.e.,
Vu(t) = 2D (t) = {2D; ()} (5.37)

a vector of essentially self-adjoint operators on D (or C°(R)).

Remark 5.6.  (a): The term T (vuCu) = {7 (VjwCu)}toy ... 4 18 the current at
time t = —oo. Since the system is then at equilibrium one expects this term to
be zero, a fact which we prove in Lemma 5.7. It follows that the net current
is equal to the first term of (5.36), which is the current at time 0. We will

simply call this the current.
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(b): The current J(n,E;C) is a real vector. This follows from the fact that
0 < 0, (t) € K1, and hence \/0.(t) € Kz, the fact that Dj ,(t)\/ 0. (t) € Ks
by the same argument as in (5.35), the centrality of T, and the essential
self-adjointness of the components of v, (t).

Lemma 5.7. Let f be a Borel measurable function on the real line, such that
1f®d.08ll0c is finite. Then

T(Djwf(Hy,)) =0. (5.38)

As a consequence, we have T (vau(,EF)) =0.

This result appears in [BES], with a detailed proof in the discrete case and some
remarks for the continuous case. The latter is treated in [KeS]. Their proof relies
on a Duhamel formula and the Fourier transform. We give an alternative proof
based on the Helffer-Sjostrand formula.

Proof of Lemma 5.7. First note that by a limiting argument it suffices to consider
f € S(R). In fact, we may find a sequence g, € S(R) such that sup,, ||gnPd,a.8llcc <
oo and g, (H,) — f(Hy) strongly. Then

Dj1w(f(Hw) - gn(Hw)) = (539)

1 d 1
H, + )2 (f(H,) — go(H,
s O 1 Or (Hy +7) (f(Ho) = gn(Ho))

Jw

where the left hand factor is in K by Proposition 2.3(i), the middle factor is in
K1 by Proposition 2.14, and the right hand factor is a uniformly bound sequence
in Ko converging strongly to zero. By dominated convergence, we conclude that
the 1 norm, and thus the trace per unit volume, converges to zero.

Therefore, suppose f € S(R). Let G(t) = [ dt f(t), and set F(t) = b(t)G(t),
where b(t) € C°°(R) is such that b(t) = 1 for t > —y and b(t) =0 for t < —y —1
(so b(t) = 1 in a neighborhood of the spectrum of H,). We have F € S(R),
G(H,) = F(Hw)a and f(H,) = F/(Hw)'

We now recall the generalization of the Helffer-Sjostrand formula given in [HuS,
Lemma B.2]: given a self-adjoint operator A and f € S(R) we have

%f(p)(A) = fdf(z)(z — APt forp=0,1,..., (5.40)

where the integral converges absolutely in operator norm by (2.37). (See [HuS,
Appendix B] for details.)
By (2.44) from the proof of Proposition 2.4, we have

[z, Ru(2)] = 2iR,(2)DjwRu(2) € Koo » (5.41)

for R,(2) = (H, — 2z)~! with Im 2 # 0. By the usual Helffer-Sjéstrand formula
(2.35) we have

[z, F(H,)] = — / dF(2)[z;, Ru(z)] = —2i / dF(2)Ry(2)D; Ry (2), (5.42)

which in particular gives another proof to the fact that [z, F(H,)] € Koo, which
we already knew by Proposition 4.2(ii).

There is a slight technical difficulty due to the fact that R, (z)Dj R, (2) may
not be in Iy (although [z;, F(H,)] is). Thus we introduce a cutoff by picking a
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sequence h, € C*(R), |h,| < 1, hy, = 1 on [—n,n], and apply (5.40) with p =0
and p = 1 to obtain

T {2, F(H,)| o ha(H.)} = —2i / AF (2)T {Ro(2)D;,0 Ru(2) O1 hn(Ho)}

_ _2¢/dﬁ(z)7 (D, Ro(2)? O hu(Ho)} = —2T (D0 f(H.) Op ho(H.)} .

(5.43)

In the limit n — oo, we get
T{Djuf(Ho)} = 5TA[F(Ho) 251} = 0 (5.44)
by Proposition 4.2(v). O
It is useful to rewrite the current (5.36), using (5.13) and the argument in (5.29),

as
J(77, E; Cw) = T{QDw(O) (Qw(o) - Cw(o))} (545)
0
- _7{2/ dr "D, (0) U0, ) (i[E - x, Cw(r)])} ,

which is justified, since
by cyclicity of the trace, and anyway all three terms are zero.

The conductivity tensor o(n;(,) is defined as the derivative (or differential) of
the function J(n,;¢,): R — R? at E = 0. Note that o(n;{,) is a d x d matrix

{ojr(n;Cu)}:
Definition 5.8. Forn > 0 the conductivity tensor o(n;(,) is defined as

o(n;Cw) = 98I (1,0; ) (5.47)
if it exists. The conductivity tensor o((,,) is defined by
o(Cw) = limao(n; Cu), (5.48)
nl0

whenever the limit exists.

5.3. Computing the linear response: a Kubo formula for the conductiv-
ity. The next theorem gives a “Kubo formula” for the conductivity.

Theorem 5.9. Let n > 0. The current J(n, E; () is differentiable with respect to
E at E = 0 and the derivative o(n; () is given by
0
outnc) = =T {2 [ arerD, w0 n e} (69

where U0 (r)(Ay,) = e="He ©f A, O e,

We also have the analogue of [BES, Eq. (41)] and [SB2, Theorem 1]; £; is the
Liouvillian on Ky (see Corollary 4.12).

Corollary 5.10. The conductivity o (n; () is given by
g Cw) = T {2Djw (il +n)"" (ilzr, )}, (5.50)
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Proof. Since H, [z, (,] € K1 N Ko by Lemma 5.4(ii), we have
D; U (=) (i[zr, &) = Djw(Ho +7) " Or (Ho + U (=r) (ifzx, L))
= Djo(Hy +7) " 0L U (=) (Ho +7)ilzr, C)) (5.51)
and it follows from (5.49) that
ok (1 ¢0) = =27 {Djw(Ho + 7)1 O (L1 + 1) (Ho +7)ilzr, G)) }
= 2T {Dj,(ily +n)~" (i[zx,C))} (5.52)
since (iL1 + 1)~ ((Hy + 7)i[zk, ¢]) and (iLy +n)~ ! (i[xk, (L)) are in K3 N Ky and

hence in K (not just in Ky ), where

(Hy, + 'Y)il or (iL1 + 7])71 (Hy +7)i[zk, Cul) = (i1 + 77)71 (i[zg, Cul) . (5.53)

O
Proof of Theorem 5.9. From (5.45) and J;(n,0;¢,) = 0 (Lemma 5.7), we have
0
ok Cw) = — JTljim0 27T {/ dre™”D; ,(0)U(0,r) ([xk, (w(r)])} , (5.54)

where D, ,(0) = D, o,(E,0) and (,(r) = {,(E,r) depend on E through the gauge
transformation G and U, (0,7) = U, (E,0, ) also depends on E. (For clarity, in this
proof we display the argument E in all functions which depend on E.)

Let us first understand that we can interchange integration and the limit E — 0,
i.e., that

0
o) = =2 [ dre lim T (D (B OU(E.0,1) (o, Gu(E. 1))

- (5.55)
Note that
D;.(E,00UE,0,7) (i[z, Cu(E, r)])
= {Dju(E,0)(Hy(E,0) +7) "' (Hu(E,0) + 1)Uy (B,0,7) (Hy(E,7) + )~}
oL {(Hu(E,r) +7) (i[zk, Cw(E, 1))} Or Uu(E, r,0) (5.56)
={G(E,0) (Djw(Ho, +7v) ")} 0 W(E,0,r)
oL {G(E, ) (Hy +lizk, )} ©r Uu(E,7,0).

Using (2.73), (4.35), gauge invariance of the norms, (2.81), (2.75), and Lemma 5.4(ii),
we get

sup |||Dj7w (E7 O)U(E’ 0, T) (i[mkv Cw(Ev 7“)])H|1 (5'57)
|E|<1,r<0
<|[Djw(Ho + 7)o { sup |||Ww(E,0,T)||oo} I(He + 7)) [z, Gl < oo

|E|<1,r<

Eq. (5.55) follows from (5.54), (5.57), (3.99), and dominated convergence.
Next, we note that for any s we have

]%imog(E, s) =TI strongly in /Ky , (5.58)
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which can be proven by a argument similar to the one used to prove Lemma 4.13.
Along the same lines, for B, € K, we have

Jim G(E.3)(B.) = B, strongly in M. with [G(E. 5)(B.)l, = | Bl (559
It therefore follows from (5.56) that
éimO’T {D; (E,0UE,O,r) (ilzk, (W (E,7)]) } (5.60)

= lim T {(D; ., — F;(0)) Uu(E, 0,7) (Hu(E,7) +7) "'

O (Hy +7)[izk, Cu] ©r Us(E,7,0)}
Jim 7 {D; U (B, 0,7)(Ho(B,7) +7) ™ Op (Ho +7)lian, G 0 UL (1)}
= lim 7 {D; U, (B, 0,7)(Ho +7) ™" {(Ho +7) (Ho(B,0) +7) "'} or

Ou(Hy +)izk, ) ©r UL (1)}
= éiLnOT {Dijw(Ea 0, r)(Hw + ’7)_1 Or (Hw + ’}/)[il‘k, Cw] Or ULA(;O)(T)} )

where we used (5.58), (2.92), the fact that D; ,(E,0) = D;,, —F;(0), (2.72)-(2.73),
and Lemma 3.19. (Technically, we have not shown convergence yet. This equation
should be read as saying that if any of these limits exists, then they all exist and
agree.)

To proceed it is convenient to introduce a cutoff so that we can deal with D,
as if it were in K. Thus we pick f,, € C(R), real valued, |f,| <1, f, =1 on
[—n,n]. Using Proposition 2.3(i) and Lemma 3.19 we have

T { D Uu(B,0,1)(Ho + 7)™ @4 (o +7)lize, ] ©r UL (1) | (5.61)
= Tim 7 {Djufu(H)UL(E, 0,7) O fizk, G.] 0r UL (1)} (5.62)
= lim 7 {U,(B,0,r) Or ilew, ] On (U (1D, fa(Ha) )} (5.63)
= lim T {Uw(E, 0,7) @1 ((He + 7)ilzk, (o)) Or (5.64)

QRULE;O)(T)(HM + 7)_1Dj,wfn(Hw)}
=T {UL(B,0,r) O (Ho +7)ilz &) ©r UL (0)(Ho+7) "Dy} (5.65)

where we used Lemma 3.22 to go from (5.62) to (5.63). The step from (5.63) to
(5.64) is justified because (H, +v)~' commutes with U(®). Finally, since (H,, +
7)™ 'D, . € Koo (that is, its bounded closure is in K), we can take the limit

n — oo, using Lemma 3.19 again. (Note (i[zy, (o))" = iz, C].)
Finally, combining (5.60) and (5.61)-(5.65), we get

Lim 7 {D..(E, 0)U(E, 0,7) (i, G (B, 7))} (5.66)
= T{UD (=) ©1 (Ho +ilan ) 0 UL ) (Dsu(Ho + 1))}
= T{D;u(Ho +7) 0O (1) 01 (Ho +7iler, ] 0 UL ()} (5.67)

=T { DU (=) (il D) | (5.65)
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where to obtain (5.67) we used (5.61)-(5.65) in the reverse direction, with Uu(jo)(r)
substituted for U, (E,0,7), and in the last step used again that (H, + v)~' com-
mutes with U (r).

The Kubo formula (5.49) now follows from (5.55) and (5.68). O

5.4. The Kubo-StFeda formula for the Hall conductivity. Following [BES,
AG], we now recover the well-known Kubo-Streda formula for the Hall conductivity
at zero temperature. We write

oy = o (PS) , and o3 (n) = oy PS) (5.69)
Theorem 5.11. If (, = PSER) s o Fermi projection satisfying (5.2), we have
o) = =T { P oy [[a;, PO [an, PP | | (5.70)
forall j,k =1,2,... ,d. As a consequence, the conductivity tensor is antisymmet-
ric; in particular O'J(EF) =0forj=1,2...,d.
Clearly the direct conductivity vanishes, o\ Pr) — 0. Note that, if the system is

33
time-reversible the off diagonal elements are zero in the region of localization, as

expected.
Corollary 5.12. Under the assumptions of Theorem 5.11, if A =0 (no magnetic
field), we have crgcp) =0 forall j,k=1,2,...,d.
Proof. Let J denote complex conjugation on H, i.e., Jo = @, an antiunitary oper-
ator on H. The time reversal operation is given by ©(S) = JSJ, where S is a self-
adjoint operator (an observable). We have JH. = H,, and hence ©(A,)p = JA,J
gives a complex conjugation on /C;, i = 1,2, co.

If A =0, we have ©(H,) = H,, and thus ©(f(H,)) = f(H,) for any real

valued Borel measurable function f. Moreover ©(i[z;, piFr )]) = —ifx;j, piFr) ] and
O([Aw, Bulo) = [0(AL),©(By)]o. On the other hand if A, € K; is symmetric,

then T(O(A.)) = T(Au). Since P @y i [ifw;, PV ifoy, S]] o PL
<&
is symmetric, it follows from Theorem 5.11 and the above remarks that
ol = T{PFD opiife;, PP, iler, PP or PP (5.71)
= -7 {PUSEF) Or [i[l'jv PYFR),ifay, PCSEF)]L Or POSEF)} = o\l

and hence a;iF) =0. O

Before proving Theorem 5.11, we recall that under Assumption 5.1 the operator
[k, POSEF)] € K1 N Ky is defined on H, as sc;cPu(,EF) — P‘L(,EF)xk thanks to (5.2).

Lemma 5.13. We have (as operators on H.)

[p;EF>, [P,y PP ] ) (5.72)
©lo
Proof. Since PSP € Koo and [zy, PS7)] € K1 N Ko, the left hand side of (5.72)
makes sense in K1 and Ko, and thus as an operator on H..
Note that the orthogonal projection 1—P£EF) isin K, although it is not in Iy or
Ks. Furthermore (1— P YH, ¢ Ho+PS")H, € D(x). Thus Pz, (1— PSFR))
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and (1 — piFr ))kau(,EF ) make sense as operators on H. (almost surely), and we
have

[mk,Pj,EF)] = (1— PEr))g, PER) _ pEr)y (1 — pERY on M,  (5.73)

Since PL(UEF )(1 — PUSEF )) = 0, the right hand side of this expression is unchanged if
we replace zy by [z, PQ(,EF)] in the first term and by —[xy, PQ(,EF)] in the second.

As technically [z, pLEr )] is defined on H,., we should introduce the products ©p, r
here. Thus,

[wk, PLEN] = (1- PE") oy [y, PE] 0 PER
+ PED o [x, PP og (1 - PEDY . (5.74)
Now, given any A, € Kg we have

[PUSE’F%Aw] = - [1—P§JEF>,AUJ] : (5.75)

© ©

and thus
Ole
PSP 0 Ay (1= PSPy + (1= PSPy o Ay 0 PR

using that PFY @ (1- REEF)) = 0. Finally, (5.72) follows from (5.74) and (5.76).
O

Remark 5.14. (i)Eq. (5.74) appears in [BES] (and then in [AG]) as a key step in
the derivation of the expression of the Hall conductivity.
(i) In (5.72) we use crucially the fact that we work at temperature zero, i.e. that

the initial density matrix is the orthogonal projection PUSEF ). The argument does
not go through at positive temperature.

Proof of Theorem 5.11. We first regularize the velocity D, ,, with a smooth func-
tion f, € CR), |fn] <1, fr =1 0n [—n,n], so that D, ., frn(H,) € K1NK2 € K.
We have, using the centrality of the trace 7 (see Lemma 3.22), that

) = =T {2D5U O (=) lwr, P | (5.77)

= — lim T{(QDj,wfn(Hw)) oL U(O)(—T)(i[xk,PLSEF)])}

=~ lim T{UO()@2D;0fu(H)) Orilen, PO} (5.78)

Next, it follows from Lemma 3.22 that, for A, B, € K4 and C,, € K1, we have
T{A, Or [Bu,Culo} =T{[Au, Bu] ©L Cu} . (5.79)
It follows, on the account of Lemma 5.13, that
T {U®()(2D; 0 fu(Ho) O ilar, P} (5.80)

- T {u(m (r)(2D, 0 fa(HL) O [PﬁEF% [PgEF>,i[xk,P£EF>1}®] }
©

= 7 {U(O) (r) ([POSEF)7 [Pf,EF),QDjvwfn(Hw)”) oL i[Ik,PLSEF)]} ’
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where we used that P(A(,EF ) commutes with UU(JO).

We now claim that
[PLP0.2D; 0 fu(H)| = [Honiley PO 0n fulHo). (5:81)
To see this, we use (5.16) to conclude that
[Hasilas P 0n fu(Ha) =2 (D5 P) O fulH) — 2D P o (HL)
=2 (PSPOID, 0 fu(H) = Dy P fu(HL)) (5.82)
= 2(PYP)Dj 0 fu( o) = Dy fu(HL) P )

which is just (5.81). Combining (5.78), (5.80), and (5.81), we get after taking
n — 0o,

5Py = ~T {Z/I(O)(r) ([P}JEF% [Hw,i[xj7P£EF)]}J )oi[x;wPu()EF)]
) (5.83)
Here it is useful to note that, by Proposition 2.3(i), the restriction to H. of
piFF) 2Dj,w] is in Koo N Ky N K, and

[Hw, iz;, P‘EEF)]L - [Pu()EF), sz,w] eKiNks. (5.84)
In addition, on KC;, i = 1,2, we have
PR @ (Hyilzy, PSPY]) = Ho(PSPR) G ilay, PSEF)), (5.85)
and, on the account of Lemma 4.11,
(Hoilz;, PSEP)) 0 PSP = Hy(ile;, PP or PF). (5.86)
It also follows from (5.85) and (5.86) that
H, {PLSEF),Z'[I]‘,PLSEF)]}@ = [P;EF>,Hwi[xj,P£EF>]}® , (5.87)

all terms being well defined in ;. Therefore,

{PLSEF), {Hw,i[:rj,POSEF)]]] — {Hw, {PLE,EF)J'[‘%]JPLSEF)]} } . (5:89)
o ©ly
We thus get
5 () = _7{u;0>(r)([Hw,[PiEF),i[xj,P;EF>}}®] >oi[xk,PgEF>]}
t

- - <<e—"ﬁw£2 <{P‘£EF),i[a:j,P£EF)]}®) ,z’[xk,Pf,EF’]>> , (5.89)

where we used (3.102) and Corollary 4.12. Recall that ((-,-)) is the inner product
on Hy and L, is the Liouvillian in s — the self-adjoint generator of the unitary
group UO)(t). Combining (5.49), (5.77), and (5.89), we get

e = = ((itea +in ™" o ([PAE0,ifay, 2P0 Y it PLEOT) )
(5.90)



50 J.-M. BOUCLET, F. GERMINET, A. KLEIN, AND J.H. SCHENKER

It follows from the spectral theorem (applied to L2) that

lin% (L2 + in)71 Ly = Pker£,)+ strongly in Ky, (5.91)
n—
where P(ge, £,y is the orthogonal projection onto (Ker L3)*. Moreover, we have
PER iz, PLSEF)]] € (Ker L) . (5.92)
®

To see this, note that if A, € Ker Ly, then for all ¢ we have U (r)(A,) = A,
and hence e~ e ©p A, = A, O e""He 5o it follows that f(H,) & A, =
A, Or f(H,) for all f € S(R), i.e., [Aw, f(Hv)]e = 0. An approximation argument
using Lemma 3.9 gives [A,, piEr ]o =0. Thus

(o [P0ty L2 )Y = ({1 PP il PEPT)) =0, 6.93)

and (5.92) follows.
Combining (5.90), (5.91), (5.92), and Lemma 4.6, we get

o =1 <<[P£EF%i[xj,P£EF>]} 7i[xk,PUSEF>]>>
’ ®

- —iT{ [PUSEF), ilx;, Pj,EF)]}

(O]

o[k, pngFn} (5.94)
©

= —iT {PFO oy [ilws, PO, ilar, PE)) 1
<
which is just (5.70). The theorem is proved. d
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