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Abstract: Using the formalism of rigorous statistical mechanics, we study the phenomena of
phase separation and freezing-point depression upon freezing of solutions. Specifically, we devise
an Ising-based model of a solvent-solute system and show that, in the ensemble with a fixed amount
of solute, a macroscopic phase separation occurs in an interval of values of the chemical potential of
the solvent. The boundaries of the phase separation domain in the phase diagram are characterized
and shown to asymptotically agree with the formulas used in heuristic analyses of freezing point
depression. The limit of infinitesimal concentrations is described in a subsequent paper.

1. INTRODUCTION

1.1 Motivation.

The statistical mechanics of pure systems—most prominently the topic of phase transitions and
their associated surface phenomena—has been a subject of fairly intensive research in recent
years. Several physical principles for pure systems (the Gibbs phase rule, Wulff construction,
etc.) have been put on a mathematically rigorous footing and, if necessary, supplemented with
appropriate conditions ensuring their validity. The corresponding phenomena in systems with
several mixed components, particularly solutions, have long been well-understood on the level of
theoretical physics. However, they have not received much mathematically rigorous attention and
in particular have not been derived rigorously starting from a local interaction. A natural task is
to use the ideas from statistical mechanics of pure systems to develop a higher level of control for
phase transitions in solutions. This is especially desirable in light of the important role that basic
physics of these systems plays in sciences, both general (chemistry, biology, oceanography) and
applied (metallurgy, etc.). See e.g. [27, 24, 11] for more discussion.

Among the perhaps most interesting aspects of phase transitions in mixed systems is a dra-
matic phase separatiolin solutions upon freezing (or boiling). A well-known example from
“real world” is the formation of brine pockets in frozen sea water. Here, two important physical
phenomena are observed:
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(1) Migration of nearly all the salt into whatever portion of ice/water mixture remains liquid.
(2) Clear evidence dhacettingat the water-ice boundaries.

Quantitative analysis also reveals the following fact:

(3) Salted water freezes at temperatures lower than the freezing point of pure water. This is
the phenomenon dfeezing point depression

Phenomenon (1) is what “drives” the physics of sea ice and is thus largely responsible for the
variety of physical effects that have been observed, see e.g. [17, 18]. Notwithstanding, (1-3) are
not special to the salt-water system; they are shared by a large class of the socaliadatile
solutions. A discussion concerning the general aspects of freezing/boiling of solutions—often
referred to agolligative properties—can be found in [27, 24].

Of course, on a heuristic level, the above phenomena are far from mysterious. Indeed, (1)
follows from the observation that, macroscopically, the liquid phase provides a more hospitable
environment for salt than the solid phase. Then (3) results by noting that the migration of salt
increases the entropic cost of freezing so the energy-entropy balance forces the transition point
to a lower temperature. Finally, concerning observation (2) we note that, due to the crystalline
nature of ice, the ice-water surface tension will be anisotropic. Therefore, to describe the shape
of brine pockets, a Wulff construction has to be involved with the caveat that here the crystalline
phase is on the outside. In summary, what is underlying these phenomena is a phase separation
accompanied by the emergence of a crystal shape. In the context of pure systems, such topics
have been well understood at the level of theoretical physics for quite some time [33, 12, 16, 32]
and, recently (as measured on the above time scale), also at the level of rigorous theorems in
two [2, 14, 28, 29, 22, 4] and higher [9, 6, 10] dimensions.

The purpose of this and a subsequent paper is to study the qualitative nature of phenomena
(1-3) using the formalism of equilibrium statistical mechanics. Unfortunately, a microscopically
realistic model of salted water/ice system is far beyond reach of rigorous methods. (In fact, even
in pure water, the phenomenon of freezing is so complex that crystalization in realistic models
can only now—and only marginally—be captured in computer simulations [26].) Thus we will
resort to a simplified version in which salt and both phases of water are represented by discrete
random variables residing at sites of a regular lattice. For these models we show that phase sep-
aration dominates a non-triviadgion of chemical potentials in the phase diagram—a situation
quite unlike the pure system where phase separation can occur only at a single value (namely,
the transition value) of the chemical potential. The boundary lines of the phase-separation re-
gion can be explicitly characterized and shown to agree with the approximate solutions of the
corresponding problem in the physical-chemistry literature.

The above constitutes the subject of the present paper. In a subsequent paper [1] we will
demonstrate that, for infinitesimal salt concentrations scaling appropriately with the size of the
system, phase separation may still occur dramatically in the sense that a non-trivial fraction of the
system suddenly melts (freezes) to form a pocket (crystal). In these circumstances the amount of
salt needed is proportional to theundaryof the system which shows that the onset of freezing-
point depression is actually a surface phenomenon. On a qualitative level, most of the aforemen-
tioned conclusions should apply to general non-volatile solutions under the conditions when the
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solvent freezes (or boils). Notwithstanding, throughout this and the subsequent paper we will
adopt thdanguageof salted water and refer to the solid phase of the solvent as ice, to the liquid
phase as liquid-water, and to the solute as salt.

1.2 General Hamiltonian.

Our model will be defined on the-dimensional hypercubic latticg®. We will take the (formal)
nearest-neighbor Hamiltonian of the following form:

BA =— Z(allny +alxLy) + Z SxIx — Z UsSx — Z Ly (1.1)
<x,y> X X X

Here $ is the inverse temperature (henceforth incorporated into the Hamitoxiaand y are
sites inZ% and (x, y) denotes a neighboring pair of sites. The quantitied., and S, are the
ice (water), liquid (water) and salt variables, which will take valuefirl} with the additional
constraint

Ii+Ly=1 (1.2)
valid at each sitx. We will say thatl, = 1 indicates theresence of icat x and, similarly,Ly
the presence of liquicat x. Since a single water molecule cannot physically be in an ice state, it
is natural to interpret the phrage= 1 as referring to the collective behavior of many particles in
the vicinity of x which are enacting an ice-like state, though we do not formally incorporate such
a viewpoint into our model.

The various termsin (1.1) are essentially self-explanatory: An interaction between neighboring
ice points, similarly for neighboring liquid points (we may assume these to be attractive), an
energy penalty for a simultaneous presence of salt and ice at one point, and, finally, fugacity
terms for salt and liquid. For simplicity (and tractability), there is no direct salt-salt interaction,
except for the exclusion rule of at most one salt “particle” at each site. Additional terms which
could have been included are superfluous due to the constraint (1.2). We will assume throughout
thatx > 0, so that the salt-ice interaction expresses the negative affinity of salt to the ice state
of water. This term is entirely—and not subtly—responsible for the general phenomenon of
freezing point depression. We remark that by suitably renaming the variables, the Hamiltonian in
(1.1) would just as well describe a system with boiling point elevation.

As we said, the variablek andLy indicate the presence of ice and liquid water at gite
respectively. The assumptidpn+ Ly = 1 guarantees thaomethinghas to be present at(the
concentration of water in water is unity); what is perhaps unrealistic is the restrictipaod L,
to only the extreme values, namdly Ly € {0, 1}. Suffice it to say that the authors are confident
(e.g., on the basis of [3]) that virtually all the results in this note can be extended to the cases of
continuous variables. However, we will not make any such mathematical claims; much of this
paper will rely heavily on preexisting technology which, strictly speaking, has only been made
to work for the discrete case. A similar discussion applies, of course, to the salt variables. But
here our restriction t&, € {0, 1} is mostly to ease the exposition; virtually all of our results
directly extend to the cases whep takes arbitrary (positive) real values according to s@me
priori distribution.
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1.3 Reduction to Ising variables.

It is not difficult to see that the “ice-liquid sector” of the general Hamiltonian (1.1) reduces to a
ferromagnetic Ising spin system. On a formal level, this is achieved by the defimjtienL, — I,
which in light of the constraint (1.2) gives

_l—+‘0'x 1_0-)(

LX — 2 and IX = 2 . (1.3)
By substituting these into (1.1), we arrive at the interaction Hamiltonian:
l1-90
A =—=3> oxoy—hD ox+x D S 5 L= usSy (1.4)
(X,y) X X X
where the new parametedsandh are given by
a +a d
J="," and hzz(aL—a.)—l—%. (1.5)

We remark that the third sum in (1.4) is still written in terms of “ice” indicators so i#atvill

have a well defined meaning everxif= oo, which corresponds to prohibiting salt entirely at
ice-occupied sites. (Notwithstanding, the bulk of this paper is restricted to finitésing an ap-
propriate restriction to finite volumes, the above Hamitonian allows us to define the corresponding
Gibbs measures. We postpone any relevant technicalities to Section 2.1.

The Hamiltonian as written foretells the possibility of fluctuations in the salt concentration.
However, this is1otthe situation which is of physical interest. Indeed, in an open systemiitis clear
that the salt concentration will, eventually, adjust itself until the system exhibits a pure phase. On
the level of the description provided by (1.4) it is noted that, as grand canonical variables, the salt
particles can be explicitly integrated, the result being the Ising model at coupling codstadt
external fieldhes, where

1 14 ets
het = h+ = log———. 1.6
eff + > g 11 erer (1.6)

In this context, phase coexistence is confined to the relgign= 0, i.e., a simple curve in the

(us, h)-plane. Unfortunately, as is well known [30, 19, 20, 23, 5], not much insight on the subject

of phase separatiofis to be gained by studying the Ising magnet in an external field. Indeed,
under (for example) minus boundary conditions, oh@xceeds a particular value, a droplet will

form which all but subsumes the allowed volume. The transitional vallesafales inversely

with the linear size of the system; the exact constants and the subsequent behavior of the droplet
depend on the details of the boundary conditions.

The described “failure” of the grand canonical description indicates that the correct ensemble
in this case is the one with a fixed amount of salt per unit volume. (The technical definition uses
conditioning from the grand canonical measure; see Section 2.1.) This ensemble is physically
more relevant because, at the moment of freezing, the salt typically does not have enough “mo-
bility” to be gradually released from the system. It is noted that, once the total amount of salt is
fixed, the chemical potentials drops out of the problem—the relevant parameter is now the salt
concentration. As will be seen in Section 2, in our Ising-based model of the solute, fixing the salt
concentration generically leads sbarpphase separation in the Ising configuration. Moreover,
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this happens for aimterval of values of the magnetic field. Indeed, the interplay between the
salt concentration and the actual external field will demand a particular value of the magnetiza-
tion, even under conditions which will force a droplet (or ice crystal, depending on the boundary
condition) into the system.

We finish by noting that, while the parameteis formally unrelated to temperature, it does to
a limited extent play the role of temperature in that it reflectsathpeiori amount of preference
of the system for watersice. Thus the natural phase diagram to study is in(¢he)-plane.

1.4 Heuristic derivations and outline.

The reasoning which led to formula (1.6) allows for an immediate heuristic explanation of our
principal results. The key simplification—which again boils down to the absence of salt-salt
interaction—is that for any Ising configuration, the amalgamated contribution of salt, i.e., the
Gibbs weight summed over salt configurations, depends only on the overall magnetization and
not on the details of how the magnetization gets distributed about the system. In systems of linear
scaleL, let 3, (M) denote the canonical partition function for the Ising magnet with constrained
overall magnetizatiotM. The total partition functiorZ (c, h) at fixed salt concentration can

then be written as

Zu(e,h) =D~ 30(MEMWL(M, o), (1.7)
M

whereW_ (M, c) denotes the sum of the salt part of the Boltzmann weight—which only depends
on the Ising spins via the total magnetizatidr—over all salt configurations with concentration

As usual, the physical values of the magnetization are those bringing the dominant contribution
to the sum in (1.7). Let us recapitulate the standard arguments by first considering the case
¢ = 0 (which impliesW_ = 1), i.e., the usual Ising system at external fieldHere we recall
that3, (mL%) can approximately be written as

3LmLY) ~ e IFamel, (1.8)

whereC is a suitably chosen constant afgd (m) is a (normalized) canonical free energy. The
principal fact about%;(m) is that it vanishes fom in the interval Fm,, m,], wherem, =
m,(J) denotes the spontaneous magnetization of the Ising model at codplivigjle it is strictly
positive and strictly convex fam with |m| > m,. The presence of the “flat piece” on the graph
of .#;(m) is directly responsible for the existence of the phase transition in the Ising model:
Forh > 0 the dominant contribution to the grand canonical partition function comesKtom

m, L9 while forh < 0 the dominant values of the overall magnetizationMres —m, LY. Thus,
oncem, = m,(J) > O—which happens fod > J.(d) with J.(d) € (0, o0) wheneved > 2—a
phase transition occurs at= 0.

The presence of salt variables drastically changes the entire picture. Indeed, as we will see in
Theorem 2.1, the salt partition functiail_ (M, c) will exhibit a nontrivial exponential behavior
which is characterized by strictly convexfree energy. The resulting exponential growth rate
of 3. (M)e"MW_ (M, ¢) for M ~ mLY is thus no longer a function with a flat piece—instead,
for eachh there is auniquevalue ofm that optimizes the corresponding free energy. Notwith-
standing (again, due to the absence of salt-salt interactions) once thed been selected, the
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spin configurations are the typical Ising configurations with overall magnetizaliors m LY.

In particular, wheneveF, (c, h) is dominated by values dfl ~ mL9 foranm e (—m,, m,),
amacroscopic dropletlevelops in the system. Thus, due to the one-to-one correspondence be-
tweenh and the optimal value ah, phase separation occurs foriaterval of values ofh at any
positive concentration; see Fig. 1.

We finish with an outline of the remainder of this paper and some discussion of the compan-
ion paper [1]. In Section 2 we define precisely the model of interest and state our main results
concerning the asymptotic behavior of the corresponding measure on spin and salt configurations
with fixed concentration of salt. Along with the results comes a description of the phase diagram
and a discussion of freezing-point depression, phase separation, etc., see Section 2.3. Our main
results are proved in Section 3. In [1] we investigate the asymptotic of infinitesimal salt concen-
trations. Interestingly, we find that, in order to induce phase separation, the concentration has to
scale at least as the inverse linear size of the system.

2. RRIGOROUS RESULTS
2.1 The model.

With the (formal) Hamiltonian (1.4) in mind, we can now start on developingrihghematical
layout of the problem. To define the model, we will need to restrict attention to finite subsets of
the lattice. We will mostly focus on rectangular boxes c Z of L x L x - - - x L sites centered
at the origin. Our convention for the boundagy,, of the setA c Z9 will be the collection of
sites outsideA with a neighbor inside\. For eactx € A, we have the water and salt variables,
ox € {—1,+1} andSx € {0, 1}. On the boundary, we will consider fixed configuratiang;
most of the time we will be discussing the casggs = +1 orosn = —1, referred to as plus and
minus boundary conditions. Since there is no salt-salt interaction, we may as w&/l-=sél for
all x e A°.

We will start by defining the interaction Hamiltonian. L&tc Z¢ be a finite set. For a spin
configurations 5, and the pailo o, Sx) oOf spin and salt configurations, we let

1-o0y

2

PBIN(o A, Salosn) = —J Z O'XO'y—hZO'X—l-KZSX (2.2)
(X,y)

XeA XeA
xeA, yeZd

Here, as beforex, y) denotes a nearest-neighbor pairZthand the parameterd, h andx are
as discussed above. (In light of the discussion from Section 1.3 the last term in (1.4) has been
omitted.) The probability distribution of the pdi 5, S, ) takes the usual Gibbs-Boltzmann form:

@ BHn(on.SAloan)
Zp(oon) ’

where the normalization constard, (a54), is the partition function. The distributions ifa,
with the plus and minus boundary conditions will be denotedPpyand P, respectively.

2.2)

P (oA, SA) =
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For reasons discussed before we will be interested in the problems with a fixed salt concentra-
tion c € [0, 1]. In finite volume, we take this to mean that the total amount of salt,

NL=NL(S) = D Sk, (2.3)

XeAL

is fixed. To simplify future discussions, we will adopt the convention that “concentration
means thaN, < c|A_| < N_+1,i.e.,N_ = [cL%]. We may then define the finite volume Gibbs
probability measure with salt concentratiorand plus (or minus) boundary condition denoted
by P~ (or P7%M). In light of (2.2), these are given by the formulas

PEEN() = PE(- N = LoL)). @4

Both measureﬁ’ft’c’h depend on the parametelsandx in the Hamiltonian. However, we will
always regard these as fixed and suppress them from the notation whenever possible.

2.2 Main theorems.

In order to describe our first set of results, we will need to bring to bear a few facts about the Ising
model. For each spin configuratien= (o) € {—1, 1}t let us define the overall magnetization
in A by the formula
ML= ML(o) = D ox. (2.5)
XeA|

Letm(h, J) denote the magnetization of the Ising model with coupling constaand external
field h > 0. As is well known, cf the proof of Theorem 3.b,—~ m(h, J) continuously (and
strictly) increases from the value of the spontaneous magnetizatiog m (0, J) to one ash
sweeps throughio, co). In particular, for eachm € [m(0, J), 1), there exists a uniqug =
h(m, J) € [0, oo) such thaim(h, J) = m.

Next we will use the above quantities to define the functiBn: (-1, 1) — [0, co), which
represents the canonical free energy of the Ising model in (1.8). As it turns out—see Theorem 3.1
in Section 3—we simply have

ng (m) = /dm’ h(m’, J)l{m*gm/§|m|}, m e (—1, 1) (26)

As already mentioned, § > J., whereJ. = J.(d) is the critical coupling constant of the Ising
model, therm, > 0 and thus%;(m) = 0 form € [-m,, m,]. (SinceJ;(d) < co only ford > 2,
the resulting “flat piece” on the graph of — .%;(m) appears only in dimensioms> 2.) From
the perspective of the large-deviation theory, cf [13, 21}»> .%;(m) is the large-deviation rate
function for the magnetization in the (unconstrained) Ising model; see Theorem 3.1.

Let.(p) = plog p+ (1 — p)log(1 — p) denote the entropy function of the Bernoulli distri-
bution with parametep. (We will set.¥(p) = oo wheneverp ¢ [0, 1].) For eachm € (-1, 1),
eachc € [0, 1] and eact® € [0, 1], let

1+my( 20c )_1—my(2(1—¢9)C).

2.7
2 1+m 2 1-m 2.7)

Z(m,f;c)=—
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As we will show in Section 3, this quantity represents the entropy of configurations with fixed
salt concentratiom, fixed overall magentizatiom and fixed fractiorf of the salt residing “on
the plus spins” (and fraction 4 # “on the minus spins”).

Having defined all relevant quantities, we are ready to state our results. We begin with a
large-deviation principle for the magnetization in the measﬁféé’h:

Theorem 2.1 Let J > Oandx > O be fixed. For each &= (0, 1), each he R and each
m e (-1, 1), we have

. . 1 +,c,h d dy _ : /
I!?g) LIinOO K] log P (IML — mLY| < €L®) = =G c(m) + m/El(n_fl’l) Gh.c(m). (2.8)

Here m— Gy c(m) is given by

Gh,C(m) = 3€IPOfl] gh,c(ma 9)) (29)

where
%h.c(m,0) = —hm—xfc — E(m, 4; ¢) + .F;(m). (2.10)
The function m— Gy (M) is finite and strictly convex of-1, 1) withlimm_, 1 G, (M) = +oo0.

Furthermore, the unique minimizer g&a m(h, ¢) of m— Gy ¢(m) is continuous in both ¢ and h
and strictly increasing in h.

On the basis of the above large-deviation result, we can now characterize the typical config-
urations of the measureBLi’c’h. Consider the Ising model with coupling constahand zero
external field and Ie]t)ff’J be the corresponding Gibbs measure in volutneand+-boundary
condition. Our main result in this section is then as follows:

Theorem 2.2 LetJ > Oandkx > Obe fixed. Let & (0, 1) and he R, and define two sequences
of probability measure;sf on[—1, 1] by the formula

p([=1,m]) = PES" (ML < mLY),  me[-1,1]. (2.11)

The measures;" allow us to write the spin marginal of the measurLé’“Fh as a convex combina-
tion of the Ising measures with fixed magnetization; i.e., for anylsgftconfigurationSoy)xea, ,
we have

PO (A x {0, 1) = /pf(dm) PEY (AML = [mLY)). (2.12)
Moreover, if m= m(h, ¢) denotes the unique minimizer of the function-mn Gy, c(m) in (2.9),

then the following properties are true:

(1) Given the spin configuration on a finite s&t c Z9, the (Sy) variables onA are asymp-
totically independent. Explicitly, for each finite s&t ¢ Z® and any two configurations
Sx € {0, 1}* anda, € {—1, 1},

LIEnoo Pljt’c’h(SA = §A|0'A = 6'/\) == H{q,;x51(§x) + (1 - q(;x)éo(gx)}a (213)

XeA
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where the numbers,ge [0, 1] are uniquely determined by the equations

o/ g- 14+m 1-m
= e d _ =cC. 2.14
I-q, 1-q an 04— t0-— c (2.14)
(2) The measuref converges weakly to a point mass atfrm(h, c),
lim piE() = dm(-). (2.15)
L—oo

In particular, the Ising-spin marginal of the measurvg\'“i?’h is asymptotically supported on
the usual Ising spin configurations with the overall magnetization # (m + o(1))L¢,
where m minimizes m> Gy, ().

The fact that conditionin@ft*c’h on a fixed value of magnetization produces the Ising measure
under same conditioning—which is the content of (2.12)—is directly related to the absence of
salt-salt interaction. The principal conclusions of the previous theorem are thus parts (1) and (2),
which state that the presence of a particular amount offealésthe Ising sector to choose a
particular value of magnetization density. The underlying variational principle provides insight
into the physical mechanism of phase separation upon freezing of solutions. (We refer the reader
back to Section 1.4 for the physical basis of these considerations.)

We will proceed by discussing the consequences of these results for the phase diagram of the
model and, in particular, the phenomenon of freezing point depression. Theorems 2.1 and 2.2 are
proved in Section 3.2.

2.3 Phase diagram.

The representation (2.12) along with the asymptotic (2.15) allow us to characterize the distribu-
tion Pﬁt’c’h in terms of the canonical ensemble of the Ising ferromagnet. Indeed, these formulas
imply that the distribution of Ising spins induced lﬁy‘t’c’h is very much like that in the mea-
sureIPf_E’J conditioned on the event that the overall magnetizaliipris near the valuen(h, c)L¢.

Recall thaim, = m,(J) denotes the spontaneous magnetization of the Ising model at codpling
Then we can anticipate the following conclusions about typical configurations in mdajéﬁ’tkb

(1) If m(h, ¢) > m,, then the entire system (with plus boundary condition) will look like the plus
state of the Ising model whose external field is adjusted so that the overall magnetization on
the scalel9 is roughlym(h, c)L9.

(2) If m(h, c) < —m,, then the system (with minus boundary condition) will look like the Ising
minus state with similarly adjusted external field.

(3) If m(h,c) € (—m,, m,), then, necessarily, the system exhibits phase separation in the sense
that typical configurations feature a large droplet of one phase inside the other. The volume
fraction taken by the droplet is such that the overall magnetization isméarc)LY. The
outer phase of the droplet agrees with the boundary condition.

The cases (1-2) with opposite boundary conditions—that is, the minus boundary conditions in (1)
and the plus boundary conditions in (2)—are still as stated; the difference is that now there has to
be a large contour near the boundary flipping to the “correct” boundary condition.
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liquid

h=h,(c)

ice

phase separation

h=h_(c)

FIGURE 1. The phase diagram of the ice-water system with> 1. The horizontal axis marks the
concentration of the salt in the system, the vertical line represents the external field acting on the Ising
spins—see formula (1.5). For positive concentrations 0, the system stays in the liquid-water phase
throughout a non-trivial range of negative valueshefa manifestation of the freezing-point depression.

For (h, c¢) in the shaded region, a non-trivial fraction of the system is frozen into ice. Oncg is on the

left of the shaded region, the entire system is in the ice state.

Remark 1 There is no doubt that the aforementioned conclusions (1-3) hold fat all 2

and allJ > J. (with a proper definition of thelropletin part (3), of course). However, the
depth of conclusion (3) depends on the level of understanding Wulff construction, which is at
present rather different in dimensiods= 2 andd > 3. Specifically, while ind = 2 the results

of [14, 22] allow us to claim that for all > J. and all magnetizationsn € (—m,, m,), the
system will exhibit a unique large contour with appropriate propertied, in 3 this statement

is known to hold [6, 10] only in L!-sense” and only fom € (—m,, m,) which are near the
endpoints. (Moreover, not all values df > J. are, in principle, permitted; cf [7] for a recent
improvement of these restrictions.) We refer to [8] for an overview of the situation.

Notwithstanding the technical difficulties of Wulff construction, the above allows us to char-
acterize the phase diagram of the model at hand. As indicated in Fig. th, th€ andc > 0
quadrant splits into three distinct parts: Tiguid-water region, theice region and thegphase
separationregion, which correspond to the situations in (1-3), respectively. The boundary lines
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of the phase-separation region are found by setting
m(h, ¢) = £m,, (2.16)

which in light of strict monotonicity oh — m(h, c) allows us to calculaté as a function ot.
The solutions of (2.16) can be obtained on the basis of the following observation:

Proposition 2.3 Let me [—m,, m,] and ce [0, 1] and define the quantities.g= g..(m, c, k)
by the formula2.14) Let h be the solution to th, c) = m. Then

1. 1-
h=Zlog-—*
2 1-qg-
In particular, there exist two continuous and decreasing functions(f, oo) — (—o0, 0] with

h.(c) > h_(c) forallc > 0, such that-m, < m(h,c) < m,is equivalenttoh(c) < h < h,(c)
forallc > 0.

(2.17)

Proposition 2.3 is proved at the very end of Section 3.2. Here is an informal interpretation
of this result: The quantitiegs. represent thenole fractionsof salt in liquid-water and ice,
respectively. In mathematical terntg, is the probability of having a salt particle on a given plus
spin, andg_ is the corresponding quantity for minus spins, see (2.13). Formula (2.17) quantifies
the shift of the chemical potential of the solvent (which is given hyir2this case) due to the
presence of the solute. This is a manifestatiofreézing point depressionin the asymptotic
whenc « 1 we have

2h~q_ —q,. (2.18)
This relation, derived in standard chemistry and physics books under the auspicies of the “usual
approximations,” is an essential ingredient in the classical analyses of colligative properties of
solutions [27, 24]. Here the derivation is a direct consequence of a microscopic (albeit simplistic)
model which further offers the possibility of calculating systematic corrections.

3. PROOFsS

The proofs of our main results are, more or less, straightforward exercises in large-deviation
analysis of product distributions. We first state and prove a couple of technical lemmas; the
actual proofs come in Section 3.2.

3.1 Preliminaries.

The starting point of the proof of of Theorem 2.1 (and, consequently, Theorem 2.2) is the follow-
ing large-deviation principle for the Ising model at zero external field:

Theorem 3.1 Consider the Ising model with coupling constan&J[0, oco) and zero external
field. Le'[IPﬂLE’J be the corresponding (grand canonical) measure in volumend +-boundary
conditions. Then for all ne [—1, 1],

1
lim lim X logP>? (IML — mLY| < eLY) = —F5(m), (3.1)

€l0 L>oo



12 K.S. ALEXANDER, M. BISKUP AND L. CHAYES, JULY 15, 2004
where M is as in(2.5)and.#; is as defined irf2.6).

Proof. The claim is considered standard, see e.g. [31, Section 1l.1], and follows by a straight-
forward application of the thermodynamic relations between the free energy, magnetization and
external field. For completeness (and reader’s convenience) we will provide a proof.

Consider the functios, (h) = & logE{"” ("), whereE{>” is the expectation with respect
to IP’f’J, and let¢(h) = lim__, . ¢ (h). The limit exists by subadditivity arguments and is
independent of the boundary condition. The functiors ¢ (h) is convex orR and real analytic
(by the Lee-Yang theorem [25]) d&\ {0}. In particular, it is strictly convex oR. By theh <> —h
symmetry there is a cusplat= 0 whenevem, = ¢'(0%) > 0. In particular, for eacm € [m,, 1)
there is a uniqug = h(m, J) such thaty’(h) = m, with h(m, J) increasing continuously from 0
to oo asmincreases fromm, to 1. The plus-minus symmetry shows that a similar statement holds
for magnetizations ii—1, —m,].

Let ¢* denote the Legendre transformgpfi.e., ¢*(m) = supg,.g[mh— ¢(h)]. By the above
properties ofh — ¢(h) we infer that¢*(m) = mh — ¢(h) whenm e (-1, —-m,) U (m,, 1)
andh = h(m, J) while ¢p*(m) = —¢(0) = 0 for m € [-m,, m,]. Applying the Gartner-Ellis
theorem (see [21, Theorem V.6] or [13, Theorem 2.3.6]), we then have (3.1)%uitm) =
¢*(m) for allm e [—1, —m,) U (m,, 1]—which is the set of so called exposed pointgbdf Since
¢*(£m,) = 0 and the derivative o — ¢*(m) is h(m, J), this .%; is given by the integral
in (2.6). To prove (3.1) whem € [—m,, m,], we must note that the left-hand side of (3.1) is
nonpositive and concave im. (This follows by partitioningA | into two parts with their own
private magnetizations and disregarding the interaction through the boundary.) .Bijiice
tends to zero am tends tom, we thus have that (3.1) fan € [—-m,, m,] as well. a

Remark 2 The “first” part of the @rtner-Ellis theorem [21, Theorem V.6] actually guarantees
the followinglarge-deviation principle

Iian_)solij—ld logPi? (ML /LY € C) < = inf ¢*(m) (3.2)
for any closed sef c R while
liminf — logP "’ (M_/L% e 0) > — inf  ¢*(m) (3.3)
Looco Ld meO~[-m,,m,]

for any open se@ c R. (Hereg¢*(m) = .%;(m) for m € [—1, 1] and¢*(m) = co otherwise.)
The above proof follows by specializing teneighborhoods of a givem and lettinge | O.
Them € [—m,, m,] cases—i.e, the non-exposed points—have to be dealt with separately.

The above is the core of our proof of Theorem 2.1. The next step will be to bring the quanti-
tiesc andh into play. This, as we shall see, is easily done if we condition on the total magnetiza-
tion. (The cost of this conditioning will be estimated by (3.1).) Indeed, as a result of the absence
of salt-salt interaction, the conditional measure can be rather precisely characterized. Let us recall
the definition of the quantitil_ from (2.3) which represents the total amount of salt in the system.
For any spin configuration = (o) € {—1, 1}t and any salt configuratiafi= (Sy) € {0, 1},
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let us introduce the quantity

1+o0y
2

QL=0QL(e,9 = Z Sx (3.4)

XeAL

representing the total amount of salt “on the plus spins.” Then we have:

Lemma 3.2 For any fixed spin configuratiod = (ax) € {—1, 1}At, all salt configurations
(Sx) € {0, 1}*t with the same N and Q have the same probability in the conditional mea-
sure P=“"(.|s = ). Moreover, for anyS = (5,) e {0, 1}* with N. = [cL?] and for
any me [—1, 1],

_ 1 _
h o o
P%"(§ occurs My = [mL%)) = Z—Ef’J(e"QL( SHIML@ ] 0 0)=1mLe ) )s (3.5)
L
where the normalization constant is given by
J 0,5 4
Zi= D Lns)eieLey B (€M), (3.6)
S'e{0, 1AL

HereE:” is the expectation with respectg ™.

Proof. The fact that all salt configurations with givédi. and Q_ have the same probability

in PLi’C’h(- |c = &) is a consequence of the observation that the salt-dependent part of the Hamil-
tonian (2.1) depends only d@.. The relations (3.5-3.6) follow by a straightforward rewrite of
the overall Boltzmann weight. a

The characterization of the conditional measﬁféc’h(-|ML = [mL%)) from Lemma 3.2
allows us to explicitly evaluate the configurational entropy carried by the salt. Specifically, given
a spin configuration = (o4) € {—1, 1}t and number$, c € (0, 1), let

AP%(0) = {(S) € {0, 1} N. = [cLY), Qu = |cLY)}. (3.7)

The salt entropy is then the rate of exponential growth of the sizt{ﬁ(a) which can be related
to the quantity=(m, 9; ¢) from (2.7) as follows:

Lemma 3.3 For eache’ > 0 and eachy > 0 there exists a numbergL< oo such that the
following is true for anyd, c € (0, 1), any me (—1, 1) that obeym| < 1 — y,

20c 2(1-6)c <

1- d 1- 3.8
Tom>t—n and ——o , (3.8)
and any L> Lo: If 6 = (o) € {—1, 1}t is a spin configuration with M(¢) = [mLY], then
I 4,c
—Og'“‘t; O _ 2m,0;0) < e (3.9)

Proof. We want to distributeN, = [cLY] salt particles ovet.9 positions, such that exactly
QL = |#cL?| of them land org (LY 4+ M) plus sites andN_ — Q. on $(L4 — M, ) minus sites.



14 K.S. ALEXANDER, M. BISKUP AND L. CHAYES, JULY 15, 2004

This can be done in
10 d 1/ d
0., [3(LT+ MY (LY = M)
M@l = ( QL )( NL — QL ) (3.10)

number of ways. Now all quantities scale proportionally towhich, applying Stirling’s formula,
shows that the first term is within, sa#-"¢/2 multiples of

14+m 20c
_yd
exp{ L > y(1+m)} (3.11)

oncelL > Lo, with Lo depending only or’. A similar argument holds also for the second term
with 6 replaced by  # andm by —m. Combining these expressions we get mzﬁi’c(aﬂ is
within e*°¢ multiples of exgL94=(m, 8; c)} for L sufficiently large. O

For the proof of Theorem 2.2, we will also need an estimate on how many salt configurations

in Al°(0) take given values in a finite subs&tc A, . To that extent, for each e {—1, 1}t
and eacls, e {0, 1}* we will define the quantity

1{S € AP%(0): Sp = Sall
|A%C (o)

Ri1(c,5:) = (3.12)

As a moment's thought reveaIRf;fL (o, Sp) can be interpreted as the probability thsit = S, }
occurs in (essentially) any homogeneous product measuse=er(Sy) € {0, 1}t conditioned
to haveN_(S) = [cLY] and Q. (s, S) = [AcLY]. It is therefore not surprising that, for spin
configurationss with given magnetizationRi’fL(a, -) will tend to a product measure ), <
{0, 1}*. A precise characterization of this limit is as follows:

Lemma 3.4 For eache > 0, each K > 1 and eachy > O there exists b < oo such that
the following holds for all L> Lo, all A ¢ AL with |A] < K, all m withjm| < 1 — » and
all 8, c € [y, 1 — 5] for which

20 2(1-0
¢ and p_=u

= (3.13)
14+ m 1-m

P+

satisfy p. € [,1—75]: If 0 = (ox) € {—1, 1}t is a spin configuration such that Mo) =
ImLY| andS, € {0, 1} is a salt configuration im\, then

R @50 = [{Prdi(30 + @ = P30} < e (3.14)
XeA

Proof. We will expand on the argument from Lemma 3.3. Indeed, from (3.10) we have an
expression for the denominator in (3.12). As to the numerator, introducing the quantities

Ma=D ox. Na=D 5, QA:ZSX1+JX, (3.15)

XeA XeA XeA 2
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and the shorthand

(r - f) (r’ — f’)

, S— s —q

D = Dyrss(6, 0,0,q) = =2 =32, (3.16)
(6))

the same reasoning as we used to prove (3.10) allows us to write the ﬂij’étﬁb, Sp) as

Drrss (€, €',q,9"), where the various parameters are as follows: The quantities

L9+ M, L9 — M,
r=——— and r'=——— 3.17
> > (3.17)
represent the total number of pluses and minuses in the system, respectively,
s=Q. and S =N_—-Q, (3.18)

are the numbers of salt particles on pluses and minuses, and, finally,

A+ Ma A= My
- 2 ’ N 2 ’
are the corresponding quantities for the volumeespectively.

Since (3.13) and the restrictions pn| < 1—» andd, ¢ € [y, 1—x] imply thatr,r’,s,s',r —s
andr’ — s all scale proportionally td_9, uniformly in ¢ andS,, while ¢ and¢’ are bounded
by |A|—which by our assumption is less th#&—we are in a regime where it makes sense to
seek an asymptotic form of quantify. Using the bounds

4 d=Qa and q =Nx—Qx (3.19)

|
abe /2 < (a;_—lb)' < aPe”/a, (3.20)

which are valid for all integera andb with |b| < a, we easily find that

S\ ¢ S\(—a S\ s\¢-d
D= (F) (1— F) (r—) (1 - F) +o1), L— oo (3.21)
Sinces/r — p; ands'/r’ — p_ asL — oo, while ¢, q, ¢/ andqg’ stay bounded, the desired
claim follows by takingL sufficiently large. a

The reader may have noticed that, in most of our previous argundeaitslm were restricted
to be away from the boundary values. To control the situation near the boundary values, we have
to prove the following claim:

Lemma 3.5 For eache € (0, 1) and each L> 1let &,  be the event
ELe={IMI<@-oLYNn{e3(L'+ M) < Q< @-o3(L +M)}. (322

Then for each & (0, 1) and each he R there exists am > 0 such that

1
lim sup~; og P (&) < 0. (3.23)

L—>oo
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Proof. We will split the complement of,_. into four events and prove the corresponding estimate

for each of them. We begin with the evgiM, < —(1 — ¢)L%}. The main tool will be stochastic
domination by a product measure. Consider the usual partial order on spin configurations defined
by puttinge < ¢’ whenevewy < o/ for all x. Let

A=infmin  min  P"(g, =1]0, ) (3.24)
L>1XeAL ge{—1,1}AL~ )

Se{-1,1)AL
be the conditional probability thatl occurs ak given a spin configuratioa’ in A_ \ {x} and
a salt configuratiors in A, optimized over alls’, S and alsox € A, and the system size.
Since PLi’C’h(aX = 1]¢’, S) reduces to (the exponential of) the local interaction betwseand
its ultimate neighborhood, we haxe> 0.
Using standard arguments it now follows that the spin marginﬁlﬁb‘f’h stochastically domi-
nates the product measupg defined by, (x = 1) = A for all x. In particular, we have

PO (ML < —1 =)L) < P; (ML < —(1 - )LY). (3.25)

Lete < 21. Thenl — (1 — A)—namely, the expectation ef; with respect tdP,—exceeds the
negative of(1 — ¢) and so Crarér’s theorem (see [21, Theorem 1.4] or [13, Theorem 2.1.24])
implies that the probability on the right-hand side decays to zero exponentialfy ire.,

1
lim sup -~ logP; (ML < —(1—e)L?) <. (3.26)
L— oo

The opposite side of the interval of magnetizations, namely, the é¥nt> (1 — €)L9}, is
handled analogously (with now focusing orvx = 0 instead obx = 1).

The remaining two events, marking whéx is either less tham or larger than1l — ¢) times
the total number of plus spins, are handled using a similar argument combined with standard
convexity estimates. Consider the eve@i < ¢L%}—which contain§Q_ < e3(M_ + L%)}—
and let us emphasize the dependence by writing P,f’c’h asP,.. If E, denotes the expectation
with respect tdP,, note thatk, (f) = Eo(fe Q) /Eo(e“Ct). We begin by using the Chernoff
bound to get

eaeLd
P.(QL < eLY) < e*E, (e8%) = — — a>o0. 3.27
(Qusel®) < € =g gay 22 (3:27)
A routine application of Jensen'’s inequality gives us
Po(Qu < eL?) < expla(eL? — Eea(Qu) }. (3:28)

It thus suffices to prove that there existx’a< x such thatL—ldrIEK/(QL) is uniformly positive
forall L > 1. (Indeed, we take to be strictly less than this number and set x — x’ to
observe that the right-hand side decays exponentially%id To show this we writeE, (Q.)
as the sum o (cx = 1,5« = 1) over allx € A_. Looking back at (3.24), we then have
Po(ox =1, Sy = 1) > AP (Sx = 1), wherel is now evaluated fox’, and so

Eco(QU) =4 D Pu(Sc=1) = 2Ev(Ny) ~ icL. (3.29)

XeAL
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Thus, oncelc > ¢, the probabilityP, (Q, < eL%) decays exponentially in¢.

As to the complementary everfQ, > (1 — e)%(ML + L9)}, we note that this is contained
in {H_. < €LY}, whereH, counts the number of plus spins with no salt on it. Since we still
haveE, (f) = Eo( fe ") /Eq(e*Ht), the proof boils down to the same argument as befofe.

3.2 Proofs of Theorems 2.1 and 2.2.

On the basis of the above observations, the proofs of our main theorems are easily concluded.
However, instead of Theorem 2.1 we will prove a slightly stronger result of which the large-
deviation part of Theorem 2.1 is an easy corollary.

Theorem 3.6 Let J> Oandx > 0 be fixed. For each,@ e (0, 1), each he R and each me
(=1,1), let B = BL.(m,c,0) be the set of al(s, S) € {—1, 1} x {0, 1}*t for which
IML —mLY| < eL9and|QL — OcLY < €LY hold. Then
_ logP=cN(B .
lim lim gL—(LG) =—% .M o)+ inf %.(m,0), (3.30)
€l0 Lo>oo Ld ’ me(-1,1)
9'€[0,1]

where%, (m, 0) is as in(2.10)

Proof. Since the size of the setf’c(a) is the same for alb with fixed overall magnetization,
let Af’c(m) denote this size for a configuratienwith magnetizatiorM, (¢) = |[mL%]. First we
note that, by Lemma 3.2,

KL (m, 6)

PN (Q = e, M, = i) = A

(3.31)

where

Ky (m, §) = AlC(m) ghimtsxioet pd (v — | mL9)), (3.32)
Here Z, is the normalization constant from (3.6) which in the present formulation can also be
interpreted as the sum &f_(m, 8) over the relevant (discrete) valuesmfandé.

Let K_(m, 8) denote the sum dk (m', §) over allm’ and#’ for whichm'L9 and#’cL? are
integers andm’ — m| < € and|f’'c — fc| < €. (This is exactly the set of magnetizations and
spin-salt overlaps contributing to the €&t ..) Applying (3.1) to extract the exponential behavior
of the last probability in (3.32), and using (3.9) to do the same for the qumﬁﬁym), we get

logK_ (m, 6 ,

POIKLAMD 4 om0 < e ¢, (3.33)
wheree’ is as in (3.9). As a consequence of the above estimate we have

.. logK (m,08)

|!% LI|_r>nOO —(a = —%h.c(m, 0) (3.34)

foranym e (-1, 1) and anyd € (0, 1).
Next we will attend to the denominator in (3.31). Ptk O and consider the set

M;={Mm6):m<1-6,5<6<1-5} (3.35)
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We will write Z, as a sum of two termsz;, = Z" + z{?, with Z obtained by sum-
ming K (m, ) over the admissiblém, §) € M, and Z(LZ) collecting the remaining terms. By
Lemma 3.5 we know thazﬁz)/ZL decays exponentially ih® and so the decisive contribution
to Z, comes fromZ(Ll). Assuming that « J, let us coverM; by finite number of sets of the
form [m, — e, m, + €] x[0; — €, 0, + €], wherem, andd, are such that,L% and@;cL? are
integers. Therz” can be bounded as in

maxKp (Mg, ;) < Z{7 < D Ki (m, 6)), (3.36)
4

where, we note, the right-hand side is bounded by the left-hand side times a polynotmial in
Taking logarithms, dividing by.9, taking the limitL — oo, refining the cover and applying the
continuity of (m, ) — %, ¢(m, #) allows us to conclude that

. IOg Z|_ . .
Llinoo Ld mel(rl]jl.,l)(ﬁel{g)fl] Dhe(m, 0). (3.37)
Combining these observations, (2.8) is proved. O

Proof of Theorem 2.1The conclusion (2.8) follows from (3.30) by similar arguments that prove
(3.37). The only remaining thing to prove is strict convexitywi> Gy, c(m) and continuity and
monotonicity of its minimizer. First we note th@t— %, .(m, #) is strictly convex on the set éf
where it is finite, which is a simple consequence of the strict convexity e . (p). Hence,
for eachm, there is a uniqué = 6(m) which minimizes) - %, c(m, 0).
Our next goal is to show that, farc > 0, the solutiord = (m) will satisfy
g 1EM (3.38)
2
(A heuristic reason for this is thlt= ”Tm corresponds to the situation when the salt is distributed
independently of the underlying spins. This is the dominating strategy fer0; oncex > 0 it
is clear that the fraction of salt on plus spmsistincrease.) A formal proof runs as follows: We
first note thaim — #(m) solves ford from the equation
o= 0;c) = 3.39
a0_(m, ; C) = —«kC, (3.39)
whereZ(m, 9; c)isasin (2.7). Bud — Z(m, 0; ) is strictly concave and its derivative vanishes
atd = %(1 + m). Therefore, forcc > 0 the solutiord = 8(m) of (3.39) must obey (3.38).
LetV be the set ofm, ) € (—1, 1) x (0, 1) for which (3.38) holds and note thgtis convex.
A standard second-derivative calculation now showsdhatm, ¢) is strictly convex orV. (Here
we actually differentiate the functio#, .(m, 6) — .%;(m)—which is twice differentiable on the
set where itis finite—and then use the known convexitygfm). The strict convexity is violated
on the lined = %(14— m) where(m, 8) — %, (m, 8) has a flat piece fom € [-m,, m,].) Now,
sinced(m) minimizes%, ¢(m, #) for a givenm, the strict convexity of4, .(m, &) onV implies
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that for anyA € (0, 1),
Ghe(Am + (L= 2)My) < %hc(Amy + (1 — A)my, 10(my) + (1 — 2)6(my))
< A% (M1, O(My)) + (L — D)% ¢ (Mp, 6(My)) (3.40)
= AGh (M) + (1 — 4)Gp c(My).

Hence,m — Gy (M) is also strictly convex. The fact th&’(m) diverges asn — +1is a
consequence of the corresponding property of the funatien .%;(m) and the fact that the rest
of %, ¢ is convex inm.

As a consequence of strict convexity and the abovementioned “steepness” at the boundary of
the interval(—1, 1), the functiorm — Gy, c(m) has a unique minimizer for eathe R andc > O,
as long as the quantities from (3.13) satigfy < 1. The minimizer is automatically continuous
in h and is manifestly non-decreasing. Furthermore, the continuit@f in ¢ allows us to
conclude tha®(m) is also continuous i. What is left of the claims is thstrict monotonicity
of m as a function oh. Writing G c(m) as—hm + g(m) and noting thai is continuously
differentiable on(—1, 1), the minimizingm satisfies the equation

g'(m) = h. (3.41)
But g(m) is also strictly convex and sg/(m) is strictly increasing. It follows tham has to be
strictly increasing with. d

Theorem 3.1 has the following simple consequence that is worth highlighting:

Corollary 3.7 For given he R and ce (0, 1), let (m, §) be the minimizer o#, (m, 8). Then
forall e > O,

lim P="(1QL — 0L > eL%or M, —mLY| > eL9) = 0. (3.42)
—>00

Proof. On the basis of (3.30) and the fact thgét.(m, #) has a unique minimizer, a covering
argument—same as used to prove (3.37)—implies that the probability on the left-hand side de-
cays to zero exponentially fast wittf'. O

Before we proceed to the proof of our second main theorem, let us make an observation con-
cerning the values gb.. at the minimizingm andé:

Lemma 3.8 Leth e R and ce (0, 1) be fixed and letm, #) be the minimizer o#, c(m, 6).
Define the quantities.g= g+ (m, ¢, x) by (2.14)and p. = p+(m, 8, c) by (3.13) Then

dr=p+ and o =p_. (3.43)
Moreover, g. are then related to h vig2.17)whenever ne [—m,, m,].

Proof. First let us ascertain that. are well defined from equations (2.14). We begin by noting
that the set of possible values @i, q_) is the unit square [Al]>. As is easily shown, the

first equation in (2.14) corresponds to an increasing curve, ib]fconnecting the cornex®, 0)

and(l, 1). On the other hand, the second equation in (2.14) is a straight line with negative slope
which by the fact that < 1 intersects both the top and the right side of the square. It follows
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that these curves intersect at a single point—the unique solution of (2.14). Next we will derive
equations thap. have to satisfy. Lefm, ) be the unique minimizer o#, .(m, §). Then the
partial derivative with respect tyields

c("(py) — 7' (p-)) = kC. (3.44)
On the other hand, from the very definition pf we have
14+m 1-m
> ps + 5 p- =c. (3.45)

Noting that.”’(p) = log rpp we now see thap.. satisfies the same equationsoggsand so, by
the above uniqueness argument, (3.43) must hold.

To prove relation (2.17), let us also consider the derivativé,eim, ) with respect tan. For
solutions in Fm,, m,] we can disregard th&; part of the function (because its vanishes along
with its derivative throughout this interval), so we have

0
h=——2(m,¥:;0). 3.46
s (m,8;c) (3.46)

A straightforward calculation then yields (2.17). O
Now we are ready to prove our second main result:

Proof of Theorem 2.2The crucial technical step for the present proof has already been established
in Lemma 3.2. In order to plug into the latter result, let us note that the swRef-S over all

salt configurationss = (Sy) e {0, 1}*t with N_. = [cL?] is a number depending only on the
total magnetizatioM, = M| (o). Lemma 3.2 then implies

PESM(Ax (0. )™ N (ML = (MLYJ)) = oL M PE (AN (ML= [mLY)))  (3.47)

wherew, (M) is a positive humber depending om the parameters, h, J and the boundary
condition + but not on the evend. Noting thatpf is simply the distribution of the random
variablesM_ /L% in measurePLi’C’h, this proves (2.12).

In order to prove the assertion (2.13), wedet {0, 1}*t, pick A ¢ A, and fixS e {0, 1}.
Since Lemma 3.2 guarantees that, gifen= ¢}, all salt configurations with fixe®, and
concentratiort have the same probability iﬁf’c’h(- o = &), we have

PE(Sh = 5a. S € AL@)|o = 5) = RS (5. S0, (3.48)

where Rf\’j_ is defined in (3.12). Pick > 0 and assume, as in Lemma 3.4, that [, 1 — #],

0 € [n,1—ynlandM_(5) = |[mLY] for somem with |m| < 1 — 5. Then the aforementioned
lemma tells us thaRf\ﬁ_ (@, -) is within € of the probability thas, occurs in the product measure
where the probability ofy = 1is p; if 6x = +1 andp_ if 6x = —1.

Let (m, #) be the unique minimizer &#, .(m, ). Taking expectation of (3.48) ovérwith ¢ o
fixed, using Corollary 3.7 to discard the eveitd_ /LY — m| > € or |Q,_ /LY — fc| > € and
invoking the continuity ofps. in m andé, we find out thatP,fE’C’h(SA = Saloa = a4) indeed
converges to

[ T{Ps01(50 + (1 = ps)do(S0)}, (3.49)

XeA
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with p. evaluated at the minimizingm, ). But for this choice Lemma 3.8 guarantees that
p+ = g+, which finally proves (2.13-2.14). a

The last item to be proved is Proposition 2.3 establishing the basic features of the phase dia-
gram of the model under consideration:

Proof of Proposition 2.3From Lemma 3.8 we already know that the set of pointg, c) = m
for m € [-m,, m,] is given by the equation (2.17). By the fact tmath, c) is strictly increasing
in h and thatm(h, c) —» +1 ash — +oo we thus know that (2.17) defines a line in ttie c)-
plane. Specializing ton = +m, gives us two curves parametrized by functians»> h.(c)
such that ath, ¢) satisfyingh_(c) < h < h,(c) the system magnetizatian(h, c¢) is strictly
between—m, andm,, i.e., (h, ¢) is in the phase separation region.
It remains to show that the above functioms— h.(c) are strictly monotone and negative
for c > 0. We will invoke the expression (2.17) which applies because on the above curves we
havem(h, c) € [-m,, m,]. Let us introduce new variables

RWL:q—Jr and R. = m

3.50
1-0q4 1-q- ( )

and, writingh in (2.17) in terms ofR.., let us differentiate with respect @ (We will denote
the corresponding derivatives by superscript prime.) Since (2.14) gives R thate™ R, , we
easily derive
_ R R _ R l1-e™ .
1+R. 1+R, "1+ RH1+R)
Thus,h” and R/, have opposite signs; i.e., we want to prove tRat> 0. But that is immediate:
By the second equation in (2.14) we conclude that at least of_ohust be strictly positive,
and byR_ = e™*R; we find that bothR). > 0. It follows thatc — h,.(c) are strictly decreasing,
and sincéh.(0) = 0, they are also negative once- O. O

2n’

(3.51)
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