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Abstract

We consider the standard model problem for a conical intersection of electronic surfaces
in molecular dynamics. Our main result is the construction of a semigroup in order to
approximate the Wigner function associated with the solution of the Schrödinger equation
at leading order in the semiclassical parameter. The semigroup stems from an underlying
Markov process which combines deterministic transport along classical trajectories within the
electronic surfaces and random jumps between the surfaces near the crossing. Our semigroup
can be viewed as a rigorous mathematical counterpart of so-called trajectory surface hopping
algorithms, which are of major importance in chemical physics’ molecular simulations. The
key point of our analysis, the incorporation of the non-adiabatic transitions, is based on the
Landau-Zener type formula of Fermanian-Kammerer and Gérard [FeGe1] for the propagation
of two-scale Wigner measures through conical crossings.
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1 Introduction

We consider the time-dependent Schrödinger equation

i ε ∂tψε(q, t) =
(
− ε2

2 ∆q + V (q)
)
ψε(q, t) ,

(1)
ψε(q, 0) = ψε0(q) ∈ L2(R2,C2) ,

with matrix-valued potential

V (q) =
(
q1 q2

q2 −q1

)
, q = (q1, q2) ∈ R2

and small semiclassical parameter ε > 0. The eigenvalues of the matrix V (q) are E±(q) = ±|q|
and meet at q = 0. Their joint graph shows two intersecting cones explaining the notion of a
conical crossing.

It is well known, that away from the crossing region and for small ε the system (1) approxi-
mately decouples into two scalar equations. We denote by χ±(q) smooth eigenfunctions of V (q)
corresponding to the eigenvalues E±(q) and decompose the solution of (1) as

ψ(q, t) = φ+(q, t)χ+(q) + φ−(q, t)χ−(q) .

Then, the scalar components φ±(t) ∈ L2(R2,C) approximately satisfy the effective equations of
motion

i ε ∂tφ+(q, t) =
(
− ε2

2 ∆A+

q + E+(q)
)
φ+(q, t)

(2)
i ε ∂tφ−(q, t) =

(
− ε2

2 ∆A−
q + E−(q)

)
φ−(q, t)

as long as ψ(q, t) is mostly supported away from the crossing q = 0. Here,

∆A±
q = (−i∇q −A±(q))2 , A±(q) = i〈χ±(q), ∇qχ±(q)〉

C2

is the Laplacian of the covariant derivative with respect to the Berry connection A±(q). This
form of adiabatic decoupling is at the heart of time-dependent Born-Oppenheimer approxima-
tion. The smaller the adiabatic parameter ε > 0, the better the decoupling. Near the crossing
point, however, this decoupling breaks down no matter how small ε is and the main concern of
our work is an approximate description of solutions to (1), which come near or pass through
q = 0.

To make this more precise, we recall that the solutions φ±(q, t) of the decoupled system (2)
behave semiclassically, i.e. they can approximately be described by means of the classical flows
Φt
± : R4 → R

4 of

q̇(t) = p(t) , ṗ(t) = ∓ q(t)
|q(t)| , q(0) = q0 , p(0) = p0 , (3)
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which stem from the Hamiltonian functions λ±(q, p) = 1
2 |p|

2 +E±(q). One possible way formu-
lating such a semiclassical limit is to observe that the Wigner transforms wε±(t) := wε(φ±(t)) of
φ±(t) are approximately transported by the respective classical flows,(

wε+(t)
wε−(t)

)
≈
(
Lt+ 0
0 Lt−

)
︸ ︷︷ ︸

=: Lt0

(
wε+(0)
wε−(0)

)
:=

(
wε+(0) ◦ Φ−t+

wε−(0) ◦ Φ−t−

)
. (4)

Our main result is an extension of (4) to the case where the solution of (1) comes close to the
crossing. While a semiclassical description is still appropriate near the crossing, the adiabatic
decoupling breaks down. Therefore, the group Lt0 in (4) must be supplemented with off-diagonal
terms describing an exchange of mass between wε+ and wε−. In Section 2, we give (4) a more
precise meaning and extend it to the crossing region by constructing an ε-dependent semigroup
Ltε. The semigroup Ltε is the forward semigroup of a Markov process based on a family of
random trajectories. The random trajectories are just the deterministic solutions of (3), which
jump from one band to the other with a certain probability whenever their distance to the
crossing attains a local minimum. The jump-probabilities are obtained from the solution of the
classical purely time-dependent Landau-Zener problem.

The breakdown of the adiabatic approximation near conical crossings of eigenvalue bands has
generated a lot of research in the context of molecular dynamics as well as in solid state physics,
see for example the review article [Ya] or the monograph [BMKNZ]. The mathematical results on
the propagation through crossings can be organized into two groups. Firstly, the semiclassical
propagation of coherent states. In his pioneering monograph [Ha], Hagedorn has classified
eleven possible types of eigenvalue crossings of minimal multiplicity in molecular dynamics and
has constructed Gaussian wave packets, whose centers pass exactly through the crossing. The
eleven types have crossing manifolds of codimension one, two, three, or five in the nucleonic
configuration space, the conical crossing being the codimension two crossing. Secondly, the
approaches within the framework of microlocal analysis. In [FeGe1], Fermanian-Kammerer and
Gérard have derived Landau-Zener type formulae for the two-scale Wigner measure passing
through conical crossings. An analogous result for codimension three crossings is given by the
same authors in [FeGe2]. A central role in the proof of their transition formulae is played by
microlocal normal forms for the time-dependent operator near the crossing manifold. More
precise normal forms have also been found by Colin de Verdiére in [CdV].

The proof of our result as given in this paper heavily relies on the results obtained by Fermanian-
Kammerer and Gérard in [FeGe1]. The key idea is to lift the Landau-Zener type formula for the
two-scale Wigner measure established in [FeGe1] to a semigroup acting on the Wigner function.
The main novelty of our result is that it yields an approximate description of the solution to the
Schrödinger equation (1) combining the following three properties. Firstly, since the effective
semigroup acts on the Wigner function, we obtain an effective description for finite values of
ε > 0. Secondly, we allow for general initial conditions. Thirdly, the scale

√
ε associated with the

non-adiabatic transitions enters the semigroup just via the transition rates and does not require

3



the introduction of additional variables. As a consequence, our description directly translates
into an algorithm for numerical simulations in concrete applications. In contrast, the previous
mathematical results have one or more of these points as desiderata. While Hagedorn constructs
approximate solutions to (1) and as such obtains very detailed information, his construction
is restricted to special initial states, namely semiclassical Gaussian wave packets with center
passing exactly through the crossing. The approach of Fermanian-Kammerer and Gérard comes
with the difficulty that the two-scale Wigner measure is an object defined only in the semiclassical
limit ε → 0 and intrinsically associated with an involutive manifold in the cotangent space of
space-time T ∗(Rt × R2

q). Moreover, the two-scale Wigner measures depend on an additional
variable introduced to control the

√
ε-concentration of the wave function with respect to this

manifold.

We postpone a more detailed discussion of the applicability of our method and its connection
to the trajectory surface hopping algorithms of chemical physics to a forthcoming publication
[LaTe]. There we present, in particular, an implementation of the algorithm based on our semi-
group as well as numerical experiments comparing true numerical solutions of the Schrödinger
equation (1) with solutions obtained by applying our semigroup to the Wigner function of the
initial data.

The plan of this paper is as follows. In Section 2 we introduce the semigroup Ltε, that transports
the diagonal elements of the Wigner transform through the crossings region, and in Section 3
we formulate our main result. Section 4 together with the appendix provides a self-contained
discussion of the two-scale analysis of the problem, which allows us, in particular, to incorporate
the Landau-Zener type formulae of [FeGe1] in the proof of the main result in Section 5.

We end the introduction with some remarks on the origin of the model problem (1) in molecular
dynamics. If the electronic part of the full molecular Hamiltonian has a pair of eigenvalue surfaces
intersecting each other, but which are globally isolated from the remainder of the electronic
spectrum, then the results of [SpTe] allow for a uniform reduction of the full molecular problem
to a two band model of the form

i ε ∂tψ(q, t) = − ε2

2 ∆qψ(q, t) + Ṽ (q)ψ(q, t) ,

ψ(q, 0) = ψ0(q) ∈ L2(Rn,C2) ,

where the semiclassical parameter ε =
√
me/mn is given through the mass ratio between the

light electrons and the heavy nuclei in a molecule. The potential Ṽ (q) is a hermitian 2 × 2-
matrix with eigenvalues intersecting on a submanifold of the nucleonic configuration space Rn.
For time-reversal invariant systems, Ṽ (q) is real symmetric. Generically, for such matrices the
crossing manifold is a submanifold of codimension two. Following [Ha], one first subtracts the
trace of the matrix. Then, a (locally) linear change of coordinates moves the crossing into the
submanifold {q ∈ Rn | q1 = q2 = 0}. Taylor expansion around the point q = 0 provides the
generic form

Ṽ (q) =
(
α · q β · q
β · q −α · q

)
+O(|q2|) , q ∈ Rn ,
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with linearly independent vectors α, β ∈ Rn. The Taylor expansion is justified, if one is interested
only in the behavior of the solutions near the crossing. An appropriate rotation eliminates all
but the first two components of α and β and thus leaves us with linearly independent vectors
a, b ∈ R2 and (

a · q̃ b · q̃
b · q̃ −a · q̃

)
, R

2 3 q̃ = (e1 · q, e2 · q),

which is the potential of our model problem if a = e1 = (1, 0)t and b = e2 = (0, 1)t.

2 An Asymptotic Semigroup for the Wigner Function

A straightforward adaption of the Faris-Lavine Theorem to the case of matrix-valued opera-
tors [La] shows the essential self-adjointness of the Hamiltonian

Hε = − ε2

2 ∆q + V (q) = − ε2

2 ∆q +
(
q1 q2

q2 −q1

)
(5)

on C∞c (R2,C2). By the spectral theorem, the Schrödinger equation (1) has a unique global
solution ψε(·) ∈ C(R, L2(R2,C2)). We are interested in the leading order asymptotics of this
solution for small values of the semiclassical parameter ε.

Up to a global phase factor, a wave function ψ ∈ L2(R2,C2) can be uniquely represented by its
Wigner function W ε(ψ) ∈ L2(R4,Lsa(C2)) given through

W ε(ψ)(q, p) = (2π)−2

∫
R2

ψ
(
q − ε

2 x
)
⊗ ψ

(
q + ε

2 x
)

eix·p dx .

For vector-valued wave functions ψ, the Wigner function W ε(ψ) takes values in the space of
self-adjoint 2× 2-matrices Lsa(C2). Moreover, the Wigner transformation

W ε : L2(R2,C2)→ L2(R4,Lsa(C2)) , ψ 7→W ε(ψ)

is bounded, and we also have W ε(ψ) ∈ C0(R4,Lsa(C2)). One is tempted to think of the trace
of a Wigner function as a probability density on phase space. However, in general, W ε(ψ)(q, p)
may have negative eigenvalues. The analytical power of the Wigner function stems from a direct
relation to expectation values with respect to certain Weyl quantized observables. A convenient
symbol class is

S0
0(1) = C∞b (R4,L(C2)) ,

consisting of smooth functions with values in the space of 2 × 2-matrices L(C2), which are
bounded together with all their derivatives. By the Calderon-Vaillancourt Theorem, the Weyl
quantization of an observable a ∈ S0

0(1) is a continuous operator on L2(R2,C2) with

‖a(q,−iε∇q)‖L(L2) ≤ const.
∑
|α|≤5

‖∂αa‖∞ =: c4(a) for all ε > 0 ,
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where the index in c4 reminds us of the four dimensions of phase space. Thus, for wave functions
ψ ∈ L2(R2,C2) and observables a ∈ S0

0(1), we have

| 〈ψ, a(q,−iε∇q)ψ〉L2(R2) | ≤ c4(a) ‖ψ‖2L2(R2) ,

and the map a 7→ 〈ψ, a(q,−iε∇q)ψ〉 is a continuous linear functional on C∞b (R4,L(C2)). An
explicit calculation for Schwartz functions a ∈ S(R4,L(C2)) reveals

〈ψ, a(q,−iε∇q)ψ〉L2(R2) =
∫
R4

tr (a(q, p)W ε(ψ)(q, p)) dq dp . (6)

Hence, we can view the Wigner function W ε(ψ) as a continuous functional on any subspace of
admissible observables B ⊂ S0

0(1),

B → C , a 7→ 〈W ε(ψ), a〉B′,B .

In the following, various test function spaces B will appear. The dual pairing 〈W ε(ψ), a〉B′,B will
always be well-defined by either the left or the right hand side of (6).

2.1 Propagation Away from the Crossing

Roughly speaking, as long as the solution ψε(t) of the Schrödinger equation (1) is mostly
supported away from the crossing {q = 0}, its leading order asymptotics can be character-
ized conveniently in terms of classical transport equations for the diagonal elements of its
Wigner function W ε(ψε(t)). For a more precise statement, we need to fix some notation. Let
h(q, p) = 1

2 |p|
2 +V (q) denote the symbol of the operator Hε in (5). Let λ±(q, p) = 1

2 |p|
2 +E±(q)

be the classical Hamiltonian function corresponding to the eigenvalue E±(q) = ± |q| of V (q).
We denote by Π±(q) ∈ Lsa(C2) the orthogonal spectral projection for E±(q), and observe that
Π± ∈ C∞(R2 \ {0},Lsa(C2)). Since the eigenspaces are one-dimensional, the diagonal compo-
nents of a Wigner function are conveniently written as

Π±W ε(ψ) Π± = tr (W ε(ψ) Π±) Π± =: wε±(ψ) Π± ∈ L2(R4,L(C2)) .

We first study the classical dynamics associated with the Hamilton functions λ+ and λ−, that
is, the Hamiltonian systems (3). Away from the crossing manifold {q = 0}, the solution curves
of these systems are well-defined and smooth. Due to the rotational symmetry of E±(q), we
have two conserved quantities, energy λ±(q, p) and angular momentum

q ∧ p := q⊥ · p = q1p2 − q2p1 , (q, p) ∈ R4 .

Trajectories passing through the set {q = 0} at some time t0 must have zero angular momentum.
As long as p(t0) 6= 0, these trajectories have a unique continuous continuation through {q = 0}.
Denoting the zero-energy shell by (λ±)−1(0) := {(q, p) ∈ R4 | λ±(q, p) = 0} and the hypersurface
of zero angular momentum by I = {(q, p) ∈ R4 | q ∧ p = 0}, we define for t ∈ R
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Φt
±(q0, p0) = (q±(t), p±(t)) for (q0, p0) 6∈ (λ±)−1(0) ∩ I ,

Φt
±(q0, p0) = (q0, p0) for (q0, p0) ∈ (λ±)−1(0) ∩ I .

We note, that {Φt
±(q, p)}t∈R forms a group for all (q, p) ∈ R4. Since (λ+)−1(0) = {(0, 0)}, the

mapping R4 → R
4, (q, p) 7→ Φt

+(q, p) is continuous for all t ∈ R. For the dynamics associated
with λ−, however, we only have continuity of the mapping (q, p) 7→ Φt

−(q, p) outside the codi-
mension two set (λ−)−1(0) ∩ I = {(q, p) ∈ R4 | q = ± (|p|/2) p}. Nevertheless, for any wave
function ψ ∈ L2(R2,C2) the functions wε±(ψ) ◦ Φ−t± are well-defined in L2(R4,C).

Now, let ψε(t) be the solution to the Schrödinger equation (1). For the moment, we work on
time intervals for which the solution is mostly supported away from the crossing. Such finite
time intervals [0, T ] can be characterized by the existence of an open set {q = 0} ⊂ U ⊂ R4

containing the crossing manifold such that for all t ∈ [0, T ]∫
U
|W ε(ψε(t))(q, p)|dq dp = O(ε) . (7)

On such intervals [0, T ], one recovers the leading order Born-Oppenheimer approximation, that
is ∫

R4

(
wε±(ψε(t))− wε±(ψ0) ◦ Φ−t±

)
(q, p) a(q, p) dq dp = O(ε) (8)

for all observables a ∈ S(R4,C) with supp (a) ∩ {q = 0} = ∅, uniformly in t ∈ [0, T ]. For
a stronger result, which implies the above approximation, we refer to Theorem 4 in [SpTe].
Equation (8) means, that away from the crossing the diagonal elements of W ε(ψε(t)) are ap-
proximately transported like classical densities on phase space. This motivates the definition of
a Born-Oppenheimer function

W ε
BO(t) :=

(
wε+(ψ0) ◦ Φ−t+

)
Π+ +

(
wε−(ψ0) ◦ Φ−t−

)
Π− ∈ L2(R4,L(C2))

for t ∈ R. Rephrasing the preceding remarks, we have for all finite time intervals [0, T ] sat-
isfying (7) and for all diagonal observables a ∈ S(R4,L(C2)) with [a(q, p), V (q)] = 0 and
supp (a) ∩ {q = 0} = ∅∫

R4

tr
((
W ε(ψε(t))−W ε

BO(t)
)
(q, p) a(q, p)

)
dq dp = O(ε) (9)

uniformly for t ∈ [0, T ]. This is one way to formulate the leading order time-dependent Born-
Oppenheimer approximation: away from the crossing, where the eigenvalue bands are separated
by a gap, one has adiabatic decoupling of the associated subspaces and within the decoupled
subspaces semiclassical behavior of the solutions of (1).

2.2 Propagation Near the Crossing

It is expected that near the crossing at q = 0 certain solutions ψε(t) of (1) exhibit transitions
between the subspaces Ran Π+ and Ran Π− even in the limit ε → 0. The goal of our analysis
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is to modify the transport equation (4) by taking transfer between the diagonal components
wε+(ψ) and wε−(ψ) into account.

Following Remark 5.2 in [Ne], we observe that the Hamiltonian − ε2

2 ∆q + V (q) is unitarily
equivalent to the semiclassical Weyl quantization of

1
2 |p|

2 + |p|−1

(
q · p q ∧ p
q ∧ p −q · p

)
. (10)

Remark 1 This unitary equivalence is achieved by ε-Fourier transformation, a change to polar
coordinates (r, φ), conjugation by the φ/2-angle rotation matrix, and the observation that the
Weyl quantization of the tempered distributions σ(q, p) = |p|−1(q · p) and τ(q, p) = |p|−1(q ∧ p)
reads in Fourier transformed polar coordinates as

σ(q,−iε∇q) ' −iε∂r − iε 1
2r , τ(q,−iε∇q) ' −iε 1

r ∂φ .

♦

We note, that the Weyl operator of the symbol in (10) is the first step for an orbital decomposition
of the Hamiltonian Hε, see [Ne] and for a related result also [AvGo]. The symbol in (10) carries
two key signatures of the classical dynamics: the angular momentum q ∧ p, which is preserved
by the Hamiltonian flows Φt

±, and the function q · p, which characterizes the hypersurface

S =
{

(q, p) ∈ R4 | q · p = 0
}

containing the points in phase space, at which the classical trajectories attain their minimal
distance to the crossing q = 0, cf. Figure 1.

The heuristic picture underlying our result is to replace (q, p) in (10) by classical trajectories
(q(t), p(t)) related to the classical flows Φt

± and to solve the purely time-adiabatic problem

iε∂t φ(t) = |p(t)|−1

(
q(t) · p(t) q(t) ∧ p(t)
q(t) ∧ p(t) −q(t) · p(t)

)
φ(t) , φ(t) ∈ C2 . (11)

Since the transitions happen only in the region where a trajectory has minimal distance to the
crossing, we linearize the flows around S. The linearizations of the classical flows Φt

± at a point
(q∗, p∗) ∈ S are

q±(t) = q∗ + t p∗ +O(t2) and p±(t) = p∗ ∓ t q∗/|q∗|+O(t2) . (12)

The system (11) becomes

i ε
|p∗|︸︷︷︸

=: ε̃

∂t φ(t) =

(
t q∗∧p∗

|p∗|2
q∗∧p∗
|p∗|2 −t

)
φ(t) =:

(
t δ
δ −t

)
φ(t) , (13)
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q(t)

q 2

q

q(t  )

S

1

*

p(t  )*

Figure 1: We see the projections of three neighboring trajectories (q(t), p(t)) onto configuration space
R

2
q. The crossing manifold {q = 0} is therefore projected onto the origin. The trajectories attain their

minimal distance to the crossing at the time t∗ when q(t∗) · p(t∗) = 0. The points in phase space where
q · p = 0 build up the jump manifold S.

where we used that |q∗|/|p∗|2 � 1 near the crossing. We note, that this last expression does not
depend on whether we employ Φt

+ or Φt
−. However, (13) is nothing but the famous Landau-Zener

problem [Ze]. It is well known, that for(
|φ+(−∞)|2
|φ−(−∞)|2

)
=
(

1
0

)
or

(
|φ+(−∞)|2
|φ−(−∞)|2

)
=
(

0
1

)
the solution φ(t) of (13) satisfies(

|φ+(∞)|2
|φ−(∞)|2

)
=
(

1− T ε(q∗, p∗) T ε(q∗, p∗)
T ε(q∗, p∗) 1− T ε(q∗, p∗)

)(
|φ+(−∞)|2
|φ−(−∞)|2

)
with

T ε(q∗, p∗) := exp
(
−π δ
ε̃

)
= exp

(
−π
ε

(q∗ ∧ p∗)2

|p∗|3

)
= exp

(
−π
ε

|q∗|2

|p∗|

)
. (14)

φ±(±∞) are the components of the solution φ, when φ is decomposed into the eigenvectors
of the Landau-Zener matrix, for large positive respectively negative times t → ±∞. For a
concise review on Landau-Zener type problems we refer to [JoPf]. The subsequent analysis will
indeed show, that the heuristic picture of classical transport in combination with the transition
probability (14) yields a correct description of the leading order dynamics.
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To incorporate the ε-dependent transition probability (14) into the transport of the Wigner
function, we first append to phase space a label j ∈ {−1, 1} indicating, whether the description
refers to Ran Π− or Ran Π+. We introduce a Markov process defined by the random trajectories

J (q,p,j)
ε : [0,∞)→ R

4 × {−1, 1} ,

where J (q,p,j)
ε (t) = (Φt

j(q, p), j) as long as q(t) · p(t) 6= 0. Whenever the deterministic flow
Φt
j(q, p) hits the manifold S a jump occurs with probability T ε(q(t), p(t)), i.e. j changes to −j

with probability T ε(q(t), p(t)). After the jump the trajectory follows again the deterministic flow
depending on j until the trajectory hits again S. At the jump hypersurface S, the trajectories
are chosen right continuous. On the submanifold Scl = {(q, p) ∈ S | |p|2 = |q|} of closed circular
orbits of Φt

+ the trajectories do not jump.

Remark 2 We emphasize, that the underlying physics is of course not one of instantaneously
jumping particles. Indeed, for (13) it is known that the transition occurs smoothly within an√
ε-neighborhood of t = 0, cf. [Be, LiBe, HaJo, BeTe]. ♦

In each finite time interval [0, T ] ⊂ [0,∞) each path (q, p, j) → J (q,p,j)
ε (t) has only a finite

number of jumps and remains in a bounded region of phase space. Moreover, the paths (q, p, j)→
J (q,p,j)
ε (t) are smooth away from S, i.e. on (R4 \ S) × {−1, 1}. Hence, the random trajectories
J (q,p,j)
ε define a Markov process

{P(q,p,j) | (q, p, j) ∈ R4 × {−1, 1} }

on R4×{−1, 1}, see for example III-§1 in [Dy]. With the transition function of a Markov process
one associates a backwards and a forwards semigroup, which act on function spaces respectively
spaces of set functions, cf. [Dy] or [Li]. We define the corresponding Markov (backwards) semi-
group on the following space of functions.

Definition 1 A compactly supported function f ∈ Cc((R4 \S)×{−1, 1},C) belongs to the space
C, if it satisfies the following boundary conditions at the jump manifold:

lim
δ→+0

f(q − δp, p+ δjq/|q|, j) = T ε(q, p) lim
δ→+0

f(q + δp, p+ δjq/|q|,−j)

= T ε(q, p) f(q, p,−j)

and

lim
δ→+0

f(q − δp, p+ δjq/|q|, j) = (1− T ε(q, p)) lim
δ→+0

f(q + δp, p− δjq/|q|, j)

= (1− T ε(q, p)) f(q, p, j)

for all (q, p) ∈ S \ Scl.
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Remark 3 The limits in the preceding definition are taken along the linearization of the unique
trajectory of (3) passing through a point in S \ Scl before resp. after hitting the jump manifold
S, see also (12). ♦

By construction, the backwards semigroup acting on functions f ∈ C

Ltε : C → C , (Ltεf)(q, p, j) := E
(q,p,j)f(J (q,p,j)

ε (t))

leaves invariant the space C. We write continuous compactly supported matrix-valued functions
a ∈ Cc(R4 \ S,L(C2)) as

a = a+Π+ + a−Π− + Π+aΠ− + Π−aΠ+

with a± := tr (aΠ±). We denote by Cdiag the space of functions a ∈ Cc(R4 \S,L(C2)) such that
a = a+Π+ + a−Π− with a+, a− ∈ C, and set for a ∈ Cdiag

Ltε,±a :=
(
Ltε(a+, a−)

)±
, Ltεa :=

(
Ltε,+a

)
Π+ +

(
Ltε,−a

)
Π− .

With this definition the semigroup Ltε acts invariantly on Cdiag, and we can now define its action
on Wigner functions by duality.

Definition 2 Let W ε(ψ) be the Wigner function of some wave function ψ ∈ L2(R2,C2). We
define LtεW ε(ψ) as the linear functional

LtεW ε(ψ) : Cdiag → C , a 7→
∫
R4

tr
(
W ε(ψ)(q, p)

(
Ltεa

)
(q, p)

)
dq dp .

Since W ε(ψ) ∈ C0(R4,L(C2)) and Ltεa ∈ Cdiag, we clearly have LtεW ε(ψ) ∈ C(R4 \ S,L(C2)).
Moreover, S ⊂ R4 has zero Lebesgue measure. Hence,

LtεW ε(ψ) ∈ L1
loc(R

4,L(C2)) .

Analogously to the Born-Oppenheimer function W ε
BO(t), we name

W ε
LZ(t) := LtεW ε(ψ0) ∈ L1

loc(R
4,L(C2)) , t ∈ [0,∞) ,

the Landau-Zener function. W ε
LZ(t) incorporates classical transport and ε-dependent non-

adiabatic transitions near the crossing. Our main result, Theorem 1, states, that W ε
LZ(t) ap-

proximates the Wigner function of the solution ψε(t) to the Schrödinger equation (1) in the limit
ε→ 0.

Remark 4 The heuristic argument yielding the Landau-Zener formula (14) also applies to the
generic potential discussed in the introduction

V (q) =
(
a · q b · q
b · q −a · q

)
.

11



If we denote by M = (at, bt) the 2 × 2-matrix with row vectors at, bt ∈ R2, then the jump
manifold is given by {(q, p) ∈ R4 |Mq ·Mp = 0}, and the transition probability reads as

Tε(q∗, p∗) = exp
(
−π
ε

(Mq∗ ∧Mp∗)2

|Mp∗|3

)
.

♦

3 Main Result

The non-adiabatic transfer of mass between Ran Π+ and Ran Π− in the crossing region is re-
alized in the semigroup Ltε by jumping at the manifold S with the Landau-Zener transition
probability T ε. Clearly, Ltε does not correctly resolve the dynamics directly at the manifold S,
but it gives an approximate description of the total non-adiabatic transfer, when the solution
has passed by. Hence, the Landau-Zener function W ε

LZ(t) can only be a sensible approxima-
tion to the true Wigner function W ε(ψε(t)) away from S. Therefore we restrict ourselves to
test functions supported away from S and we also have to assume that the initial data have
negligible mass near the jump manifold S.

Definition 3 A sequence of wave functions (ψε)ε>0 in L2(R2,C2) is said to have negligible mass
near the jump manifold S, if there exists δ > 0 such that

lim
ε→0

∫
Sδ

|W ε(ψε0)(q, p)|dq dp = 0

with Sδ = {(q, p) ∈ R4 | |q · p| ≤ δ} the closed δ-tube around S.

Initial data with negligible mass near S are, for example, associated with semiclassical Gaussian
wave packets

(2πε)−1/2 exp(− 1
2ε |q − q0|2 + i

ε p0 · q)

with center (q0, p0) ∈ R4, |q0 · p0| 6= 0, or WKB type states f(q) eiS(q)/ε with amplitude f ∈
L2(R2,C) and phase S ∈ C1(R2,C) such that |q · ∇qS(q)| ≥ δ on supp (f).

Though incorporating non-adiabatic transitions, the semigroup Ltε still gives a semiclassical
description of the dynamics. Hence, we do not obtain information about the off-diagonal terms
of the Wigner function, which are highly oscillatory and vanish when averaged over time, see
Lemma 3 later on. By choosing observables, which are diagonal with respect to the potential
V (q), we conveniently suppress the uncontrolled off-diagonal parts of W ε(ψε(t)). This restriction
to the diagonal components, however, prohibits the resolution of possible interferences between
parts of the wave function originating from different levels. Such interferences might occur if
classical trajectories arrive with the same momentum at the same time at the jump manifold
on the upper and the lower band. A simple condition ruling out such a scenario is the choice
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of initial data just associated with Ran Π+, that is ψε0(q) = φε0(q)χ+(q) with φε0 ∈ L2(R2,C).
In this case, all trajectories associated with the flow Φt

− originate from trajectories of the flow
Φt

+ having passed the jump manifold S. Since such trajectories (q−(t), p−(t)) do not come back
to S, there are no interferences.

The last issue to be addressed before formulating our main result is rather technical. Since we
must allow for ε-dependent initial data, we have to make sure that the family of initial wave
functions (ψε0)ε>0 behaves properly as ε → 0. It turns out that the appropriate condition is
that the sequence of two-scale Wigner functionals (W ε

2 (ψε0))ε>0 converges to a two-scale Wigner
measure ρ0. We postpone the definition and discussion of two-scale Wigner functionals and mea-
sures to the following section. However, we note that this assumption is satisfied by all standard
families of initial wave functions (ψε0)ε>0 like semiclassical wave packets and semiclassical WKB
states and also by initial conditions not depending on ε at all. Moreover, the assumption can be
dropped completely, if one is willing to work with subsequences of the initial sequence (ψε0)ε>0.

Theorem 1 Let (ψε0)ε>0 be a bounded sequence in L2(R2,C2) associated with Ran Π+, that is
with wε−(ψε0) = 0, with negligible mass near the jump manifold S. Assume that the sequence of
two-scale Wigner functionals (W ε

2 (ψε0))ε>0 has a weak*-limit ρ0 as defined in Definition 4.

Then, for all T > 0 the solution ψε(t) of the Schrödinger equation (1) with initial data ψε(0) = ψε0
satisfies

lim
ε→0

sup
t∈[0,T ]

∫
R4

tr
((
W ε(ψε(t))−W ε

LZ(t)
)
(q, p) a(q, p)

)
dq dp = 0 (15)

for all a ∈ C∞c (R4,L(C2)) with supp (a) ⊂ R4 \ S and [a(q, p), V (q)] = 0 for (q, p) ∈ R4.

Remark 5 We emphasize, that Theorem 1 extends the Born-Oppenheimer approximation in
a non-trivial way. The transition probabilities T ε(q, p) incorporated into the semigroup Ltε
result in leading order non-adiabatic transitions for a large class of initial data. All initial wave
functions with phase space support in an

√
ε-neighborhood of the hypersurface of zero angular

momentum {(q, p) ∈ R4 | q ∧ p = 0} exhibit order one transitions. ♦

4 Two-scale Wigner Functionals and Measures

In this section we provide a self-contained discussion of the necessary two-scale analysis required
for our proof. Two-scale Wigner measures are measures on an extended phase space R2d × Rη,
using the extra variable η ∈ R to resolve concentration effects on certain submanifolds of phase
space on the finer scale

√
ε. They have been introduced by Fermanian-Kammerer [Fe] and

Miller [Mil] for the analysis of propagation through shock hypersurfaces and sharp interfaces.
In this section, we review and extend a number of notions and results from [FeGe1], which we
then will use in the proof of Theorem 1. In particular, we pursuit three issues. Firstly, we
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present a self-contained construction of two-scale measures, which just relies on the Calderon-
Vaillancourt Theorem and a two-scale version of the sharp G̊arding inequality. Secondly, the
two-scale Wigner measures used in [FeGe1] are measures on an extended phase space of space-
time T ∗(Rt × R2

q) × Rη = R
7. Here, we provide a detailed discussion of the necessary tools

to incorporate their Landau-Zener type formula into a description, which is pointwise in time.
Thirdly, the space of observables used in [FeGe1] consists of functions, which are constant for
large values of the additional coordinate η. That space is not invariant under multiplication by
the two-scale transition rate exp(−π η2/|p|3), and we have to enlarge the space of admissible
observables to obtain a well-defined description of the dynamics by means of a semigroup.

To proceed in a transparent way, we quickly fix the symbol classes we are working with and
recapitulate a suitable definition of Wigner measures.

4.1 Symbol Classes and Wigner Measures

With the notation of Chapter 7 in [DiSj], we denote by

S(m) =
{
a ∈ C∞(R2n,L(C2)) | ∀α ∈ N2n

0 ∃Cα > 0∀x ∈ R2n : |∂αa(x)| ≤ Cαm(x)
}
.

The function m : R2n → [0,∞] is an order function, that is, there exist positive constants
Cm > 0 and Nm > 0 such that

∀x, y ∈ R2n : m(x) ≤ Cm 〈x− y〉Nmm(y) ,

where 〈x〉 = (1 + |x|2)1/2. The space S(m) is a Fréchet space. Let k ∈ R and δ ∈ [0, 1/2]. The
space Skδ (m) consists of functions a : R2n×]0, 1], (x, ε) 7→ a(x; ε), which satisfy the following two
conditions. Firstly, a(· ; ε) ∈ S(m) for all ε ∈]0, 1], and secondly,

∀α ∈ N2n
0 ∃Cα > 0 ∀ (x, ε) ∈ R2n×]0, 1] : |∂αa(x; ε)| ≤ Cαm(x) ε−δ|α|−k .

For us, the two extreme cases δ = 0 and δ = 1/2 are the relevant parameters. We note, that
S0

1/2(m) is a symbol class, within which the semiclassical Moyal product ]ε does not have an
asymptotic expansion. However, Moyal multiplication of symbols in S0

1/2(m) with symbols in
S0

0(m) and vice versa is unproblematic, as the following lemma illustrates.

Lemma 1 For all order functions m1 and m2, the bilinear map

S(R2n,L(C2))× S(R2n,L(C2))→ S(R2n,L(C2)) ,

(a]εb)(q, p) :=
(
exp( iε

2 (DpDq′ −DqDp′))a(q, p)b(q′, p′)
)
|q=q′,p=p′

extends continuously to a map S0
0(m1)×S0

1/2(m2)→ S0
1/2(m1m2) and has an asymptotic expan-

sion in S0
1/2(m1m2)

(a ]ε b)(q, p) ∼
∞∑
j=0

1
j!

(
( iε

2 (DpDq′ −DqDp′))ja(q, p)b(q′, p′)
)
|q=q′,p=p′ =:

∞∑
j=0

cj ,
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meaning that cj ∈ S−j/21/2 (m1m2) for all j ∈ N0 and thata ]ε b − N∑
j=0

cj

 ∈ S
−(N+1)/2
1/2 (m1m2) (16)

for all N ∈ N0.

The proof of Lemma 1 follows standard arguments and we postpone it to Appendix A.1.

In Section 2, we have already mentioned that the Wigner function W ε(ψ) of a wave function
ψ ∈ L2(Rn,C2) is a temperate distribution with

| 〈W ε(ψ), a〉S′,S | ≤ c4(a) ‖ψ‖2L2(Rn)

for all a ∈ S(R2n,L(C2)) uniformly in ε > 0. Hence, for bounded sequences (ψε)ε>0 in
L2(Rn,C2) an application of the Banach-Alaoglu Theorem, see Theorem 3.17 in [Ru], gives
existence of a subsequence (W εk(ψεk))εk>0, which converges with respect to the weak*-topology
in S ′(R2n,L(C2)). We denote the weak*-limit points of such subsequences by µ. The positivity
of µ is provided by the semiclassical sharp G̊arding inequality. In the matrix-valued case, the
sharp G̊arding inequality has first been proven in [LaNi]. As indicated in Appendix A of [Je], the
proof relying upon anti-Wick quantization also applies to matrix-valued operators, see Proposi-
tion 1 for an analogous result for two-scale symbols. The semiclassical sharp G̊arding inequality
states that for non-negative 0 ≤ a ∈ S0

0(1), that is for symbols a ∈ C∞b (R2n,L(C2)) with

∀u ∈ C2 ∀(q, p) ∈ R2n : 〈u, a(q, p)u〉
C2 ≥ 0 ,

there is a positive constant C = C(a) > 0 such that for all ε > 0 and all ψ ∈ L2(Rn,C2)

〈ψ, a(q,−iε∇q)ψ〉L2(Rn) ≥ −C ε ‖ψ‖
2
L2(Rn) .

Thus, a weak*-limit point µ of (W ε(ψε))ε>0 is a positive distribution and therefore a positive
matrix-valued Radon measure on phase space R2n called Wigner measure. For an alternative
construction of matrix-valued Wigner measures using smooth square roots and composition of
pseudodifferential operators we refer to [GMMP].

4.2 Two-scale Wigner Functionals

We want to analyze concentration effects with respect to a submanifold in phase space

Ig :=
{

(q, p) ∈ R4 | g(q, p) = 0
}
.

For the Schrödinger equation (1), we will choose g(q, p) = q ∧ p, which is angular momentum,
a conserved quantity under the associated Hamiltonian dynamics. We recall, that q ∧ p also
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appeared explicitly in the Landau-Zener transition rate (14). This rate indicates, that only
trajectories within a

√
ε-neighborhood of Ig in phase space, i.e. in a set{

(q, p) ∈ R4 | |q ∧ p| ≤ const.
√
ε
}
,

experience order one transition probabilities when coming close to the crossing. The Wigner
measure, however, does not resolve this

√
ε-neighborhood, and a more detailed two-scale analysis

becomes necessary.

For the general statements about two-scale Wigner functionals and measures, we only assume
that g ∈ C∞(R4,R) is a smooth polynomially bounded function, that is for all β ∈ N4

0 there is
a positive constant C = C(β) > 0 and a natural number M = M(β) ∈ N0 such that

∀(q, p) ∈ R4 : |∂βg(q, p)| ≤ C 〈(q, p)〉M .

The function g provides us with a notion of (signed) distance to the manifold Ig through
d((q, p), Ig) = g(q, p). In the following, the variable η ∈ R measures this distance scaled with√
ε, i.e. η(q, p) = g(q, p)/

√
ε. Since we are interested in the limit ε→ 0, the variable η is viewed

as an element of the one-point compactification R of R.

We will use observables depending on (q, p) and on η to test the Wigner transform near Ig with
respect to the

√
ε scale. For a ∈ C∞b (R5,L(C2)) let

(P) ‖〈(q, p)〉β∂γa(q, p, η) ‖∞ <∞ for all β ∈ N0 and γ ∈ N5
0,

∃ a∞ ∈ C∞b (R4,L(C2)) : lim|η|→∞ ‖a(·, η)− a∞‖∞ = 0 .

We define the relevant test function space as

A :=
{
a ∈ C∞b (R5,L(C2)) | a satisfies property (P)

}
and equip it with the topology, which is induced by the family of semi-norms

‖ 〈(q, p)〉β ∂γa(q, p, η) ‖∞ , β ∈ N0 , γ ∈ N5
0 . (17)

We note, that A is a Fréchet space with the Heine-Borel property, that is, closed and bounded
sets are compact. Therefore, A is a Montel space. In the dual A′ of such spaces, every weak*
convergent sequence is strongly convergent, meaning that for a sequence (ln)n∈N in A′

∀a ∈ A : lim
n→∞

ln(a) = l(a) =⇒ ∀ bounded B ⊂ A : lim
n→∞

sup
a∈B
| ln(a)− l(a) |= 0 ,

see for example Proposition 34.6 in [Tr]. We will use this strong convergence property later on.
For a ∈ A, we denote by

s5(a) :=
∑

|β|,|γ| ≤ 5

‖ 〈(q, p)〉β ∂γa(q, p, η) ‖∞ ,
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the finite sum over Schwartz norms, which are of the form (17). For observables a ∈ A, the
scaled function

(q, p) 7→ aε(q, p) := a(q, p, g(q,p)√
ε

)

lies in the symbol class S0
1/2(1), and we observe that c4(aε) cannot be bounded by s5(a) uniformly

in ε > 0. Therefore, as in the proof of the Calderon-Vaillancourt Theorem for symbol classes
S0
δ (1) with δ ∈ [0, 1/2], see e.g. Theorem 7.11 in [DiSj], we use the unitary scaling

Sε : L2(R2,C2)→ L2(R2,C2) , ψ(q) 7→ (Sεψ)(q) :=
√
εψ(
√
εq)

and the alternatively scaled symbol

(q, p) 7→ aε,2(q, p) := a(
√
εq,
√
εp, g(

√
εq,
√
εp)√

ε
) ,

which belongs to the symbol class S0
0(1).

Lemma 2 Let a ∈ A and ψ ∈ L2(R2,C2). Then,

〈ψ, aε(q,−iε∇q)ψ〉L2(R2) = 〈Sεψ, aε,2(q,−i∇q)Sε ψ〉L2(R2) . (18)

Proof. Since aε and aε,2 are Schwartz functions, we just have to carry out an calculation. We
have for ψ ∈ S(R2,C2)

〈ψ, aε(q,−iε∇q)ψ〉L2(R2) = (2πε)−2

∫
R6

ψ(q) ei(q−q′)·p/ε aε( q+q
′

2 , p) ψ(q′) dq′ dp dq .

Substituting q =
√
εx, q′ =

√
εx′, and p =

√
ε ξ, we obtain

〈ψ, aε(q,−iε∇q)ψ〉L2(R2)

= ε(2π)−2

∫
R6

ψ(
√
εx)ei(x−x′)·ξ a

(
√
ε x+x′

2 ,
√
ε ξ,

g(
√
ε x+x′

2 ,
√
ε ξ)

√
ε

)
ψ(
√
εx′) dx′ dξ dx

= 〈Sεψ, aε,2(q,−i∇q)Sε ψ〉L2(R2) .

Since aε,2(q,−i∇q) is bounded, we can conclude (18) also for ψ ∈ L2(R2,C2) by density. 2

For a ∈ A we have c4(aε,2) ≤ const. s5(a) uniformly in ε > 0. Hence,

A → C , a 7→ 〈Sεψ, aε,2(q,−i∇q)Sεψ〉L2(R2)

defines a continuous linear functional on A, called two-scale Wigner functional W ε
2 (ψ) of ψ, see

also Definition 1 in [FeLa]. We note, that by identity (18) the duality pairing between W ε
2 (ψ)

and a can also be expressed as

〈W ε
2 (ψ), a〉A′,A =

∫
R4

tr
(
W ε(ψ)(q, p) a(q, p, g(q,p)√

ε
)
)

dq dp .
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Therefore, since W ε(ψ) ∈ C0(R4,L(C2)), the two-scale Wigner functional W ε
2 (ψ) can be viewed

as the distribution
W ε(ψ)(q, p) δ(η − g(q,p)√

ε
) .

The above representation of the two-scale functional W ε
2 (ψ) also illustrates its dependance on

the function g chosen to parameterize the distance to the submanifold Ig.

In general, the two-scale functional W ε
2 (ψ) inherits from the Wigner function W ε(ψ) the non-

positivity. However, when passing to the semiclassical limit ε → 0, we expect positivity of the
limit points. Indeed, if we additionally assume that there is m ∈ N such that

∀(q, p) ∈ R2n : | ∇g(
√
εq,
√
εp) | ≤ const.

√
ε 〈(q, p)〉m ,

then the following two-scale version of the sharp G̊arding inequality guarantees positivity when
passing to the limit.

Proposition 1 For each non-negative 0 ≤ a ∈ A there is a positive constant C = C(a) > 0
such that for all ε > 0 and all ψ ∈ L2(R2,C2)

〈ψ, aε(q,−iε∇q)ψ〉L2(R2) ≥ −C
√
ε ‖ψ‖2L2(R2) .

Proposition 1 is proved in Appendix A.2 using anti-Wick quantization.

4.3 Two-scale Wigner Measures

The Calderon-Vaillancourt Theorem and the previous version of G̊arding’s inequality are all we
need to study the semiclassical limit of the two-scale Wigner functional W ε

2 (ψε) for bounded
sequences (ψε)ε>0 in L2(R2,C2).

Proposition 2 Let (ψε)ε>0 be a bounded sequence in L2(R2,C2).

1. (W ε
2 (ψε))ε>0 has weak*-limit points ρ in A′. All such limit points ρ are bounded positive

matrix-valued Radon measures on R4 × R.

2. Let (W ε
2 (ψε))ε>0 converge to ρ with respect to the weak*-topology on A′. Then, the se-

quence (W ε(ψε))ε>0 converges to a Wigner measure µ in S ′(R4,L(C2)), and there exists
a bounded positive Radon measure ν on Ig × R, such that∫

R4×R
a(q, p, η)ρ(dp,dq,dη) =∫
R4\Ig

a(q, p,∞)µ(dq,dp) +
∫
Ig×R

a(q, p, η)ν(dq,dp,dη)

for all a ∈ Cc(R4 × R,L(C2)), and we have
∫
R
ν(·,dη) = µ|Ig .
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Definition 4 The measures ρ introduced in Proposition 2 are called two-scale Wigner measures
of the bounded sequence (ψε)ε>0 in L2(R2,C2) with respect to the submanifold Ig.

Proposition 2 is the analogue of Theorem 1 in [FeGe1]. There, admissible observables are
required to be constant with respect to η for large η. That property, however, prevents the
definition of a semigroup comparable to Ltε acting on two-scale observables. Thus, we provide a
self-contained proof for the construction with observables in A in the Appendix A.3, which in
contrast to the proof of [FeGe1] avoids the use of Fourier integral operators.

The measures ρ and ν depend on the function g(q, p) chosen to describe the submanifold Ig. If
g̃ ∈ C∞(R4,R) is another function with Ig = {g̃ = 0} sharing the same growth properties as g,
then for a ∈ A the scaled function

ãε(q, p) := a(q, p, g̃(q,p)√
ε

)

is in C∞b (R4,L(C2)). Moreover, there exists f ∈ C∞(R4,R) with f(q, p) 6= 0 for all (q, p) such
that g̃(q, p) = f(q, p)g(q, p), and setting af (q, p, η) := a(q, p, f(q, p)η) we clearly have ãε = (af )ε.
Thus, repeating the corresponding two-scale construction and denoting the resulting measures
by ρ̃ and ν̃, we obtain

ρ(q, p, f−1(q, p)η) = ρ̃(q, p, η) , ν(q, p, f−1(q, p)η) = ν̃(q, p, η) .

4.4 Propagation of Two-scale Wigner Functionals

Let ψε(t) ∈ C(R, L2(R2,C2)) be a solution of the Schrödinger equation (1) with initial data
ψε0 ∈ L2(R2,C2) and g(q, p) = q ∧ p. The two-scale Wigner functional inherits the solution’s
continuous time dependence, that is

W ε
2 (ψε(t)) ∈ C(R,A′) ,

where continuity is understood with respect to the strong dual topology on A′. Indeed, for
bounded subsets B ⊂ A, that is supa∈B ‖〈(q, p)〉β∂γa‖∞ < ∞ for all β ∈ N0 and γ ∈ N5

0, we
have for t, t′ ∈ R

sup
a∈B
|
〈
W ε

2 (ψε(t))−W ε
2 (ψε(t′)), a

〉
A′,A | ≤

sup
a∈B

s5(a)
∥∥ψε(t)− ψε(t′)∥∥

L2(R2)

(
‖ψε(t)‖L2(R2) + ‖ψε(t′)‖L2(R2)

)
,

and thus the asserted continuity with respect to time. However, passing to the limit ε → 0,
we are confronted with the possibility that different points of time t could require different
subsequences (εk(t))k∈N for convergence to a two-scale measure. In that case, neither continuity
with respect to time nor other properties of the two-scale Wigner functional would carry over
to the two-scale measures. This difficulty is dealt with by restricting the analysis to diagonal
observables.
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Proposition 3 Let ψε(t) ∈ C(R, L2(R2,C2)) be the solution of the Schrödinger equation (1)
with initial data (ψε0)ε>0 bounded L2(R2,C2) such that (W ε

2 (ψε0))ε>0 converges to a two-scale
measure ρ0 in A′.

1. Then, for every T > 0 there is a subsequence (εk)k∈N such that

lim
k→∞

〈W εk
2 (ψεk(t)), a〉A′,A and lim

k→∞
〈W εk(ψεk(t)), a〉S′,S

exist uniformly in t ∈ [0, T ] for all a ∈ A and a ∈ S(R4,L(C2)), respectively, with vanishing
commutator [a, V ] = 0 and supp (a) ∩ {q = 0} = ∅.

2. For scalar-valued a with the same properties, the limits

lim
k→∞

〈
W εk

2 (ψεk(t)), aΠ±
〉
A′,A =:

〈
ρ±t , aΠ±

〉
A′,A

and
lim
k→∞

〈
W εk(ψεk(t)), aΠ±

〉
S′,S =:

〈
µ±t , aΠ±

〉
S′,S

define positive bounded scalar-valued Radon measures ρ±t and µ±t on (R4 \ {q = 0}) × R
and R4 \ {q = 0}, respectively, for all t ∈ [0, T ].

3. For scalar-valued observables a with the same properties, we have convergence of the full
sequence

lim
ε→0

〈
W ε

2 (ψε(t))−W ε
2 (ψε0) ◦ Φ−t± , aΠ±

〉
A′,A =

lim
ε→0

〈
W ε(ψε(t))−W ε(ψε0) ◦ Φ−t± , aΠ±

〉
S′,S = 0

uniformly on time intervals [0, T ] such that for all t ∈ [0, T ]⋃
j∈{±}

{Φt
j(q, p) | ∃ η ∈ R : (q, p, η) ∈ supp (ρ0)} ∩ {q = 0} = ∅ .

Remark 6 Without incorporating non-adiabatic transitions, convergence of the full sequence
is only obtained on time-intervals, where the leading order dynamics can be described purely
by classical transport. However, the uniform convergence of subsequences on arbitrary time
intervals [0, T ] will later on be extended to convergence of the full sequence in the proof of
Theorem 1. ♦

Proof. We write a = Π+aΠ+ + Π−aΠ− and study〈
W ε

2 (ψε(t)),Π± aΠ±
〉
A′,A =

〈
ψε(t), (Π± aεΠ±)(q,−iε∇q)ψε(t)

〉
L2(R2)

.

The assertions for the one-scale Wigner transform will follow immediately from the correspond-
ing statements for the two-scale transform. As a first step, we establish the claimed uniform

20



convergence with respect to time t. Let φ ∈ C∞b (R2,R) such that φ = 1 on {q ∈ R2 | ∃(q, η) ∈
R

3 : (q, p, η) ∈ supp (a)} and φ(0) = 0. We have by Lemma 1

Π±aεΠ± − (φ2Π±) ]ε aε ]ε (φ2Π±) ∈ S−1/2
1/2 (1)

and therefore〈
W ε

2 (ψε(t)),Π± aΠ±
〉
A′,A =〈

(φ2Π±)(q,−iε∇q)ψε(t), aε(q,−iε∇q)(φ2Π±)(q,−iε∇q)ψε(t)
〉
L2(R2)

+ O(
√
ε) .

We denote λ±(q, p) = 1
2 |p|

2±|q| and choose initial data ψε0 in D(Hε). We observe, that the first
summand on the right hand side of the previous equation defines a continuously differentiable
function fεψε0

: R→ C,

t 7→ fεψε0(t) :=
〈
(φ2Π±)(q,−iε∇q)ψε(t), aε(q,−iε∇q)(φ2Π±)(q,−iε∇q)ψε(t)

〉
L2(R2)

.

We have for the derivative

d
dtf

ε
ψε0

(t) = (iε)−1
〈
(φ2Π±)(q,−iε∇q)Hεψε(t), (aε)(q,−iε∇q)(φ2Π±)(q,−iε∇q)ψε(t)

〉
L2

− (iε)−1
〈
(φ2Π±)(q,−iε∇q)ψε(t), aε(q,−iε∇q)(φ2Π±)(q,−iε∇q)Hεψε(t)

〉
L2 .

We want to show that supε>0 ‖ d
dtf

ε
ψε0

(·)‖∞ < ∞ to apply the Arzela-Ascoli Theorem. Since
∇(φλ±) ∈ S0

0(1), semiclassical calculus gives

(φ2Π±)]εh− (φλ±)]ε(φΠ±) ∈ S−1
0 (1) .

Thus, it remains to prove a uniform bound in ε and t for

(iε)−1
〈
(φΠ±)(q,−iε∇q)ψε(t), [φλ±, aε]]ε(q,−iε∇q)(φΠ±)(q,−iε∇q)ψε(t)

〉
L2 (19)

However, [φλ±, aε]]ε ∈ S−1
1/2(1), since [φλ±, aε] = 0 and

{φλ±, aε} = {λ±, aε} = ∇pλ±(Dqa)ε −∇qλ±(Dpa)ε ,

where the last identity uses that {λ±, q ∧ p} = 0 on R4 \ {q = 0}. Choosing general initial data
ψε0 ∈ L2(R2,C2) and ψ ∈ D(Hε), we clearly have for s, t ∈ R

| fεψε0(s)− fεψε0(t) | ≤ | fεψε0(s)− fεψ(s) | + | fεψ(s)− fεψ(t) | + | fεψ(t)− fεψε0(t) | .

Denoting the strongly continuous one-parameter group of Hε by (U ε(t))t∈R, we obtain for the
first term on the right hand side of the above inequality (and analogously for the third one)

| fεψε0(s)− fεψ(s) | ≤ |
〈
ψε0 − ψ,U ε(−s)(Π±aεΠ±)(q,−iε∇q)U ε(s)ψε0

〉
L2(R2)

|

+ |
〈
ψ,U ε(−s)(Π±aεΠ±)(q,−iε∇q)U ε(s)(ψ − ψε0)

〉
L2(R2)

|

≤ const. ‖ψε0 − ψ‖L2(R2)

(
‖ψε0‖L2(R2) + ‖ψ‖L2(R2)

)
,
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while for the second term we have by the bound on the first derivative

| fεψ(s)− fεψ(t) | ≤ const. |s− t| .

Thus, regardless of the choice of initial data, the sequence (fεψε0)ε>0 is pointwise bounded and
equicontinuous. By the Arzela-Ascoli Theorem, we then have uniform convergence of a sub-
sequence on compact subsets of R, which shows the claimed uniform convergence on intervals
[0, T ] for all T > 0.

Secondly, we prove that the two-scale limits define positive bounded scalar-valued Radon mea-
sures ρ±t for all t ∈ [0, T ]. Clearly, the limits define linear forms on the space of functions in A
with support away from {q = 0}. By the standard arguments, which have already been invoked
in the proof of Proposition 2, they extend to linear forms on compactly supported continuous
functions on R4 × R with support away from {q = 0}. Such functions, however, are dense
with respect to the sup-norm in Cc((R4 \ {q = 0}) × R,C), and we obtain the measures ρ±t on
(R4 \ {q = 0})× R.

Thirdly, we show the asserted transport properties. Omitting the subscript ψε0 of the function
fεψε0

for notational simplicity, we have for scalar-valued observables a ∈ A with support away
from {q = 0}

lim
k→∞

〈
W εk

2 (ψεk(t)), aΠ±
〉
A′,A = lim

k→∞
fεk(t)

uniformly in t ∈ [0, T ]. As already noted, the above uniform limit defines a measure ρ±t on
(R4 \ {q = 0}) × R for all t ∈ [0, T ]. For initial data ψε0 ∈ D(Hε), the function t 7→ fε(t) is
continuously differentiable with a first order derivative, whose leading order term in ε is given
by the commutator expression in equation (19). Thus,

lim
k→∞

d
dt f

εk(t)

= lim
k→∞

〈
(φΠ±)(q,−iεk∇q)ψεk(t), ({λ±, a})εk(q,−iεk∇q)(φΠ±)(q,−iεk∇q)ψεk(t)

〉
L2

= lim
k→∞

〈
W εk

2 (ψεk(t)), {λ±, a}Π±
〉
A′,A =

∫
{λ±, a}(q, p, η) ρ±t (dq,dp,dη) .

On the other hand, by the uniform convergence of (fεk(t))k∈N,

lim
k→∞

d
dt f

εk(t) = d
dt lim

k→∞
fεk(t) =

d
dt lim

k→∞

〈
W εk

2 (ψεk(t)), aΠ±
〉
A′,A = d

dt

∫
a(q, p, η) ρ±t (dq,dp,dη) ,

which implies
d
dt ρ
±
t = −{λ±, ρt}

for t ∈ [0, T ] such that
⋃
j∈{±}{Φt

j(q, p) | ∃ η ∈ R : (q, p, η) ∈ supp (ρ0)} ∩ {q = 0} = ∅, or
equivalently ρ±t (q, p, η) = ρ±0 (Φt

±(q, p), η), or

lim
k→∞

〈
W εk(ψεk(t))−W εk(ψεk0 ) ◦ Φ−t± , aΠ±

〉
A′,A = 0 .
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The assumption on the measure ρ0 guarantees that the sequences (〈W ε
2 (ψε0), aΠ±〉)ε>0 converge

to measures ρ±0 without extraction of subsequences. Thus, every convergent subsequence of
(〈W ε

2 (ψε(t)), aΠ±〉)ε>0 converges to the same limit point, and therefore the whole sequence
itself has to converge. Observing that

L2(R2,C2)× L2(R2,C2)→ C , (f, g) 7→ 〈U ε(t)f, aε(q,−iε∇q)U ε(t)g〉L2(R2)

is a bounded bilinear form, we conclude the proof of the transport equation also for the case of
general initial data ψε0 ∈ L2(R2,C2) by a density argument. 2

The previous Proposition 3 also shows for the Wigner measures µ±t , that µ±t = µ±0 ◦Φ−t± on time
intervals [0, T ] such that for all t ∈ [0, T ]⋃

j∈{±}

{Φt
j(q, p) | (q, p) ∈ supp (ρ0)} ∩ {q = 0} = ∅ .

Since Φt
± leaves I = {q ∧ p = 0} invariant,

µ±t |R4\I = (µ±0 ◦ Φ−t± ) |
R4\I (20)

for all times t ∈ R.

While the diagonal components of a two-scale Wigner functional approximately satisfy classical
transport equations, its off-diagonal elements vanish when taking time averages. For a similar
statement in a slightly different context see [Mi].

Lemma 3 Let ψε(t) ∈ C(R, L2(R2,C2)) be the solution of the Schrödinger equation (1) with
arbitrary initial data ψε0 ∈ L2(R2,C2). Then, for all a ∈ A and all t1, t2 ∈ R there exists
a positive constant C = C(a, V, t1, t2) > 0 depending on a, V , t1, and t2 such that for all
ψε0 ∈ L2(R2,C2)

|
∫ t2

t1

〈W ε
2 (ψε(τ)), [V, a] 〉A′,A dτ | ≤

√
ε C ‖ψε0‖2L2(R2) .

Proof. Let ψε0 ∈ D(Hε) and a ∈ A. We have for all τ ∈ R

iε d
dτ 〈W

ε
2 (ψε(τ)), a 〉A′,A = 〈ψε(τ), [Hε, aε(q,−iε∇q)]ψε(τ)〉L2(R2) .

Thus, we analyze the commutator [Hε, aε(q,−iε∇q)] = [h, aε]]ε(q,−iε∇q). Since a is Schwartz
function, we have aε ∈ S0

1/2(〈q〉−1〈p〉−2), and applying Lemma 1 we obtain [h, aε]]ε − [h, aε] =:
√
ε rε ∈ S−1/2

1/2 (1). Thus, with [h, aε] = [V, aε],

iε d
dτ 〈W

ε
2 (ψε(τ)), a 〉A′,A =

〈W ε
2 (ψε(τ)), [h, a] 〉A′,A +

√
ε 〈ψε(τ), rε(q,−iε∇q)ψε(τ)〉L2(R2) . (21)
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Integration from t1 to t2 gives

ε |
∫ t2

t1

d
dτ 〈W

ε
2 (ψε(τ)), a 〉A′,A dτ | = ε | 〈W ε

2 (ψε(t2))−W ε
2 (ψε(t1)), a 〉A′,A |

≤ ε s5(a) ‖ψε0‖2L2(R2)

and

√
ε |
∫ t2

t1

〈ψε(τ), rε(q,−iε∇q)ψε(τ)〉L2(R2) dτ | ≤
√
ε c4(rε) |t1 − t2| ‖ψε0‖2L2(R2) ,

which together with equation (21) yields the claimed bound for ψε0 ∈ D(Hε). A density argument
concludes the proof also for general initial data ψε0 ∈ L2(R2,C2). 2

Remark 7 The previous proof also applies to general matrix-valued Schrödinger equations with
essentially self-adjoint Hamiltonian, whose symbol is polynomially bounded, and to two-scaled
Wigner functionals associated with more general submanifolds than the hypersurface of zero
angular momentum I = {q ∧ p = 0}. ♦

Purely off-diagonal symbols a ∈ A with supp (a)∩ {q = 0} = ∅ can be written as a = Π+aΠ− +
Π−aΠ+, which implies [V, a] = (λ+ − λ−)a and a = [V, (λ+ − λ−)−1a]. Thus, we have for such
off-diagonal observables

|
∫ t2

t1

〈W ε
2 (ψε(τ)), a 〉A′,A dτ | ≤

√
ε C ‖ψε0‖2L2(R2) .

4.5 Measures on R2
t,τ × R4

q,p × Rη

We fix some time-interval of interest [0, T ] with T > 0 and define a set of admissible observables
on an extended phase space [0, T ]t × Rτ × R4

q,p as

AT :=
{
a ∈ C∞b (R7,L(C2)) | a satisifes property (PT)

}
,

where

(PT) supp (a) ⊂ [0, T ]× R6 and a(t, τ, ·) ∈ A for all t, τ ∈ R.

For a ∈ AT we set
aε(t, q, τ, p) =: a(t, q, τ, p, q∧p√

ε
) .

and choose a cut-off function χT ∈ C∞c (R,R) such that χT(t) = 1 for t ∈ [0, T ]. Then, we define
for ψ ∈ C(R, L2(R2,C2))

W ε
2,T(ψ) : AT → C , a 7→ 〈χTψ, aε(t, q,−iε∇t,q)χTψ〉L2(R3) ,
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which is a bounded linear functional by the rescaling identity (18) already used before. The
alternative approach followed up in [FeGe1] applies to observables a ∈ S(R7,L(C2)) and treats
ψ ∈ C(R, L2(R2,C2)) as a temperate distribution on R3. Then, aε ∈ S(R6,L(C2)), and the
Weyl quantized operator is regularizing, that is

aε(t, q,−iε∇t,q) ∈ L(S ′(R3,C2),S(R3,C2)) ,

see for example Remark 2.5.6 in [Ma] or the proof of Proposition II-56 in [Ro]. For symbols
a ∈ AT ∩ S(R7,L(C2)) we have by Lemma 1

χT ]ε aε ]ε χT ∼ aε in S0
1/2(1) ,

and therefore

aε(t, q,−iε∇t,q) = χT aε(t, q,−iε∇t,q)χT ∈ L(S ′(R3,C2),S(R3,C2)) .

Consequently,

〈χTψ, aε(t, q,−iε∇t,q)χTψ〉L2(R3) =
〈
ψ, aε(t, q,−iε∇t,q)ψ

〉
S′,S .

For different cut-off functions χT, χ̃T ∈ C∞c (R,R) with χT(t) = χ̃T(t) = 1 for t ∈ [0, T ], we have

χT ]ε aε ]ε χT ∼ χ̃T ]ε aε ]ε χ̃T in S0
1/2(1) ,

and thus the independence of W ε
2,T(ψ) from the choice of the cut-off function. Balancing the

benefits of the two equivalent approaches of using a cut-off function in L2(R3) versus working
with temperate distributions, we have preferred the natural setting of L2-theory.

For (ψε)ε>0 in C(R, L2(R2,C2)) with supε,t ‖ψε(t)‖L2(R2) < ∞, the sequence (W ε
2,T(ψε))ε>0

has weak*-limit points ρT in A′T, which are bounded positive matrix-valued Radon measures
on [0, T ] × R5 × R. As before, we denote by νT the restriction of a measure ρT to the set
{(t, q, τ, p, η) ∈ [0, T ]× R5 × R | (q, p) ∈ I}.

The following lemma addresses the localization of the measures ρT. The analogous statement
for semiclassical measures has been given in Section 3 of [Ge].

Lemma 4 Let ψε(t) ∈ C(R, L2(R2,C2)) be a solution of the Schrödinger equation (1), whose
initial data (ψε0)ε>0 form a bounded sequence in L2(R2,C2). Then, we have for the weak*-limit
points ρT ∈ A′T of (W ε

2,T(ψε))ε>0

supp (ρT) ⊂
{

(t, τ, q, p, η) ∈ [0, T ]× R5 × R | τ + 1
2 |p|

2 = ±|q|
}
.

For the proof of Lemma 4, we refer to the Appendix A.4. It remains to clarify the relation
between two-scale measures on R4

q,p × Rη and their pendant on R2
t,τ × R4

q,p × Rη.
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Lemma 5 Let ψε(t) ∈ C(R, L2(R2,C2)) be the solution of the Schrödinger equation (1) with
initial data (ψε0)ε>0 bounded in L2(R2,C2). Let ρT be a weak*-limit point of (W ε

2,T(ψε))ε>0, and
let ρ±t be the scalar measures introduced in Proposition 3. Then,〈

ρT,Π± aΠ±
〉
A′T,AT

=
∫
R6×R

a±(t, q, τ, p, η) ρ±t (dq,dp,dη) δ(τ − 1
2 |p|

2 ∓ |q|) dt

for all a ∈ AT with supp (a) ⊂ [0, T ]× R6 \ {q = 0} and a± = tr (aΠ±).

Proof. Let (εk)k∈N be a subsequence, such that

W εk
2,T(ψεk) ∗

⇀ ρT , tr
(
W εk

2 (ψεk(t))Π±
) ∗
⇀ ρ±t uniformly in t ∈ [0, T ] .

Since ρT (τ + 1
2 |p|

2 + V ) = 0 and therefore supp (tr (ρTΠ±)) ⊂
{
τ + 1

2 |p|
2 ± |q| = 0

}
, we have

tr
(
ρT(t, q, τ, p, η) Π±(q)

)
=
∫
R

tr
(
ρT(t, q,dτ, p, η) Π±(q)

)
δ(τ + 1

2 |p|
2 ± |q|)

as measures on [0, T ]× (R2
q \ {0})× R3

τ,p × Rη . Thus, it remains to show that

ρ±t (q, p, η) =
∫
R

tr
(
ρT(t, q,dτ, p, η) Π±(q)

)
as measures on [0, T ]× (R2

q \ {0})×R2
p ×Rη. We have for symbols a = a(t, q, p, η) ∈ AT, which

do not depend on τ and have support away from {q = 0},∫
R6×R

tr
(
a(t, q, p, η) Π±(q)

)
ρ±T(dt,dq,dτ,dp,dη)

= lim
k→∞

〈
χTψ

εk , (Π±aεΠ±)(t, q,−iεk∇q)χTψ
εk
〉
L2(R3,C2)

= lim
k→∞

∫
R

|χT(t)|2
〈
ψεk(t), (Π±aεΠ±)(t, q,−iεk∇q)ψεk(t)

〉
L2(R2,C2)

dt

=
∫
R5×R

tr
(
a(t, q, p, η)Π±

)
ρ±t (dq,dp,dη) dt ,

which concludes our proof. 2

4.6 Measures Near the Crossing: the Results of Fermanian and Gérard

In the following, we summarize the part of the results of [FeGe1], which we will use for the
proof of Theorem 1, tacitely using some of the simplifications worked out in [FeLa]. Fermanian-
Kammerer and Gérard introduce the involutive manifold

IFG :=
{

(t, τ, q, p) ∈ R6 | q ∧ p = 0
}
,
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which contains all the classical trajectories hitting the crossing {q = 0}, and a space of admissible
observables

AFG :=
{
a ∈ C∞(R7,L(C2)) | supp (a) ⊂ K × R , K ⊂ R6 \ {(t, τ, 0, 0)} compact ,

∃ a∞ ∈ C∞(R6 × {±1},L(C2)) ∃R > 0 ∀m ∈ R6 ∀ |η| > R :

a(m, η) = a∞(m, sgn(η))} .

Theorem 1 of [FeGe1] shows, that for a bounded sequence (uε)ε>0 in L2(R3,C2) there exists a
subsequence (εk)k>0 of positive numbers and a positive Radon measure νFG on IFG × R with
values in Lsa(C2) such that for all a ∈ AFG

lim
εk→0

∫
R6

tr
(
W εk(uεk)(t, τ, q, p) a(t, τ, q, p, q∧p√εk )

)
dtdτ dq dp =∫

IFG×R
tr (a(t, τ, q, p, η) νFG(dt,dτ,dq,dp,dη))

+
∫
R6\IFG

tr (a∞(t, τ, q, p, sgn(q ∧ p))µ(dt,dτ,dq,dp)) ,

where (W ε(uε))ε>0 and µ are Wigner transforms and a Wigner measure of (uε)ε>0. Theorem 2’
of [FeGe1] associates with the solution ψε(t) ∈ C(R, L2(R2,C2)) of the Schrödinger equation (1)
a measure νFG on R6 × R, which decomposes as

νFG = ν+
FG Π+ + ν−FG Π−

with scalar measures ν±FG supported in J±,p∪J±,f . For the definition of the sets J±,p, J±,f they
choose a point (t0, τ0, 0, p0, η0) inside the crossing manifold

SFG :=
{

(t, τ, 0, p, η) ∈ R6 × R | t ∈ R, τ = −1
2 |p|

2, p 6= 0, η ∈ R
}
,

a neighborhood (t0, τ0, 0, p0) ∈ U ⊂ R6 and set

J±,p :=
{

(t+ s, τ,Φs
±(0, p), η) ∈ R6 × R | (t, τ, 0, p) ∈ U , s < 0 sufficiently small

}
,

J±,f :=
{

(t+ s, τ,Φs
±(0, p), η) ∈ R6 × R | (t, τ, 0, p) ∈ U , s > 0 sufficiently small

}
,

where Φt
± are the classical flows associated with the Hamiltonian systems (3). Outside the

crossing set on (J±,p ∪ J±,f ) \ SFG, the measures ν±FG satisfy transport equations

ν±FG(t, τ, q, p, η) = ν±FG(0, τ,Φt
±(q, p), η) ,

see Theorem 2’ of [FeGe1] or Proposition 2 of [FeLa]. Denoting restrictions of the measures ν±FG

to J±,p ∩ SFG and J±,f ∩ SFG by ν±,pSFG
and ν±,fSFG

, respectively, Theorem 3 of [FeGe1] shows the
Landau-Zener type formula(

ν+,f
SFG

ν−,fSFG

)
=

(
1− T T

T 1− T

)(
ν+,p
SFG

ν−,pSFG

)
(22)
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with T = T (p, η) = exp(−π η2

|p|3 ), if ν+,p
SFG

and ν−,pSFG
are mutually singular on SFG. A sufficient

condition to meet this singularity requirement for positive times t ≥ 0 is the choice of initial
data ψε0 ∈ L2(R2,C2) with Π−ψε0 = 0, since then ν−,pSFG

|{t≥0} ≡ 0.

4.7 A Semigroup for Two-scale Measures

In complete analogy to the definition of the ε-dependent semigroup Ltε for the diagonal com-
ponents (wε+(ψ(t)), wε−(ψ(t))) of the Wigner function, we define a semigroup for the two-scale
Wigner measures (ρ+

t , ρ
−
t ) and (ν+

t , ν
−
t ) in the following.

We introduce the right continuous random trajectories

J (q,p,η,j) : [0,∞)→ R
4 × Rη × {−1, 1} ,

where J (q,p,η,j)(t) = (Φt
j(q, p), η, j) as long as Φt

j(q, p) 6∈ S. Whenever the flow Φt
j(q, p) hits the

jump manifold S, a jump from j to −j occurs with probability

T (p, η) = exp(−π η2

|p|3 ) .

The random trajectories J (q,p,η,j) define a Markov process{
P

(q,p,η,j) | (q, p, η, j) ∈ R4 × Rη × {−1, 1}
}
.

The pendant C2 to the space of observables C is defined as follows.

Definition 5 A continuous compactly supported function f ∈ Cc((R4 \ S) × R × {−1, 1},C)
belongs to to the space C2, if the following boundary conditions at (S \ Scl) × R × {−1, 1} are
satisfied:

lim
δ→+0

f(q − δp, p− δjq/|q|, η, j) = T (p, η) lim
δ→+0

f(q + δp, p− δjq/|q|, η,−j) ,

lim
δ→+0

f(q − δp, p− δjq/|q|, η, j) = (1− T (p, η)) lim
δ→+0

f(q + δp, p+ δjq/|q|, η, j) .

By construction, the semigroup

(T tf)(q, p, η, j) := E
(q,p,η,j)f(J (q,p,η,j)(t)) , t ≥ 0 ,

leaves the space C2 invariant, that is T t : C2 → C2 for all t ≥ 0. We denote the space of functions
a ∈ Cc((R4 \ S) × R,L(C2)) such that a = a+Π+ + a−Π− with (a+, a−) ∈ C2 by C2

diag and set
for a ∈ C2

diag

T t±a := (T t(a+, a−))± , T ta := (T t+a)Π+ + (T t−a)Π− , t ≥ 0 .
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We note, that T t leaves the space C2
diag invariant. To work exclusively on the subspaces Ran (Π±),

we will also need
T t±a := T t±(aΠ±)

for scalar-valued a ∈ Cc((R4\S)×R,C). By duality, we define for matrix-valued Radon measures
ρ on R4 × R with supp (ρ) ∩ (S × R) = ∅ the matrix-valued measure T tρ on (R4 \ S)× R, that
is, we set∫

(R4\S)×R
tr
(
a(q, p, η) (T tρ)(dq,dp,dη)

)
:=

∫
R4×R

tr
(
(T ta)(q, p, η) ρ(dq,dp,dη)

)
for a ∈ C2

diag. Having fixed these notations and definitions, we can formulate the key observation
for the proof of Theorem 1.

Lemma 6 Let ψε(t) ∈ C(R, L2(R2,C2)) be the solution of the Schrödinger equation (1) with
initial data (ψε0)ε>0 bounded in L2(R2,C2). Let T > 0 and ρ±t , t ∈ [0, T ], be the scalar measures
on (R4 \ {q = 0})× R introduced in Proposition 3. If

ρ−0 = 0 and supp (ρ+
0 ) ∩ (S × R) = ∅ ,

then the restrictions ν±t of the measures ρ±t to I × R satisfy∫
I×R

a(q, p, η) ν±t (dq,dp,dη) =
∫
I×R

(T t±a)(q, p, η) ν±0 (dq,dp,dη)

for all scalar-valued a ∈ A with supp (a) ∩ (S × R) = ∅ and for all t ∈ [0, T ].

Proof. We have to work with measures on R4×R and on [0, T ]×R5×R in the following. For all
such measures m, which have support away from the jump manifold S, we define the measure
T t±m by ∫

a(x) (T t±m)(dx) :=
∫

(T t±a)(x)m(dx) ,

where the scalar-valued a is either in A with support away from S or an observable in AT∩AFG

with the same support property. The measure T t±(ν±0 δ(τ − λ±) dt) satisfies the same transport
properties and jump conditions at I ∩ S = {q = 0} as the measure ν±FG. Hence,

T t±(ν±0 δ(τ − λ
±) dt) = ν±FG on AT ∩ AFG .

Since the Hamiltonian flow Φt
± conserves energy λ±(q, p) = 1

2 |p|
2 ± |q|, and since λ+(q, p) =

λ−(q, p) for (q, p) ∈ I ∩ S = {q = 0}, we have

T t±
(
ν±0 δ(τ − λ

±) dt
)

=
(
T t±ν±0

)
δ(τ − λ±) dt on AT .

On the other hand, by Lemma 5

ν±FG = ν±t δ(τ − λ±) dt on AT ∩ AFG ,
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and therefore

ν±t δ(τ − λ±) dt = (T t±ν±0 ) δ(τ − λ±) dt on AT ∩ AFG .

By continuity with respect to time t, we then have

ν±t = T t±ν±0 on C∞c (R5,L(C2))

for all times t ∈ [0, T ], and since ν±t is a positive distribution, by density the claimed identity
on A. 2

5 Proof of the Main Theorem

With the preparation of Section 4 the proof of Theorem 1 is now straightforward. We will
establish (15) by proving separately that uniformly in t ∈ [0, T ]

lim
ε→0

∫
R4

tr (W ε(ψε(t)) (q, p) a(q, p)) dq dp =
∫
R4×R

tr
(
a(q, p)

(
T tρ0

)
(dq,dp,dη)

)
(23)

where the key ingredient is Lemma 6 , and

lim
ε→0

∫
R4

tr (W ε
LZ(t) (q, p) a(q, p)) dq dp =

∫
R4×R

tr
(
a(q, p)

(
T tρ0

)
(dq,dp,dη)

)
(24)

uniformly in t ∈ [0, T ], which basically holds by construction of the semigroups.

We write the diagonal observables a under consideration again in the form a = tr (aΠ+)Π+ +
tr (aΠ−)Π− =: a+ Π+ + a−Π−. Note that such observables can be viewed as η-independent
elements of A. By Proposition 3, there exists a subsequence (εk)k∈N depending on T > 0 such
that

lim
k→∞

〈W εk
2 (ψεk(t)), a〉A′,A

exists uniformly in t ∈ [0, T ]. In the following, we will show that all such convergent subsequences
of (

〈W ε
2 (ψε(t)), a〉A′,A

)
ε>0

(25)

converge to the same limit point∫
R4×R

tr
(
a(q, p)

(
T tρ0

)
(dq,dp,dη)

)
uniformly in t, and thus the whole sequence itself has to converge towards this limit point
uniformly in t. By the definition of the measures µ±t and ν±t , we have uniformly in t

lim
k→∞

∫
R4

tr (W εk(ψεk(t)) a(q, p)) dq dp = lim
k→∞

〈W εk
2 (ψεk(t)), a〉A′,A

=
∑
j∈{±}

(∫
R4\I

aj(q, p)µjt (dq,dp) +
∫
I×R

aj(q, p) νjt (dq,dp,dη)

)
.
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By the identity (20) following Proposition 3∫
R4\I

a±(q, p)µ±t (dq,dp) =
∫
R4\I

(
a± ◦ Φ−t±

)
(q, p)µ±0 (dq,dp) .

Since
∫
Sδ
|W ε(ψε0)(q, p)|dq dp → 0 as ε → 0, we also have

∫
R4 W

ε(ψε0)(q, p) a(q, p) dq dp → 0 as
ε → 0 for all a ∈ S(R4,L(C2)) with supp (a) ⊂ Sδ. This means supp (µ0) ∩ Sδ = ∅, which in
turn implies supp (ρ0)∩ (Sδ×R) = ∅. By Lemma 6, we then have for the two-scale measures ν±t∫

I×R
a±(q, p) ν+

t (dq,dp,dη) =
∫
I×R

(
T t±a

)
(q, p, η) ν+

0 (dq,dp,dη) .

Thus, uniformly in t

lim
k→∞

∫
R4

tr (W εk(ψεk(t)) a(q, p)) dq dp =

∑
j∈{±}

(∫
R4\I

(
aj ◦ Φ−tj

)
(q, p)µj0(dq,dp) +

∫
I×R

(
T tj a

)
(q, p, η) νj0(dq,dp,dη)

)
,

and by definition of the measure ρ0 and the semigroup T t∑
j∈{±}

∫
I×R

(
T tj a

)
(q, p, η) νj0(dq,dp,dη) =

∫
R4×R

tr
((
T ta

)
(q, p) ρ0(dq,dp,dη)

)
−

∑
j∈{±}

∫
R4\I

(
T tj a

)
(q, p,∞)µj0(dq,dp) .

Since T (q, p,∞) = 0, we have∫
R4\I

(
T t±a

)
(q, p,∞)µ±0 (dq,dp) =

∫
R4\I

(
a± ◦ Φ−t±

)
(q, p)µ±0 (dq,dp) ,

and therefore, uniformly in t,

lim
k→∞

∫
R4

tr (W εk(ψεk(t)) a(q, p)) dq dp =
∫
R4×R

tr
(
a(q, p)

(
T tρ0

)
(dq,dp,dη)

)
.

The preceding arguments show that all convergent subsequences of the bounded sequence in
(25) converge to the same limit, and thus the sequence has to converge itself. This proves (23).

In order to establish (24), i.e. to lift the semigroup acting on the measures to a semigroup acting
on functionals, we first have to remove a neighborhood of S. Let χ ∈ C∞(R,R) be a smooth
function such that χ = 0 on [−δ/2, δ/2] and χ = 1 on R \ [−δ, δ]. Since supp (ρ0)∩ (Sδ×R) = ∅,
we have∫

R4×R
tr
(
a(q, p)

(
T tρ0

)
(dq,dp,dη)

)
=
∫
R4×R

tr
(
χ(q · p)

(
T ta

)
(q, p, η) ρ0(dq,dp,dη)

)
.
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Denoting χ̃(q, p) := χ(q · p), the set {χ̃
(
T ta

)
| t ∈ [0, T ]} is a bounded subset of A. Since

weak*-convergence and strong convergence in A′ coincide, we get uniformly in t∫
R4×R

tr
(
a(q, p)

(
T tρ0

)
(dq,dp,dη)

)
= lim

ε→0

〈
W ε

2 (ψε0), χ̃
(
T ta

)〉
A′,A .

Since the initial data have no mass near the jump manifold S, we find that〈
W ε

2 (ψε0), χ̃
(
T ta

)〉
A′,A =

∫
R4

tr
(
W ε(ψε0)(q, p)χ(q · p) (Ltεa)(q, p)

)
dq dp

= lim
ε→0

∫
R4

tr
(
W ε(ψε0)(q, p) (Ltεa)(q, p)

)
dq dp

= lim
ε→0

∫
R4

tr (W ε
LZ(t)(q, p) a(q, p)) dq dp ,

uniformly in t. This shows (24) and the proof is complete.

A Appendix: Two-scale Semi-Classical Calculus

Here, we collect proofs of some of the two-scale results used in Section 4.

A.1 Moyal Multiplication Between S0
0 and S0

1/2

We start with the proof of Lemma 1, which concerns the asymptotic expansion of the Moyal
product between the symbol classes S0

0(m1) and S0
1/2(m2).

Proof. By Proposition 7.6 in [DiSj], the map

exp( iε
2 (DpDq′ −DqDp′)) : S(R4n,L(C2)) → S(R4n,L(C2))

extends continuously to an operator S0
1/2(m1⊗m2)→ S0

1/2(m1⊗m2). Thus, we only have to show

the asymptotic expansion. Observing, that every differentiation of b produces a factor ε−1/2, it
is clear that cj ∈ S−j/21/2 (m1m2). Proving (16), one defines the smooth mapping

E : R→ L(S0
1/2(m1 ⊗m2)) , t 7→ E(t) := exp

(
it
2 (DpDq′ −DqDp′)

)
.

Taylor expansion of order N around t = 0 gives

E(ε) =
N∑
j=0

εj 1
j! (∂jtE)(0) + εN+1 1

N !

∫ 1

0
(1− t)N (∂N+1

t E)(εt) dt .
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The first summand is nothing else than

N∑
j=0

1
j!

(
iε
2 (DpDq′ −DqDp′)

)j
,

while the remainder term can be rewritten as

1
N !

∫ 1

0
(1− t)N

(
iε
2 (DpDq′ −DqDp′)

)N+1
E(εt) dt .

Since E(εt) preserves the symbol class S0
1/2(m1⊗m2), and since every differentiation of b produces

an extra factor ε−1/2,∫ 1

0
(1− t)N

(
iε
2 (DpDq′ −DqDp′)

)N+1
E(εt) a(q, p) b(q′, p′) dt |q′=q,p′=p

is a symbol in S
−(N+1)/2
1/2 (m1m2), and we are done. 2

A.2 Sharp G̊arding Inequality

The proof of the two-scale version of the semiclassical sharp G̊arding inequality, Proposition 1,
follows the steps outlined in Exercise 2.22 of [Ma].

Proof. For a ∈ A one defines the anti-Wick symbol

aε,AW (q, p) := π−2

∫
R4

aε,2(q′, p′) e−|q−q
′|2−|p−p′|2 dq′ dp′ ∈ S0

0(1) .

Taylor expansion of aε,2(q′, p′) around the point (q, p) yields

aε,2(q′, p′) = aε,2(q, p) + (q′ − q, p′ − p) ·
∫ 1

0
(∇aε,2)((1− t)q + tq′, (1− t)p+ tp′) dt ,

and since
∫
R4 e−|q−q

′|2−|p−p′|2 dq′ dp′ = π2,

aε,AW (q, p) = aε,2(q, p) +∫
R4

∫ 1

0
(q′ − q, p′ − p) · (∇aε,2)((1− t)q + tq′, (1− t)p+ tp′) e−|q−q

′|2−|p−p′|2 dtdq′ dp′ .

Clearly,

∇qaε,2(q, p) =
√
ε (∇qa)(

√
εq,
√
εp, g(

√
εq,
√
εp)/
√
ε)

+ (∂ηa)(
√
εq,
√
εp, g(

√
εq,
√
εp)/
√
ε) ∇qg(

√
εq,
√
εp) .
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Since |∇qg(
√
εq,
√
εp)| ≤ const.

√
ε 〈(q, p)〉m for some m ∈ N, and since ∂ηa is capable of com-

pensating polynomial growth, we have

∇qaε,2 = O(
√
ε) in S0

0(1) .

Analogously, ∇paε,2 = O(
√
ε) in S0

0(1). Therefore, we obtain c4(aε,2 − aε,AW ) = O(
√
ε) and

‖aε,2(q,−i∇q)− aε,AW (q,−i∇q)‖L(L2) = O(
√
ε) . (26)

For φ ∈ S(R2,C2) we have

aε,AW (q,−i∇q)φ(q) = (2π)−2

∫
R4

ei(q−q′)·p aε,AW ( q+q
′

2 , p)φ(q′) dq′ dp

= (2π)−2 π−2

∫
R8

ei(q−q′)·p e−|(q+q
′)/2−x|2−|p−ξ|2 aε,2(x, ξ)φ(q′) dxdξ dq′ dp .

Moreover,∫
R2

ei(q−q′)·p e−|(q+q
′)/2−x|2−|p−ξ|2 dp = ei(q−q′)·ξ e−|(q+q

′)/2−x|2
∫
R2

ei(q−q′)·p e−|p|
2

dp

= π ei(q−q′)·ξ e−|(q+q
′)/2−x|2 e−|q−q

′|2/4 = π ei(q−q′)·ξ e−|q−x|
2/2−|q′−x|2/2 ,

and therefore

〈φ, aε,AW (q,−i∇q)φ〉L2(R2) =

(2π)−2 π−1

∫
R8

ei(q−q′)·ξ e−|q−x|
2/2−|q′−x|2/2 〈φ(q), aε,2(x, ξ)φ(q′)

〉
C2 dxdξ dq′ dq =

(2π)−2 π−1

∫
R4

〈Φ(x, ξ), aε,2(x, ξ) Φ(x, ξ)〉
C2 dxdξ ≥ 0

with
Φ(x, ξ) :=

∫
R2

ei q·ξ e−|q−x|
2/2 φ(q) dq .

By Lemma 2 and equation (26), we have for ψ ∈ S(R2,C2)

〈ψ, aε(q,−iε∇q)ψ〉L2(Rn) = 〈Sεψ, aε,2(q,−i∇q)Sεψ〉L2(R2)

= 〈Sεψ, aε,AW (q,−i∇q)Sεψ〉L2(R2) + O(
√
ε) ‖ψ‖2L2(R2)

≥ − const.
√
ε ‖ψ‖2L2(R2) .

By density, we conclude the proof also for general wave functions ψ ∈ L2(R2,C2). 2
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A.3 Two-scale Wigner Measures

Next, we present the construction of two-scale Wigner measures (Proposition 2). Our construc-
tion is analogous to the standard construction of Wigner measures, as it is based only on the
Calderon-Vaillancourt Theorem and the two-scale version of the semiclassical sharp G̊arding
inequality.

Proof. We proceed via different steps, firstly showing a uniform bound, secondly positivity of
the limit points, then extending the linear form to continuous functions, and finally proving the
claimed relation to the Wigner measure µ.

A uniform bound. Since c4(aε,2) ≤ s5(a) uniformly in ε > 0, the Calderon-Vaillancourt
Theorem gives a positive constant C > 0 such that

| 〈W ε
2 (ψε), a〉A′,A | ≤ C s5(a) ‖ψε‖2L2(R2) .

Since A is a separable topological vector space, an application of the Banach-Alaoglu Theorem,
Theorem 3.17 in [Ru], gives a subsequence (W εk

2 (ψεk))εk>0, which converges with respect to the
weak*-topology to some ρ ∈ A′.

Positivity. By Proposition 1, we have for non-negative 0 ≤ a ∈ A

〈ρ, a〉A′,A = lim
k→∞

〈W εk
2 (ψεk), a〉A′,A = lim

k→∞
〈ψεk , aε(q,−iεk∇q)ψεk〉L2(R2)

≥ − const. lim
k→∞

√
εk ‖ψεk‖2L2(R2) = 0 .

Thus, ρ is a as bounded positive linear form on A.

Extension to Cc(R4 × R,L(C2)). The following considerations coincide literally with the
standard arguments showing that positive distributions are Radon measures. However, since we
have to work with matrix-valued measures on R4 × R, we follow up the usual argumentation
ensuring that the matrix-valuedness and the set {η = ∞} do not enforce any alterations. For
a ∈ A with values in Lsa(C2) we have ‖a‖∞±a ≥ 0, where ‖a‖∞ = sup(q,p,η)∈R5 ‖a(q, p, η)‖L(C2).
Therefore, ‖a‖∞ ρ(Id)± ρ(a) ≥ 0, that is

|ρ(a)| ≤ ρ(Id) ‖a‖∞ .

For arbitrary a ∈ A, we choose θ ∈ R such that eiθρ(a) ∈ R. Since ρ(a∗) = ρ(a), we have by the
preceding observation

|ρ(a)| = 1
2 |ρ(eiθa+ e−iθa∗)| ≤ ρ(Id) 1

2 ‖e
iθa+ e−iθa∗‖∞ ≤ ρ(Id) ‖a‖∞ . (27)

Clearly, we can identify Cc(R4 × R,L(C2)) with the space

{ a ∈ C(R5,L(C2)) : supp (a) ⊂ K × R for some compact set K ⊂ R4 ,

∃ a∞ ∈ C(R4,L(C2)) : lim
|η|→∞

‖a(·, η)− a∞‖∞ = 0 } ,
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and thus we can view A as a subspace of Cc(R4 × R,L(C2)). For δ > 0 and φδ ∈ A with∫
R5 φδ(x) dx = 1 and supp (φδ) ⊂ {x ∈ R5 : |x| ≤ δ} one immediately checks that the convolution
a∗φδ is a function in A, and that A is dense in Cc(R4×R,L(C2)) with respect to the supremum
norm. By the bound obtained in (27), ρ extends uniquely to a bounded positive linear form
on Cc(R4 × R,L(C2)). By the Riesz representation Theorem, ρ is a bounded positive Radon
measure on R4 × R.

Relation to the Wigner measure. Let (W ε
2 (ψε))ε>0 converge to ρ ∈ A′. Since any test

function a ∈ S(R4,L(C2)) can be viewed as an η-independent observable in A, we have for such
functions a

lim
ε→0
〈W ε(ψε), a〉S′, = lim

ε→0
〈W ε

2 (ψε), a〉A′,A .

Thus, (〈W ε(ψε), a〉S′,S)ε>0 converges for all a ∈ S(R4,L(C2)). For a ∈ AIg with

AIg := { a ∈ A | supp (a) ∩ (Ig × R) = ∅ , lim
|η|→∞

c4(a(·, η)− a∞) = 0 }

there exists c = c(a) > 0 such that |g(q, p)| ≥ c for all (q, p) in the support of a, and hence
|g(
√
εq,
√
εp)/
√
ε| ≥ c/

√
ε for all (

√
εq,
√
εp) in the support of a. We obtain for all α ∈ N4

0 with
|α| ≤ 5

lim
ε→0

sup
(q,p)∈R4

| ∂αa(
√
εq,
√
εp, g(

√
εq,
√
εp)/
√
ε)− ∂αa∞(

√
εq,
√
εp) |

≤ lim
|η|→∞

c4(a(·, η)− a∞) = 0 .

Denoting (q, p) 7→ a∞,ε(q, p) := a∞(
√
εq,
√
εp), we have limε→0 c4(aε,2− a∞,ε) = 0 and therefore

by the Calderon-Vaillancourt Theorem

〈ρ, a〉A′,A = lim
ε→0
〈Sεψε, aε,2(q,−i∇q)Sεψε〉L2 = lim

ε→0
〈Sεψε, a∞,ε(q,−i∇q)Sεψε〉L2

= lim
ε→0
〈ψε, a∞(q,−iε∇q)ψε〉L2 =

∫
R4

tr (a∞(q, p)µ(dq,dp)) .

By the same arguments employed before, we can approximate a ∈ Cc(R4 × R,L(C2)) with
support away from Ig by observables in (a ∗ φδ)δ>0 in AIg with support away from Ig, since
|g(q, p)| ≥ c for (q, p) in the support of a implies |g(q′, p′)| ≥ c′ for some c′ = c′(δ) > 0 for all
(q′, p′) in the support of a ∗ φδ, and since for all α ∈ N4

0 with |α| ≤ 5

lim
|η|→∞

‖∂α ((a ∗ φδ)(·, η)− a∞ ∗ φδ,∞) ‖∞ ≤ lim
|η|→∞

‖∂α (a(·, η)− a∞) ‖∞ ‖φδ‖L1(R5) = 0 .

Thus, ∫
R4×R

tr (a(q, p, η) ρ(dq,dp,dη)) =
∫
R4

tr (a(q, p,∞)µ(dq,dp))

and ∫
R4×R

a(q, p, η) ρ(dq,dp,dη) =
∫
R4

a(q, p,∞)µ(dq,dp) ,
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which means

ρ|(R4\Ig)×R(q, p, η) = µ|
R4\Ig(q, p)⊗ δ(η −∞) , (q, p, η) ∈ R4 × R .

Defining ν := ρ|Ig×R as the restriction of the measure ρ to Ig × R, we obtain

ρ(q, p, η) = µ|
R4\Ig(q, p)⊗ δ(η −∞) + ν(q, p, η) .

For a(q, p) = a ∈ A just depending on (q, p) we have∫
R4×R

tr (a(q, p) ρ(dq,dp,dη)) = lim
ε→0
〈ψε, a(q,−iε∇q)ψε〉L2 =

∫
R4

tr (a(q, p)µ(dq,dp)) ,

and thus
∫
R
ν(·,dη) = µ|Ig . 2

A.4 Localization of Two-Scale Wigner Measures

Finally, we provide the proof of the localization property of two-scale Wigner measures in the
cotangent space of space-time, Lemma 4.

Proof. We define a linear operator

H̃ε := −iε∂t −Hε = (τ + h)((t, q),−iε∇t,q)

with domain

D(H̃ε) := {ψ ∈ L2(R3,C2) | ψ(·, q) ∈ C1(R,C2) for q ∈ R2 , ψ(t, ·) ∈ D(Hε) for t ∈ R} .

For initial data ψε0 ∈ D(Hε) the solution ψε is in C1(R, D(Hε)). Thus, χTψ
ε ∈ D(H̃ε) and

‖H̃ε(χTψ
ε)‖L2(R3) = ‖(−iε∂tχT)ψε‖L2(R3)

ε→0−→ 0 .

The symbol aε need not have any decay properties for large τ . However, since τ + h is linear in
τ , the reasoning of Lemma 1’s proof gives for a ∈ AT

aε]ε(τ + h)− aε(τ + h) ∈ S−1/2
1/2 (1) .

For a well-defined pairing with ρT, we restrict ourselves to symbols a ∈ AT with support
supp (a) ⊂ [0, T ]× R2

q × [τ1, τ2]× R3
p,η for some τ1, τ2 ∈ R and have

〈 ρT, a(τ + h) 〉A′T,AT
= lim

k→∞
〈χTψ

εk , (aε(τ + h))((t, q),−iεk∇t,q) (χTψ
εk)〉L2(R3)

= lim
k→∞

〈
χTψ

εk , aε((t, q),−iεk∇t,q) H̃εk(χTψ
εk)
〉
L2(R3)

= 0 .
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Since ρT is a distribution of order zero, and since the set of symbols used in the preceding
lines is dense in Cc(R6 × R,L(C2)), we have ρT(τ + h) = 0 as measures, provided initial data
ψε0 ∈ D(Hε). A ‖ · ‖L2(R2)-density argument proves

〈ρT, a(τ + h)〉A′T,AT
= 0

for general initial data ψε0 ∈ L2(R2,C2) and observables a ∈ AT with compact τ -support, while
another ‖ · ‖∞-density argument gives ρT(τ + h) = 0 in the sense of measures. Observing that
V (q)2 = |q|2 Id, we finally obtain the claimed assertion on the support of ρT. 2
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The work has been supported by the priority program “Analysis, Modelling and Simulation of
Multiscale Problems” of the German Science Foundation (DFG).

References

[AvGo] J. Avron, A. Gordon: The Born Oppenheimer wave function near level crossing, Phys.
Rev. A 62, 2000, pp. 062504-1–062504-9.

[Be] M. V. Berry: Histories of adiabatic quantum transitions, Proc. R. Soc. Lond. A 429, 1990,
pp. 61–72.

[BeTe] V. Betz, S. Teufel: Non-adiabatic transition histories, in preparation.

[BMKNZ] A. Bohm, A. Mostafazadeh, H. Koizumi, Q. Niu, J. Zwanziger: The Geometric Phase
in Quantum Systems, Springer Verlag, 2003.
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