
STRONG SOLUTIONS FOR DIFFERENTIAL EQUATIONS IN
ABSTRACT SPACES

EDUARDO V. TEIXEIRA

Abstract. Let (E,F) be a locally convex space. We denote the bounded elements of

E by Eb := {x ∈ E : sup
ρ∈F

ρ(x) < ∞}. In this paper we prove that if BEb
is relatively

compact with respect to the F topology and f : I × Eb → Eb is a measurable family of

F-continuous maps then for each x0 ∈ Eb there exists a norm-differentiable local solution
to the Initial Valued Problem ut(t) = f(t, u(t)), u(t0) = x0. Our final goal is to study

the Lipschitz stability of a differential equation involving the Hardy-Littlewood maximal

operator.

1. Introduction

Differential equations modelled in Banach spaces have attracted the attention of many
researchers throughout the last century. Most of the efforts are concentrated in the study
of the classical Cauchy problem, also called the initial value problem and denoted by IVP

(1.1)
{
ut(t) = f(t, u(t)) in (a, b)
u(a) = u0

The map f is a 1-parameter family of fields between a Banach space, i.e., f : [a, b] × E →
E. The theory of differential equations in Banach spaces has shown to be a clever and
useful strategy to study many problems that appear in the applied as well as the abstract
mathematics. Its most common applications concern partial differential equations on the
euclidian spaces which arise from physical systems.

Let X be a Banach space and F : [a, b]×X → X be continuous. It is well known that if
either dimX <∞ or if F is Lipschitz, then for each pair (t0, x0) ∈ [a, b]×X, there exists a
C1-curve x : (t0 − δ, t0 + δ) → X such that x(t0) = x0 and xt(t) = F (t, x(t)). J. Dieudonné
in [9] provided the first example of a continuous map from an infinitely dimensional Banach
space for which there is no solution to the related IVP. In his simple and insightful example,
X = c0 and F (x1, x2, ...) := (|xn|1/2 + 1/n). He noticed that there is no solution for the
IVP x(0) = 0, xt(t) = F (x(t)). J. A. Yorke [35] gave an example of the same phenomena
in a Hilbert space. Afterwards, Godunov in [14] proved that for every infinity dimensional
Banach space, there exists a continuous field such that there is no solution to the related
Initial Valued Problem. It turned out then that continuity was not the right assumption on
the field F . Many celebrated works have been developed since the 70’s in order to obtain
suitable extensions for the continuity notion on finitely dimensional spaces. Basically two
branch were born on this journey: Uniformly continuity and continuity in the weak topology.
The former came from the observation that if R0 := [a, b] × BX(x0, r) and F : R0 → X is
continuous then, if dimX <∞, due to the compactness of R0, F is automatically uniformly
continuous. For reference in this type of research direction, i.e., strong topology assumptions,
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we cite, for instance, [20] and [23]. The latter came from one of the most fruitful ideas in
functional analysis. Weak topology appeared as a prototype to grapple with the lack of
local compactness in infinitely dimensional Banach spaces. At least if the Banach space
X is reflexive we recover locally compactness by endowing it with the weak topology. We
observe that weak topology coincides with strong topology in a Banach space X if, and only
if, dimX <∞.

The first paper related to the existence of weak solutions for differential equations in
Banach spaces relative to the weak topology was [32]. Its main result is

Theorem 1.1 (Szep). Let E be a reflexive Banach space and f be a weak-weak continuous
function on P = {t0 ≤ t ≤ t0 + a, ‖x− x0‖ ≤ b}. Let ‖f(t, x)‖ ≤M on P . Then the initial
value problem x′ = f(t, x), x(t0) = x0 has at least one weak solution defined on [t0, t0 + α],
where α = min(a, b/M).

We also cite the work of Chow and Schuur [5], where they treat the case where E is
separable and reflexive, f : (0, 1) × E → E is a weak continuous function with bounded
range. The next step was given by S. Kató in [16]. In this paper he observed that if
f : [0, T ]× BE(u0, r) → E is weakly continuous, then all we needed to assure the existence
of solutions to the related IVP is the relatively weak compactness of f([0, T ] × BE(u0, r)).
Afterwards Szufla in [31] proved that, under the assumptions of theorem 1.1, the set of all
weak solutions of x′ = f(t, x), x(t0) = x0 defined on a compact subinterval J of [0, a] is a
continuum in the space Cw(J,E).

One of the ideas that appeared toward the generalization of those previous results for
nonreflexive Banach spaces was the so called measure of weak noncompactness. Probably
the first work in this direction is [8]. Roughly speaking, the idea behind this technic is to
impose some condition on f involving the measure of weak noncompactness to, somehow, re-
cover the locally compactness lost by the fact that the Banach space we are working on is no
longer reflexive. Since [8], many researchers have improved and generalized results involving
assumptions on the measure of weak noncompactness. Some of the recent progress in this
direction are [4], [6], [7] and [15]. The only disadvantage of this theory is that, when E is not
reflexive, it is really hard or even impossible to check the measure of weak noncompactness
assumptions. We should mention though that Astala in [3], proved that a Banach space E
is reflexive if and only if the IVP (1.1) admits a local solution for every weakly continuous
field. Thus there is no hope to extend Peano’s theorem in the weak topology setting to
nonreflexive spaces.

In this paper we explore another line of generalization to the theory of differential equa-
tions in Banach spaces. The idea of this paper is based on the study of differential equations
in locally convex spaces. The theory of differential equations in general locally convex spaces
differs brutally from the theory in Banach spaces, even in the linear case. For instance, it is
well known that every linear ordinary differential equation ut = Au, u(x) = u0 in a Banach
space is globally and uniquely solved. Its solution is given by the following convergent series:
∞∑

k=0

tn

n!A
nu0. In some non-normable locally convex spaces, this series diverges for all t 6= 0.

Let us also cite that Lobanov in [22] proved that for each non-normable Fréchet space E one
can find a continuous mapping f : E → E and a closed infinite-dimensional subspace L such
that the Cauchy problem ut = f(u), u(0) = u0 has no solutions for all u0 ∈ L. On the other
hand, a good theory of differential equations in locally convex spaces might be used as a
powerful technic to study several important problems that arise in various parts of nonlinear
functional analysis and evolution differential equations. The interpretation of some partial
differential equations as an ordinary differential equation in Banach spaces may face the
problem that the field f in (1.1) is not continuous, even in very natural circumstances. The
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freedom of choosing a more convenient notion of topology rather than normable topologies
can be used in order to grapple with such a difficulty. This is precisely the case of the
differential equation studied in section 4 of this paper.

Astala in [3] considered the IVP (1.1) in sequentially complete locally convex spaces that
contain a compact barrel. The existence result provided there asserts that if E is a sequen-
tially complete locally convex space and B is a compact barrel, then for every f : I×E → E
continuous there exists a local solution to the IVP (1.1). The derivative in (1.1) is under-
stood in the sense of differentiation in locally convex spaces. For instance if we are dealing
with the weak topology, the derivative in (1.1) is understood as the weak derivative, (see
the conclusion of theorem 1.1). The main goal of our paper is to extend the results in
[3] in two directions. The first direction is from the quantitative point of view. We shall
consider measurable family of continuous maps between a locally convex space rather than
considering continuous family. The second extension is from the qualitative point of view.
To explain the latter, we first of all argue that in practical situations we often have that the
range of f lies in a suitable subspace of the locally convex space the problem is modelled in:
the bounded elements Eb. Such a subspace admits a norm and it happens to be a Banach
space provided the locally convex space is sequentially complete. We now can talk about
the norm derivative of the solution curve of (1.1). We prove that if (E,F) is locally convex
space such that BEb

is relatively compact w.r.t. the F-topology and f : I × Eb → Eb is a
measurable family of continuous maps then there exists a strong, i.e. norm-differentiable
solution, to the IVP (1.1).

Our paper is organized as follows: In the section 2 we gather together all the facts we
shall use in the proof of the main existence result. We suggest a locally convex topology
in L∞(I, Eb): The T-topology. It seems to be the right calibration between continuity and
compactness. In the next section state and prove the existence theorem for differential
equations in abstract spaces. In the last section we study in details a nonlinear differential
equation involving the remarkable Hardy-Littlewood maximal operator. The main informa-
tion given here is a sort of smoothness of the solution. This type of results might be useful
in the regularization theory for differential equations involving averages over fixed domains.

2. Preliminaries Results

In this section we shall present the main tools that will be used in the proof of our
existence result for differential equations in locally convex spaces. For convenience of the
reader we shall state some of the classical results we will make use and afterwards, we will
develop some new technics that will be needed to properly approach the problem.

A topological vector space E is called a locally convex space if E has a local base consisting
of convex sets. Typical examples are normed spaces, Banach spaces endowed with the weak
topology and dual spaces endowed with the weak-* topology. We shall assume by definition
that all locally convex spaces are Hausdorff. A seminorm on a real vector space V is a map
ρ : V → [0,∞) obeying:

(1) ρ(x+ y) ≤ ρ(x) + ρ(y)
(2) ρ(αx) = |α|ρ(x).

A family of seminorms {ρλ}α∈A is said to separate points if ρα(x) = 0 ∀α ∈ A implies x = 0.
It is well known that every (Hausdorff) locally convex space admits a family of seminorms
separating points which generates its topology. Thus from now on we shall consider locally
convex spaces endowed with a family of seminorms. We will denote by (E,F), where F
stands for the family of seminorms that generates the locally convex topology on E.
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For the theory of differentiation in locally convex spaces, we refer the readers to [34] chap-
ter II. The next two results have a wide influence in almost all branch of the mathematical
analysis.

Theorem 2.1 (Schauder-Tychonoff fixed point theorem). Let K be a closed convex set in a
locally convex Hausdorff space E. Suppose f : K → K is continuous and Im(f) is relatively
compact. Then f has a fixed point in K.

The second classical theorem we shall need is the general version of the Ascoli-Arzelá
theorem found in [17].

Theorem 2.2 (Generalized version of Ascoli-Azerlá theorem). Let K be a compact set and
E be a Hausdorff linear topological space. Then a subset G ⊂ C(K,E) is relatively compact
with respect to the topology of uniform convergence if and only if G is equicontinuous and
{g(t) : g ∈ G} is compact for each t ∈ K.

Let (E,F) be a locally convex space. We denote by Eb the following set:

(2.1) Eb := {x ∈ E : sup
ρ∈F

ρ(x) <∞}.

The elements in Eb is called the bounded elements of E. The subspace Eb will be the base
space in the theory of differential equations we shall develop, in the sense that actually our
solution will lie in this subspace. To this end we will consider maps f : I × Eb → Eb. It
is important to mention that the assumption that the image of f lies in Eb is essentially a
necessary condition for the existence of solutions to the IVP. Indeed, when ut(t) = f(t, u(t))
holds, by the definition of derivative in locally convex spaces, the left hand side belongs
to L(R, E) = Eb. For further details, see [34]. At this point we should also mention that
in order to have a good theory for differential equation in locally convex spaces one must
impose the sequential completeness of the spaces we shall work on (see for instance the
comment in [3] pg. 215). The connection of this fact with Eb is clear.

Proposition 2.3. Let (E,F) be a sequentially complete locally convex space. Then ‖x‖F :=
sup
ρ∈F

ρ(x) is a norm in Eb for which (Eb, ‖ · ‖F ) is a Banach space.

Let us turn our attention now for the measure theory that will support our existence
result. Let (Ω,B, µ) be a complete and σ-finite measure space, and let X be a Banach
space. A simple function f =

∑m
i=1 xiχAi with xi ∈ X is called measurable if Ai ∈ B for

every i. In general a function f : Ω → X is called measurable if there is a sequence {fn} of
measurable simple functions which converges a.e. to f as n→∞.

Definition 2.4. Let (E,F) be a sequentially complete locally convex space. We will say
f : Ω → Eb is F measurable, if for each ρ ∈ F the real function ρ(f) : Ω → R is measurable
in the classical sense.

An important result we shall need to develop is the following general version of Pitt’s
theorem.

Theorem 2.5. Let (E,F) be a sequentially complete locally convex space. A function
f : Ω → Eb is measurable if and only if it is F measurable and µ-almost separably-valued.

Proof. It is clear that if f is measurable, then it is F measurable and µ-almost separably-
valued. Conversely, suppose f : Ω → Eb is F measurable and µ-almost separably-valued.
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We may suppose then Eb is separable.
Claim: There exists a countable subset F of F , for which,

‖x‖F = sup
ρ∈F

ρ(x).

Indeed, let (xj)∞j=1 ⊂ Eb be a dense subset. For each j fixed, let (ρj
i )
∞
i=1 be a sequence in F

such that
‖xj‖F = lim

i→∞
ρj

i (xj).

Define F :=
⋃
i,j

ρj
i . Let x ∈ Eb be fixed and ε > 0 be arbitrary. By density, there exists a

xj0 such that
‖x− xj0‖F < ε.

We also have by triangular inequality that

ρj0
i (x) ≥ ρj0

i (xj0)− ρj0
i (x− xj0).

Thus,
sup
ρ∈F

ρ(x) ≥ lim inf
i

ρj0
i (x)

≥ lim inf
i

ρj0
i (xj0)− ρj0

i (x− xj0)

≥ ‖xj0‖F − ε
≥ ‖x‖F − 2ε.

lll

Since ε > 0 was taken arbitrarily, we conclude sup
ρ∈F

ρ(x) ≥ ‖x‖F . This proves the claim.

By reenumerating we may write F = (ρi)i∈N. For any real number a put A := {s ∈ Ω :

‖f(s)‖F ≤ a} and Ai := {s : ρi(f(s)) ≤ a}. Clearly A ⊆
∞⋂

i=1

Ai. For a fixed s ∈ Ω, there

exists a subsequence {ρi}i∈Ns such that ρ(f(s)) → ‖f(s)‖F as i ∈ Ns goes to infinity. We

have shown A =
∞⋂

i=1

Ai. Since, by hypothesis, each Ai is measurable, so is A. This proves

the real function s 7→ ‖f(s)‖F is measurable. Now it is easy to conclude f is measurable.
Indeed, since f(Ω) is separable, for any n ∈ N, we can find balls

B 1
n
(xj,n) such that f(Ω) ⊂

∞⋃
j=1

B 1
n
(xj,n).

We have already proven the map s 7→ ‖f(s) − xj‖F is measurable. Thus the sets Ωj,n :=
{s ∈ Ω : f(s) ∈ Ωj,n} are measurable and for each n ∈ N fixed Ω =

⋃
j Ωj,n. We finally

define Ω̃k,n := Ωk,n \
k−1⋃
j=1

Ωj,n and

fn(s) =
∞∑

k=1

χeΩk,n
xk,n.

Since Ω =
∞∑

k=1

χeΩk,n
, we have ‖f(s)− fn(s)‖F < 1/n for every s ∈ Ω. �

If f =
∑m

i=1 xiχAi
is a simple measurable function with µ(Ai) < ∞ for all i, naturally

we define
∫
Ω
fdµ :=

∑m
i=1 xiµ(Ai). A measurable function f is called Bochner integrable

if there exists a sequence of measurable simple functions {fn} converging a.e. to f so that∫
Ω
‖fn − fm‖dµ → 0. The integral

∫
Ω
fdµ is then defined as lim

∫
Ω
fndµ. We recall that

a function f : Ω → X is Bochner integrable if and only if it is measurable and
∫
Ω
‖f‖dµ <
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∞. Finally we define Lp(Ω, X) := {f : Ω → X : f is measurable and
∫
Ω
‖f‖pdµ < ∞}.

Lp(Ω, X) endowed with its natural norm is a Banach space. In addition, simple functions
are dense in Lp(Ω, X) for 1 ≤ p <∞. For p = ∞, the symbol L∞(Ω, X) stands for the space
of all equivalence classes of X-valued measurable functions defined on Ω that are essentially
bounded, i.e., such that ‖f‖∞ := ess sup{‖f(s)‖ : s ∈ Ω} <∞. This is also a Banach space
under the norm ‖ · ‖∞.

The base space in our analysis will be L∞(I, Eb) where I = [0, T ] and (E,F) is a se-
quentially complete locally convex space. Our first step is to suggest a new locally convex
topology to L∞(I, Eb). This new topology seems to be a harmonic calibration of to im-
portant topological concepts: continuity and compactness. Before defining such a topology,
let us justify the above claim. Let us suppose for the moment that we are dealing with a
dual space endowed with the weak-* topology. Thus Eb = E. Assume moreover that E
has the RNP. It follows therefore that L∞(I, E) is the dual space of L1(I, E∗), where E∗
is the predual of E, i.e. E∗∗ = E. Thus from the Banach-Alaoglu theorem, BL∞(I,E) is
compact in the weak-* topology. However weak-* convergence in L∞(I, E) gives us very few
information. For instance it is easy to cook up examples of sequences {un} which converge
weak-* in L∞(I, E), such that there is no subsequence converging weak-* a.e. in E. Hence,
even in the simplest case, E = R, näıve nonlinear maps such as f 7→ (f)+ fails to be weak-*
continuous in L∞(I). On the other hand, if a sequence {un} converges weakly in L∞(I, E)
to u, then for a.e. t ∈ I, un(t) ⇀ u(t) in E. This fact allows weak continuity results for
nonlinear operators acting on vector-valued Lebesgue spaces (see [33] for these facts). The
problem in this case is that BL∞(I,E) is far from being compact when endowed with the
weak topology, (see [30]). The next definition try to remedy these difficulties.

Definition 2.6. Let (E,F) be a sequentially complete locally convex space. For each ρ ∈ F ,
we define the following seminorm in L∞(I, Eb):

Φρ(f) := sup
s∈I

ρ(f(s)).

We then define the T-topology in L∞(I, Eb) to be the locally convex topology obtained by
these seminorms.

A local base around 0 for the T-topology is:

N(ε, i1, i2, ..., in) :=
{
u ∈ L∞(I, Eb) : sup

s∈I
ρij

(u(s)) < ε ∀ j = 1, 2, ...n
}
.

The next result shows a first advantage of the T-topology.

Theorem 2.7. Let (uα)α∈A be a net in L∞(I, Eb) which converges to u in the T-topology.
Then, for a.e. t ∈ I, uα(t) → u(t) in Eb with respect to the F-topology. Furthermore,
(L∞(I, Eb),T) is locally metrizable provided (Eb,F) is locally metrizable.

The last theorem we shall prove in this section refers to a generalization of one of the
deepest results in measure theory.

Theorem 2.8 (Vector-Valued version of the Lebesgue Differentiation Theorem). Let (Ω, µ)
be a Radon measure space and X be an arbitrary Banach space. Let f ∈ L1

loc(Ω, X), then

f(x) = lim
r→0

1
Br(x)

∫
Br(x)

f(ξ)dξ,

for almost every u ∈ Ω.
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Proof. It follows from Pitt’s theorem (or even theorem 2.5) that, after discarding a negligible
set, we might suppose X is separable. Let {ζk}∞k=1 be a dense set in X. For each k we
consider the real function zk : Ω → R defined by:

zk(x) := ‖f(x)− ζk‖.

For such a function we may employ the classical Lebesgue Differentiation Theorem and
conclude there exists a negligible set Ak for which

zk(x) = lim
r→0

1
Br(x)

∫
Br(x)

zk(ξ)dξ,

for all x ∈ Ω \ Ak. Let A :=
∞⋃

k=1

Ak. In this way, µ(A) = 0 and for any x ∈ Ω \ A and any

ζk there holds

lim sup
r→0

1
Br(x)

∫
Br(x)

‖f(ξ)− f(x)‖dξ ≤ lim sup
r→0

1
Br(x)

∫
Br(x)

‖f(ξ)− ζk‖+ ‖f(x)− ζk‖dξ

= 2‖f(x)− ζk‖.

Finally, from the fact that {ζk} is a dense subset of X, letting ζkj
goes to f(x), we conclude

lim sup
r→0

1
Br(x)

∫
Br(x)

‖f(ξ)− f(x)‖dξ = 0,

which in particular implies the theorem. �

It is worthwhile to point out that a priori theorem 2.8 is surprising. It is well known that
Lipschitz maps from an interval of R into a Banach space X are almost differentiable if and
only if X has the Radon-Nikodym property. The whole point here is that functions given
by the Bochner integral of L1

loc functions are a bit better than generic absolute continuous
functions.

3. Existence theory for differential equations in locally convex spaces

In this section we shall prove our existence result for differential equations in abstract
spaces. One of the most important advantage of our approach is the fact that we provide
strong solutions rather than “weak” solutions. Let us explain what we mean by that.

Let (E, τ) be a topological vector spaces and let u : R → E be a curve. We say u is
differentiable according to the topology τ at t0 ∈ R provided

lim
t→t0

u(t)− u(t0)
t− t0

converges to a certain u′(t0) ∈ E in the τ topology.
Let f ∈ R× E → E. The problem we are considering is

(3.1)
{
ut(t) = f(t, u(t))
u(t0) = u0

An E-valued function u, defined on some open interval I containing t0 is a solution to the
problem (3.1) if

(1) u is τ -differentiable for any t ∈ I

(2) ut(t) = f(t, u(t)) for any t ∈ I

(3) u(t0) = u0.
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Suppose now E has a Banach space structure as well. It means that besides the τ topology in
E we also have a norm in E that induces a complete metric on E. We then have a notion of
a norm solution of the problem (3.1), i.e. a curve defined on some open interval I containing
t0 such that u(t0) = u0 and items (1) and (2) above hold in the norm topology. This is
the case when one has a sequentially complete locally convex space (E,F) and considers
Eb with the topology it inherits from E and with the norm defined in proposition 2.3. In
general norm derivative is a much strong notion of differentiability.

Definition 3.1. Let (E, τ) be a topological space endowed with a complete norm ‖ · ‖.
Let u be an E-valued curve defined on some open interval containing t0. We will say that
u is a “weak” solution to the problem (3.1) if it is a τ -differentiable function satisfying
ut(t) = f(t, u(t)) for any t ∈ I and u(t0) = u0. We will say that u is a strong solution to
the problem (3.1) if u(t0) = u0 and it is almost everywhere differentiable with respect to the
norm topology and for almost every t ∈ I, ut(t) = f(t, u(t)) in the norm topology sense.

Another advantage of the existence theorem we shall present in this section is the wide
class of maps it can be applied to. We recall that most of the existence theorems to problem
(3.1) developed so far deal with continuous family of continuous maps, i.e., deal with maps
f : R× (E, τ) → (E, τ) that is continuous from (R× E, | · | × τ) to (E, τ). Instead we shall
allow measurable family of continuous maps. The precise definition is as follows.

Definition 3.2. Let (E,F) be a sequentially complete locally convex space. We will say a
map f : I × Eb → Eb is an F-Carathéodory map if:

(1) For each u ∈ Eb fixed, the map f(·, u) : I → Eb is measurable.

(2) For almost every s ∈ I the map f(s, ·) : Eb → Eb is F-continuous.

We are ready to show the main theorem of this section.

Theorem 3.3. Let (E,F) be a sequentially complete locally convex space such that (Eb,F)
is locally metrizable and f : I × Eb → Eb be a F-Carathéodory map satisfying

(3.2) ‖f(t, u)‖F ≤ Ψ
(
t, ‖u‖F

)
,

where for each t ∈ I fixed, the map Ψ(t, ·) : R+ → R+ is nondecreasing and for every a > 0
the map Ψ(·, a) ∈ L1(I). Suppose furthermore that

(3.3) BEb
is relatively compact with respect to the F topology.

Then for each x0 ∈ Eb there exists a δ = δ(‖x0‖F ) such that the IVP (3.1) admits a strong
solution defined on [0, δ).

Proof. We start by fixing an M > ‖x0‖. Define λ = λ(M) to be

(3.4) λ :=
‖Ψ(·,M)‖L1

M − ‖x0‖

Let us then define Fλ : L∞(I, Eb) → L∞(I, Eb) to be

(3.5) Fλ(u)(t) := x0 +
1
λ

∫ t

0

f(s, u(s))ds
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We estimate:

(3.6)

‖Fλ(u)(t)‖ ≤ ‖x0‖+
1
λ

∫ t

0

‖f(s, u(s))‖ds

≤ ‖x0‖+
1
λ

∫ t

0

Ψ
(
s, ‖u(s)‖

)
ds

≤ ‖x0‖+
1
λ

∫ t

0

Ψ
(
s, ‖u‖∞

)
ds

= ‖x0‖+
‖Ψ

(
·, ‖u‖∞

)
‖L1

λ

Let X :=
(
BL∞(I,Eb)(M), T

)
, i.e. the ball in L∞(I, Eb) with radius M , endowed with the

T-topology. It follows from (3.6) that if u ∈ X

(3.7)
‖Fλ(u)‖∞ ≤ ‖x0‖+

‖Ψ(·,M)‖L1

λ

= M,

due to the suitable choice of λ in (3.4). We have verified Fλ maps X into itself. Our next
step is to show that Fλ is actually a continuous map from X into itself. To this end, let
(un)n∈N be a sequence in X which converges to u in the T-topology. Let ρ ∈ F be fixed.
We have

(3.8)

Φρ

(
Fλ(un)− Fλ(u)

)
= sup

t∈I
ρ

(∫ t

0

f(s, un(s))ds−
∫ t

0

f(s, u(s))ds
)

≤ sup
t∈I

∫ t

0

ρ
(
f(s, un(s))− f(s, u(s))

)
ds

≤
∫ T

0

ρ
(
f(s, un(s))− f(s, u(s))

)
ds,

where in the second inequality we have used Jensen’s inequality. It follows from theorem 2.7
that for a.e. s ∈ I, un(s) → u(s) in Eb with respect to the F-topology. ¿From the fact that
the field f is F-Carathéodory, for a.e. s ∈ I, the map f(s, ·) : Eb → Eb is F-continuous. It
implies that

ρ
(
f(s, un(s))− f(s, u(s))

)
→ 0,

for a.e. s ∈ I. Invoking the Lebesgue dominated convergence theorem, we conclude∫ T

0

ρ
(
f(s, un(s))− f(s, u(s))

)
ds→ 0.

The above combined with (3.8) implies Fλ(un) → Fλ(u) in the T-topology, i.e., we have
proven Fλ : X → X is a continuous map.

Our next step is to study the relatively T-compactness of Fλ(X). Let 0 ≤ t1 ≤ t2 ≤ T .
We have, for all u ∈ X,

(3.9)

‖Fλ(u)(t1)− Fλ(u)(t2)‖ ≤
∫ t2

t1

‖f(s, u(s))‖ds

≤
∫ t2

t1

Ψ(s,M)ds.

Since Ψ(·,M) ∈ L1(I), we obtain Fλ(X) is strongly equicontinuous. Furthermore, inequality
(3.6) implies for each t ∈ I fixed, the set Fλ(X)(t) is bounded. It follows therefore from
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theorem 2.2 that for any sequence (un)n∈N ⊂ X, up to a subsequence, there exists a F-
continuous map ξ : I → Eb such that F (un) converges F uniformly to ξ, as n → ∞. This
implies

Fλ(un) → ξ,

as n → ∞ with respect to the T-topology. Clearly ‖ξ‖∞ ≤ M and moreover, theorem 2.5
implies ξ is a measurable map. We have proven Fλ(X) is relatively compact with respect
to the T-topology.

It follows now from theorem 2.1 the existence of a fixed point to Fλ. Let us denote by uλ

such a fixed point. Easily one verifies that uλ is absolutely continuous with respect to the
strong topology in Eb. Furthermore, it is almost everywhere differentiable by theorem 2.8.
In this way, uλ is a strong solution for the following IVP

(Pλ)

{
uλ

t (t) =
1
λ
f(t, uλ(t)) in I

uλ(0) = u0

The next step is to pass from problem (Pλ) to problem (P1) which is precisely problem (3.1).
To this end let us define

f̃(t, x) :=

{
f

(
t
λ , x

)
if 0 ≤ t ≤ T

λ

0 otherwise

Notice that f̃ satisfies the same hypothesis as f does. Hence, applying the result we have
established so far, we obtain a map ũλ : I → Eb, which solves problem (Pλ) with the field
f̃ . Finally we set u : [0, T

λ ] → Eb to be u(t) := ũλ(λt). Clearly u(0) = u0 and

ut(t) = λũλ
t (λt) = f̃(λt, ũλ(λt)) = f(t, u(t)).

�

Remark 3.4. (i) It is worthwhile to point out that we do not need the sequential completness
of (E,F) in theorem 3.3. All we need is (Eb, ‖ · ‖F ) to be a Banach space.
(ii) The hypothesis that (Eb,F) if locally metrizable is not crucial. In a general case we
can argue as in [2]. However in most of the practical applications this hypothesis is easily
verified.
(iii) One could replace hypothesis (3.3) by the following weaker hypothesis:

∃M > ‖x0‖ and δ > 0 such that f([0, δ]×BM ) is relatively compact w.r.t. F − topology.

Corollary 3.5. Let E be a reflexive Banach space and f : I×E → E a measurable family of
sequentially weakly continuous map, satisfying the growth condition (3.2). Then there exists
a δ = δ(‖x0‖) such that the IVP admits a strong solution defined on [0, δ).

Regarding global solution, we would like to state the following result for completeness.

Theorem 3.6 ( [20] pg. 145). Let X be a Banach space. Assume the growth condition
(3.2), where Ψ ∈ C(R+ × R+,R+), Ψ(t, ·) is nondecreasing for each t ∈ I and the maximal
solution x(t, 0, x0) of the scalar differential equation{

xt(t) = Ψ(t, x(t)) in I
x(t0) = x0

exists on I. Suppose f is smooth enough to assure local existence of solutions of 3.1 for any
(t0, u0) ∈ I ×X. Then the largest interval of existence of any solution u(t, t0, u0) of (1.1)
such that ‖u0‖E ≤ x0 is [t0,∞).

We finish this section by characterizing condition (3.3) in theorem 3.3. The next theorem
can be thought as the converse of Banach-Alaoglu theorem.
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Theorem 3.7. Let E be a Banach space. Suppose E admits a locally convex Hausdorff
topology F such that BE is compact with respect to the F . Then there exists a norm-closed
linear subspace E∗ of E∗ such that

(1) E = (E∗)∗,
(2) On BE, the weak-* topology σ(X,X∗) coincides with F .

Proof. Let us define

E∗ := {f : E → R
∣∣ f is linear and F−continuos on BE} ⊆ E∗.

Clearly E∗ is a linear subspace of E∗. To see that it is norm-closed, let (fn) be a sequence
in E∗ which converges to f ∈ E∗ in norm. Let (xi)i∈I be a net in BE which converges to
x ∈ BE in the F topology. We have to show lim

i∈I
f(xi) = f(x). Let ε > 0 be given. There

exits an n ∈ N such that ‖f − fn‖ < ε/2. Thus

lim
i∈I

|f(xi)− f(x)| ≤ |f(x)− fn(x)|+ lim
i∈I

|fn(x)− fn(xi)|+ lim
i∈I

|fn(xi)− f(xi)|

≤ 2‖fn − f‖

< ε.

Next we proof that
‖x‖ = sup{|f(x)| : f ∈ E∗, ‖f‖ ≤ 1}.

Clearly sup{|f(x)| : f ∈ E∗, ‖f‖ ≤ 1} ≤ ‖x‖. Now suppose ‖x‖ > 1. Since BE is convex and
F-closed, by the geometric version of the Hahn-Banach theorem for locally convex spaces,
there exists a F-continuous functional g : E → R such that

|g(x)| > α > |g(y)| ∀y ∈ BE .

This in particular means

|g(x)| > sup{|g(y)|
∣∣ y ∈ BE} = ‖g‖.

Once g ∈ E∗, we conclude

sup{|f(x)|
∣∣ f ∈ E∗, ‖f‖ ≤ 1} ≥

∣∣∣∣g(x)‖g‖

∣∣∣∣ > 1,

which by a rescaling argument drives us to

‖x‖ ≤ sup{|f(x)|
∣∣ f ∈ E∗, ‖f‖ ≤ 1}.

Now for each x ∈ E we define I(x) ∈ (E∗)∗ to be

I(x)(f) := f(x).

We have already proven I is a linear isometry. Moreover it is clearly continuous from BE

endowed with the F topology into B(E∗)∗ endowed with the weak-* topology. Thus I(BE)
is weak-* compact. It is just remaining to prove I is onto. Let us suppose by contradiction
there exists φB(E∗)∗ but φ 6∈ I(BE). Then there would exist an f ∈ E∗ such that

|φ(f)| > sup{|I(x)(f) : x ∈ BE} = sup{|f(x) : x ∈ BE} = ‖f‖,

a contradiction. Hence I(BE) = B(E∗)∗ . It follows therefore that I is an isometric isomor-
phism from E onto (E∗)∗. Moreover I is a homeomorphism between BE with respect to the
F topology and B(E∗)∗ with respect to the weak-* topology. �
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4. Lipschitz-stability for a nonlinear differential equation involving the
Hardy-Littlewood maximal operator

In this section we will study a nonlinear differential equation involving the celebrated
Hardy-Littlewood maximal operator. Such operator plays an important hole in many parts
of the Applied Mathematics such as: Harmonic Analysis, Singular Integrals, Partial Differ-
ential Equations, among others. Its precise definition is as follows.

Definition 4.1. Let Ω be an open set in RN . For a locally integrable function u : Ω →
[−∞,+∞], we define the (local) Hardy-Littlewood maximal function, M(u) : Ω → [0,+∞]
as

M(u)(x) := sup
0<r<d(x,∂Ω)

1
|Br(x)|

∫
Br(x)

|u(y)|dy.

We start by mentioning a remarkable theorem due to Hardy, Littlewood and Wiener:

Theorem 4.2 (Hardy-Littlewood-Wiener). Let 1 < p ≤ ∞ and u ∈ Lp(Ω). Then M(u) ∈
Lp(Ω) and

‖M(u)‖Lp(Ω) ≤ Ap‖u‖Lp(Ω).

At this point is worthwhile to point out that the Hardy-Littlewood maximal operator is
usually used to estimate the absolute size and hence questions about differentiability related
to its image are, in general, much more delicate. Nevertheless, it was shown in [18] the
following result:

Theorem 4.3 (Kinnunen-Lindquist). Let 1 < p ≤ ∞. If u ∈ W 1,p(Ω), then M(u) ∈
W 1,p(Ω) and

|D(M(u))(x)| ≤ 2M(|Du|)(x).
In particular, this theorem together with theorem 4.2 yields

(4.1) ‖M(u)‖W 1,p(Ω) ≤ 2Ap‖u‖W 1,p(Ω).

Moreover it was also proven in [18] that the local maximal operator preserves zero bound-
ary values. More precisely, for every u ∈ W 1,p

0 (Ω), 1 < p < ∞, the function M(u) lies in
W 1,p

0 (Ω). In this section W 1,∞
0 (Ω) stands for the space of all Lipschitz maps defined on Ω

that vanishes at the boundary ∂Ω. We endow this space with the following norm:

‖u‖W 1,p
0

:= ‖Du‖∞.

Using the fact that the local maximal operator preserves zero boundary values for 1 < p <∞,
it is easy to justify that for every u ∈ W 1,∞

0 (Ω), M(u) also lies in W 1,∞
0 (Ω). Indeed, if

u ∈ W 1,∞
0 (Ω), u ∈ W 1,p

0 (Ω) for any p ≥ 1. If p > n, u ∈ Cε(Ω) for some ε ∈ (0, 1), thus its
trace value agrees with its value on the boundary.

After these comments, let us turn our attention to the problem we shall work on. Let
Ω ⊂ RN be a bounded domain and ξ : I × Ω× R+ → R be a map satisfying

(1) For each z ∈ Ω× R+, the map ξ(·, z) : I → R is measurable.
(2) For almost every t ∈ I, the map ξ(t, ·) : Ω × R+ → R is Lipschitz and

sup
t∈I

‖ξ‖Lip(Ω×R+) := L <∞.

(3) ξ(t, x, 0) = 0, for all (t, x) ∈ I × Ω.
Given ϕ : Ω → R with ϕ

∣∣
∂Ω

≡ 0, we are interested in finding a map u : I × Ω → R which
solves

(4.2)

 ut(t, x) = ξ(t, x,M(u(t, x))) in I × Ω
u(t, x) = 0 on ∂Ω
u(0, x) = ϕ(x) in Ω
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Let us mention that our motivation to this problem is related to regularity results to par-
tial differential equations involving averages in fixed domains under Lipschitz nonlinearities.
Moreover we should also mention that once we are interested in W 1,p stability to problem
(4.2), hypothesis (1) (2) and (3) above are necessary hypothesis. We need a simple lemma.

Lemma 4.4. Let E be a reflexive Banach space and f : E → E a bounded map. Suppose E
is compacted embedded into F and f : F → F is continuous. Then f is sequentially weakly
continuous in E.

Proof. Let un ⇀ u in E. Hence, the sequence {un} ⊂ E is bounded and by hypothesis,
so is {f(un)} ⊂ E. Once E is reflexive, we can assume, up to a subsequence, that f(un)
converges weakly to some v in E. Using now the fact that E is compacted embedded into
F , we get that

un → u in F and f(un) → v in F.
Finally, by the continuity of f : F → F , we obtain that f(un) → f(u) in F , and hence,
v = f(u). �

Remark 4.5. All one needs in Lemma 4.4 is the demicontinuity of the map f : F → F to
conclude the sequential weak continuity of f : E → E. This type of lemma, although simple,
has shown to be useful in some practical applications.

Theorem 4.6 (W 1,p-Stability). For each ϕ ∈ W 1,p
0 (Ω), 1 < p < ∞, there exists a unique

Lipschitz curve û : I → W 1,p
0 (Ω), such that the map u(t, x) := û(t)(x) globally solves the

differential equation (4.2).

Proof. Let E = W 1,p
0 (Ω), F = Lp(Ω) and f : I ×W 1,p

0 (Ω) →W 1,p
0 (Ω) be given by

f(t, u)(x) := ξ(t, x,M(u)(x)).

Let us estimate ‖f(t, u)‖W 1,p
0 (Ω):

(4.3)

‖f(t, u)‖W 1,p
0 (Ω) :=

{∫
Ω

|∇xf(t, u)(x)|pdx
}1/p

=
{∫

Ω

|∇xξ + ∂sξ ·D(M(u))|pdx
}1/p

≤ L
(
|Ω|1/p + 2Ap‖u‖W 1,p

0 (Ω)

)
.

This proves that f : I ×W 1,p
0 (Ω) →W 1,p

0 (Ω) has a linear growth. Let us now fix a t ∈ I for
which the map ξ(t, ·) : Ω×R+ → R is Lipschitz. We shall estimate ‖f(t, u)− f(t, v)‖Lp(Ω):

(4.4)

‖f(t, u)− f(t, v)‖Lp(Ω) :=
{∫

Ω

|ξ(t, x,M(u)(x))− ξ(t, x,M(v)(x))|pdx
}1/p

≤ L

{∫
Ω

|M(u)(x)−M(v)(x)|pdx
}1/p

≤ L

{∫
Ω

|M(u− v)(x)|pdx
}1/p

≤ ApL‖u− v‖Lp(Ω).

The above calculation shows in particular that for a.e. t ∈ I, the map f(t, ·) : Lp(Ω) → Lp(Ω)
is continuous and then, by lemma 4.4, f : I ×W 1,p

0 (Ω) → W 1,p
0 (Ω) is a weak-Carathéodory

map. We have verified all the hypothesis of corollary 3.5, which assures the existence of a
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Lipschitz curve û : I → W 1,p
0 (Ω), which globally solves (due to estimate (4.3) and theorem

3.6) the below equation

(4.5)
{
ût(t) = f(t, û(t))
û(0) = ϕ

Let us turn our attention to uniqueness. Suppose u and v are two solutions to problem
(4.5). Let g : Lp(Ω) → R be given by

g(ϕ) :=
∫

Ω

|ϕ(x)|pdx.

It is well know g is differentiable and

D(g)(ϕ) · ψ = p

∫
Ω

|ϕ(x)|p−2ϕ(x) · ψ(x)dx.

Thus, applying Hölder inequality and afterwards inequality (4.4) we obtain

(4.6)

d

dt
‖u(t)− v(t)‖p

p = p

∫
Ω

|u(t)− v(t)|p−2
(
u(t)− v(t)

)
·
(
ut(t)− vt(t)

)
≤ p‖u(t)− v(t)‖p−1

p · ‖ut(t)− vt(t)‖p

= p‖u(t)− v(t)‖p−1
p · ‖f(t, u(t))− f(t, v(t))‖p

≤ pApL‖u(t)− v(t)‖p
p.

If we call d(t) := ‖u(t)− v(t)‖p
p, we have d(0) = 0 and inequality (4.6) says

dt(t) ≤ Cpd(t).

This implies d ≡ 0 (Gronwall’s inequality) and hence u(t) = v(t) for all t ∈ I.
To conclude we define u : I × Ω → R to be

u(t, x) := û(t)(x).

Such a function satisfies

(4.7)

 ut(t, x) = ξ(t, x,M(u(t, x))) in I × Ω
u(t, x) = 0 on ∂Ω
u(0, x) = ϕ(x) in Ω

as requested.
�

Finally, let us move our attention toward the Lipschitz stability of the solution to problem
(4.2). Suppose ϕ is Lipschitz. For each p > 1 we can apply the existence and uniqueness
result we have proven in theorem 4.6 and conclude û(t) ∈W 1,p

0 (Ω) for any p > 1. This gives
û(t) ∈ Cα(Ω) for any α ∈ (0, 1). It is a fairly good regularity but it does not imply Lips-
chitz regularity. This type of phenomena is quite common in regularity problems involving
elliptic operators, for instance, obstacle problems or fully nonlinear elliptic equations. In
this setting Harnack inequality plays, in general, a crucial whole that yields to pass from the
Cα-regularity for any α ∈ (0, 1) to Lipschitz regularity. In our setting we shall obtain this
by a topological framework. To do it so, we shall make use of all the generality provided by
theorem 3.3.

Before going through the construction of the mathematical tools we shall use in the regu-
larity process, let us roughly explain the difficulty of dealing with Lipschitz stability in this
setting. The first observation is that W 1,∞

0 (Ω) is not a reflexive space. Thus one cannot
use the weak topology on W 1,∞

0 (Ω) to apply theorem 3.3. On the other hand, although
not being a classical dual space, one can think W 1,∞

0 (Ω) inside of
[
L∞(Ω)

]N+1. So in some
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sense we could endow W 1,∞
0 (Ω) with a sort of weak-* topology. The problem is, as we have

already pointed out before, that with this topology “almost all” nonlinear operators fails to
be continuous. The whole point is to find a reasonable topology in W 1,∞

0 (Ω) for which one
can verify relative compactness of bounded subsets and continuity of the operator we are
dealing with. This is the content of what follows.

Definition 4.7. Let n > 2 be a natural number. We put

Fn :=
{
ρ : W 1,∞

0 (Ω) → R+

∣∣ ρ(f) = ρφ(f) := |φ(f)|, φ ∈
[
W 1,n

0 (Ω)
]∗
, ‖φ‖ = 1

}
.

We then define F :=
⋃

n≥2

Fn.

Notice that F is a family of seminorms in W 1,∞
0 (Ω). We shall consider the locally convex

topological space X :=
(
W 1,∞

0 (Ω), F
)
.

Lemma 4.8. Xb = W 1,∞
0 (Ω) and ‖f‖F = ‖f‖W 1,∞

0

Proof. We might suppose without losing generality that |Ω| = 1. Let f ∈W 1,∞
0 (Ω) be fixed.

Let ρφ ∈ Fn. We compute

ρφ(f) = |φ(f)| ≤ ‖f‖W 1,n
0

≤ ‖f‖W 1,∞
0

.

This proves Xb = W 1,∞
0 (Ω) and ‖f‖F ≤ ‖f‖W 1,∞

0
. On the other hand, if f ∈W 1,∞

0 (Ω) and
n ≥ 2 we have

‖f‖W 1,n
0

= sup
φ∈[W1,n

0 ]∗

‖φ‖=1

|φ(f)| ≤ ‖f‖F .

Letting n goes to infinity in the above inequality, we conclude ‖f‖W 1,∞
0

≤ ‖f‖F . �

Lemma 4.9. The ball of W 1,∞
0 (Ω) endowed with the F topology is a compact metrizable

space.

Proof. The fact that it is metrizable follows from the fact that one can find a enumerable
subset of F that generates the F topology. Let us turn our attention to the compactness.
We observe that a sequence converges with respect to the F topology if and only if it
converges weakly in W 1,n

0 (Ω) for every n ≥ 2. Let (fj)j∈N be a sequence in W 1,∞
0 (Ω) with

‖fj‖W 1,∞
0

≤ 1. For each n ≥ 2 we notice that

(4.8) ‖fj‖W 1,n
0

≤ ‖fj‖W 1,∞
0

· |Ω|1/n ≤ |Ω|1/n.

Thus, due to the reflexibility of W 1,n
0 (Ω), there exists a subset of the natural numbers

Nn ⊆ N such that
(fj)j∈Nn ⇀ fn in W 1,n

0 (Ω).
Moreover ‖fn‖W 1,n

0
≤ |Ω|1/n. We now implement a diagonal argument as follows: There

exists a subset N2 ⊆ N such that fj ⇀ f in W 1,2
0 (Ω). By repeating this argument we can

find a subset N3 ⊆ N2, such that fj ⇀ f ∈ W 1,3
0 (Ω). Carrying this process on we find a

nested sequence of subsets
N2 ⊇ N3 ⊇ ...Nn ⊇ ...

such that
(fj)j∈Nn ⇀ f in W 1,n

0 (Ω).
Finally if we set Nd to be the diagonal subset, i.e., the nth element of Nd is the nth element
of Nn, we have

(fj)j∈Nd
⇀ f in W 1,n

0 (Ω), ∀n ≥ 2.
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It remains to show that f ∈ W 1,∞(Ω) and that ‖f‖W 1,∞
0

≤ 1. It follows from the weak
lower semicontinuity of the norm and inequality (4.8) that

‖f‖W 1,n
0

≤ |Ω|1/n ∀n ≥ 2.

Letting n→∞ in the above inequality we conclude the lemma. �

We now can state the final goal of the section

Theorem 4.10 (Optimal Stability). For each ϕ ∈W 1,∞
0 (Ω), there exists a unique Lipschitz

curve û : I → W 1,∞
0 (Ω), such that the map u(t, x) := û(t)(x) solves globally the differential

equation (4.2).

Proof. The work is almost done. Let X :=
(
W 1,∞

0 (Ω), F
)

as defined above and f : X → X
be given by

f(t, u)(x) := ξ(t, x,M(u)(x)).
As we have seen in theorem 4.6, f has linear growth and for almost every t ∈ I and for any
n ≥ 2, f(t, ·) : W 1,n

0 (Ω) → W 1,n
0 (Ω) is sequentially weakly continuous. This implies that

f is an F-Carathéodory map. Finally Lemma 4.8 and Lemma 4.9 provide the remaining
hypothesis of Theorem 3.3, which asserts the existence of a strong solution to problem (4.5).
Theorem 4.10 is finished. �

Remark 4.11. The main information given by theorem 4.6 and ultimately by theorem 4.10
is the fact that û(t) ∈ W 1,p

0 (Ω), provided ϕ ∈ W 1,p
0 (Ω), 1 < p ≤ ∞. We remark that, the

field studied in theorem 4.6 and theorem 4.10, seen as a field defined on Lp(Ω), is Lipschitz
(see estimate (4.4)). Thus, for every ϕ ∈ Lp(Ω), the classical Cauchy-Picard theorem asserts
that there exists a unique (local) solution in Lp(Ω). Therefore, theorem 4.6 and theorem
4.10 are a sort of regularization result for such type of equations.
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[9] DIEUDONNÉ J., Deux exemples singuliers d’équations différentielles, Acta. Scien. Math. (Szeged) 12

(1950), B 38-40.
[10] DIESTEL J., Vector measures, Mathematical surveys, No 15. AMS 1977.

[11] DUNFORD N. & SCHWARTZ J., Linear operator, Interscience Publishers, INC.,New York, second
printing (1964).



STRONG SOLUTIONS FOR DIFFERENTIAL EQUATIONS IN ABSTRACT SPACES 17

[12] FENG S.Z., Existence of generalized solutions for ordinary differential equations in Banach spaces. J.

Math. Anal. Appl. 128 (1987), no. 2, 405–412.

[13] FITZGIBBON W.E., Semilinear functional differential equations in Banach space, J. Differential Equa-
tions 29 (1978), no. 1, 1–14.

[14] GODUNOV A. N., Peano’s theorem in Banach spaces, Functional. Anal. Appl. 9 (1975), 53–55.

[15] GOMAA A., Weak and strong solutions for differential equations in Banach spaces. Chaos Solitons
Fractals 18 (2003), no. 4, 687–692.

[16] KATO S., On existence and uniqueness conditions for nonlinear ordinary differential equations in

Banach spaces, Funkcial. Ekvac. 19 (1976), no. 3, 239–245.
[17] KELLY J. & NAMIOKA I., Linear topological spaces. Graduate texts in mathematics; 36.

[18] KINNUNEN J. & LINDQVIST P., The derivative of the maximal function,J. reine angew. Math. 503

(1998), 161-167.
[19] KNIGHT W.J., Existence of solutions of differential equations in Banach space, Bull. Amer. Math.

Soc. 80 (1974), 148–149.
[20] LAKSHMIKANTHAM V. & LEELA S., Nonlinear differential equations in abstract spaces, Inter-

national Series in Nonlinear Mathematics: Theory, Methods and Applications, 2. Pergamon Press,

Oxford-New York, 1981.
[21] LI T.Y., Existence of solutions for ordinary differential equations in Banach spaces, J. Differential

Equations 18 (1975), 29–40.

[22] LOBANOV S. G., Peano’s theorem is invalid for any infinite-dimensional Frchet space. Mat. Sb. 184
(1993), no. 2, 83–86; translation in Russian Acad. Sci. Sb. Math. 78 (1994), no. 1, 211–214

[23] MARTIN R. H., Nonlinear operators and differential equations in Banach spaces, Robert E. Krieger

Publishing Co., Inc., Melbourne, FL, 1987.
[24] MOREIRA D. & TEIXEIRA E.V.O., Weak convergence under nonlinearities, An. Acad. Brasil. Cinc.

75 (2003), no. 1, 9-19.

[25] MOREIRA D. & TEIXEIRA E., On the behaivor of weak convergence under nonlinearities and appli-
cations. (to appear in Proc. Amer. Mat. Soc.)

[26] O’REGAN D., A note on the existence of weak solutions to operator equations in Banach spaces,
Dynam. Systems Appl. 8 (1999), no. 1, 113–118.

[27] O’REGAN D., Weak solutions of ordinary differential equations in Banach spaces, Appl. Math. Lett.

12 (1999), no. 1, 101–105.
[28] O’REGAN D., Operator equations in Banach spaces relative to the weak topology, Arch. Math. (Basel)

71 (1998), no. 2, 123–136.

[29] O’REGAN D., Integral equations in reflexive Banach spaces and weak topologies, Proc. Amer. Math.
Soc. 124 (1996), no. 2, 607–614.
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