ON SUM RULES OF SPECIAL FORM
FOR JACOBI MATRICES

S. KUPIN

ABSTRACT. The purpose of this short communication is to give a sketch of the
proof of a result. Its complete proof is to appear elsewhere.

We use sum rules of a special form to study spectral properties of Jacobi ma-
trices. As a consequence of the main theorem, we obtain a discrete counterpart
of a result by Molchanov-Novitskii-Vainberg [7].

INTRODUCTION

The intent of this short communication is to give a brief sketch of the proof of
a theorem. Its complete version is to appear elsewhere.

Recently, the Case sum rules [1, 2] were efficiently used to relate properties
of elements of a Jacobi matrix of certain class with its spectral properties and
vice versa. For instance, spectral data of Jacobi matrices being a Hilbert-Schmidt
perturbation of the free Jacobi matrix (see (1)) were characterized in [4]. Different
classes of Jacobi matrices were studied in [5, 6].

However, the sum rules become more and more complex with increasing order.
In this note, we suggest a modification of the method that permits us to work
with higher order sum rules. In particular, we obtain sufficient conditions for a
Jacobi matrix to satisfy certain constraints on its spectral measure (see Theorem
1).

We consider a Jacobi matrix

bo Qo 0
J=J(a,b)=| @ b

where a = {ax},ar > 0, and b = {b;}, b € R. We assume that J is a compact
perturbation of the free (or Chebyshev) Jacobi matrix Jy,

01 0
(1) Jo=| 10
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A scalar spectral measure o = o(J) of the matrix is defined by the formula

((J = 2)e, €9) = / do(x)

RT—Z

with z € C\R. In our situation, the absolutely continuous spectrum o,.(J) of
J fills in [—2,2], and the discrete spectrum consists of two sequences {x]i} with

properties z; < —2,z; — =2, and 2] > 2,27 — 2.
Let da = {ay — ax_1}. For a given a and a k € N, we construct a sequence
vx(a) by formula

(m(a); = of —aj...aj,
where o = a — 1 and 1 is a sequence of units.
Theorem 1. Let J = J(a,b) be a Jacobi matriz described above. If
i)  a—1,bel™? 0a,0bcl?
(2) i) w(a) €', k=3[(m+1)/2],

J

2

3) ) / logo’(x) - (4 — 2®)" "V dx > —oo, i) » (2 —4)"T? < oo,
B J

When m = 1, the theorem gives a half of [4], Theorem 1.

It is easy to give simple conditions sufficient for v, (a) € I'. For instance, put

(Ar(a))j = @1 + ... + ajpp1 — (k= Doy
Then relations a —1 € ™!, da € I?, and Ag(a) € 19%™) | q(k,m) = (m+1)/(m+
2 — k), imply that yx(a) € I'. In particular, we have the following corollary.
Corollary 1. Theorem 1 holds if condition (2) is replaced with
Ag(a) € 1™ g(k,m) = (m +1)/(m +2 — k),
where k = 3, [,

We observe that relation (2) is trivially true in the case of a discrete Schrodinger
operator, i.e., when J = J(1,b).

Corollary 2. Let J = J(1,b). Ifb € I™,0b € I2, then inequalities (3) hold.

Note that assumptions of Theorem 1 may be slightly weakened in this setting.
Namely, the corollary is still true if b € I™"2 m being even. The corollary is a
direct counterpart of a result from [7] for a “continuous” Schrédinger operator on
a half-line.

The author would like to thank S. Denisov, R. Killip, B. Simon, and P. Yuditskii

for interest to the work and helpful discussions.
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1. PROOF OF THEOREM 1

The main tool used in the proof is a sum rule of a special type, see [4, 6, 9, 10]
in this connection. First, we obtain it assuming rank (J — Jy) < co. The passage
to the limit is carried out later.

Applying methods of [10], we see that

1 2 1 _ p2yme1/2 gy ) —
o | oy (4=t + 2 Gnlaf) = (),
)

where ¥, (J) = V,,(a,b), and
G,, ( ) ( )m+ICO(LL’2 - 4>m+1/2 + O((Sl,’z _ 4)m+3/2)

with z € R\[-2,2], Cy being a positive constant. An elementary, but long and
tedious computation gives that

) S A 2% (2m — 1!
(4)  Un(J)=tr {Z Wsz_l(J —Jy) - T log A ¢,

k=1
where A = diag {a;} and C*, #’;,,k,, Notation £!! is used for “even” or “odd”
factorials.

The following lemma plays a central role in the whole proof.

Main Lemma. Let J = J(a,b). We have

[(m+1)/2]

(5) 1¥n()] < Cr(lla = Ulmsr + |[0llmrr + [10allz + 1188l + > [1w(a)ll1),

k=3

where Cy depends on ||J|| only.

Above, norms ||.||, refer to the standard [P-space norms.
With exception of the lemma, the proof of Theorem 1 goes along standard lines
(see [4, 5, 6, 9]). We quote only its main steps.

Proof of Theorem 1. Define ®,,(J) as
— _ _ 1 1 2\m—1/2 +
D, (J) = Pp(0) = Py 1(0)+Ppa(0) = o /_2 log W-(Zl—x ) d:c—i-z Gm(z5)

We have to show that ®,,(.J) < oco.
We put ay = {(ay)x} and ay = {(a'y)r}, where

= { @ RSN [ k<N,
INEZY 1, k>N, T4, k>N

Define sequences by, by in the same way (of course, with 1’s replaced by 0’s).
Let Jy = J(an,bn). As we readily see, aly — 1,by — 0, dd)y,0by — 0, and
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v&(a’y) — 0 in corresponding norms, as N — oo. By the Main Lemma, we have
for NN=N—m

(Wi (J) = U (JIN)| < Win(ay, byr) < Cilllay: = Ulmir + [1oa7|lmsa

+ l8ant|ls + [[0bn|l2 + 22, [elan) 1),

or, U,,(Jy) — ¥,,(J), as N — oo. On the other hand, (Jy — 2)™t — (J — 2)7}
for z € C\R, and, consequently, o5 — o weakly. Looking at [4], Corollary 5.3
and Theorem 6.2, we get

(I)mJ(O') S thll’lf q)m,l(aN)
and
Z\llm @m’Q (O'N) = @m’Q (O')

We bound the latter quantity recalling [3], Theorem 2
Wana () = Y |G| < Collla = 1lImE3 + 1Bl D)
J

with some constant C';. Summing up, we obtain
®(0) < limsup ®(oy) = limsup ¥U(Jy) = ]\}im U(Jy) =¥(J).
N N — 00

The proof is complete. O

Remark 1. The theorem gives one more proof of [3], Theorem 2, when m is odd.

2. SKETCH OF THE PROOF OF THE MAIN LEMMA

We begin with considering expressions tr (J% — J2¥), arising in (4). Defining
V=J-Jy=J(a—1,b), we have

2k
tr(J* = JgF) =t ) oo VLV
p=1 d1+..+ip=2k—p
We prove the Main Lemma in two steps. First, we reduce the situation to a
commutative one. To do this, we bound expressions |tr (V. J& ... V.JF —VPJEP)|
using properties of the commutator [V, Jo] = VJy — JoV. On the second stage,
we exploit specifics of U,,(J) to get straightforward estimates of terms obtained

after the “commutation”.
Lemma 1. Leti= (i1,...,1y) and ) is =n. Then

VIg VI = VPR + > Cip J§ VIV, Jg IV TE

h+1l+13
p1+p2+ps

- p?
+ M ALV, T BV, Jo)Ch,

n
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where p = (p1, P2, p3),1 = (l1,l2,13), and Ay, By, Cy are some bounded operators.
This proposition leads to the following lemma.
Lemma 2. Let ) is =2k —p. We have
[tr (VJgt ... Vg = VP < Cs([[0allz + |0b]]»)
with C3 depending on ||V|| only.
The lemma exactly says that, modulo bounded terms, we may assume operators

V and Jy to commute. Turning back to (4), we see that the problem is reduced
to estimating W/ (.J),

(6) {ZVF Jo) — (( )1)”1og(1+a)}

where & = diag {ax} = A — I, and

~ (D" -
Fp(Jo) = Z 92k+1] Cgrkn 11 ']gk F.
k=[(p+1)/2]

Here, C7 is a usual binomial coefficient.
Observe that for p > m + 1 we have

[tr (VPE,(Jo)) < (15 (VP[5 < Callla = 1[50 + (B4,

where ||.||s, is the norm in the class of nuclear operators. Hence, it remains to
bound the first m terms in (6). Of course, we have

2m yp

log(I + &) = Z 7(_1

ap+0( 2m+1)
p=1 p

Set Jo, to be a symmetric matrix with 1’s on p-th auxiliary diagonals and 0’s
elsewhere. Surprisingly, the following lemma holds.

Lemma 3. We have

erl(2m—1)!!
R = (- EE S,

Combining this with explicit form of V? and the series expansion for log(/+ &),
we get the required bound (5).
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