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ABSTRACT. In this paper we analyze a variant of the famous Schelling segregation model in
economics as a dynamical system. This model exhibits, what appears to be, a new clustering
mechanism. In particular, we explain why the limiting behavior of the non-locally determined
lattice system exhibits a number of pronounced geometric characteristics.

Part of our analysis uses a geometrically defined Lyapunov function which we show is
essentially the total Laplacian for the associated graph Laplacian. The limit states are mini-
mizers of a natural non-linear, non-homogeneous variational problem for the Laplacian, which
can also be interpreted as ground state configurations for the lattice gas whose Hamiltonian
essentially coincides with our Lyapunov function. Thus we use dynamics to explicitly solve
this problem for which there is no known analytic solution. We prove an isoperimetric charac-
terization of the global minimizers on the torus which enables us to explicitly obtain the global
minimizers for the graph variational problem. We also provide a geometric characterization
of the plethora of local minimizers.

0. INTRODUCTION

In this paper we introduce and study an interesting new class of deterministic and
stochastic lattice dynamical systems.! Our motivation to study this class of models arose
from trying to explain the striking limiting behavior of the seminal segregation model of
Schelling in economics. This model can also be viewed as a new type of two-spin exchange
kinetics for the lattice gas in statistical physics.

In a fundamental series of papers and in a book [S1, S2, S3, S4] (see also [Klu]), the
eminent economist Thomas Schelling proposed a remarkable model which exhibits self-
forming neighbourhoods based on the desire of people to live with those of their own type,
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with whom they empathize. In these models the individual’s micro-level preferences (about
their nearest neighbours) manifest themselves in a striking way at the macro level. This
prescient model from 1971 exhibits many themes encountered in contemporary literature on
agent-based modeling, social complexity, and economic evolution. By the term own kind,
Schelling refers to membership in one of two homogeneous groups — men or women, blacks
and whites, French-speaking and English speaking, officers and enlisted men, students and
faculty, surfers and swimmers, the well dressed and the poorly dressed, and any other
dichotomy that is exhaustive and recognizable.

The phase space for the Schelling model is a finite square subset of the standard lattice
in R?2. To each of the lattice sites one can associate labels for individuals of one of two
kinds (and in the more sophisticated versions of the model, more (than two) kinds, along
with allowing a number of unlabeled, or empty, states). Schelling’s model allows pairs of
individuals who are both not happy with the number of compatible nearest neighbours,
to switch sites. The two sites may be far away, and thus the dynamics is not local, in
the sense that a cellular automata is determined by local rules. In fact, these models can
be thought of as cellular automata with migration, and it appears such models have not
been rigorously studied before. In fact, suprisingly little is rigorously known about cellular
automata in more than one dimension.

Schelling devised his model 30 years ago and studied it using nickels and pennies on
a chess board (an eight by eight lattice). In more recent years there have been extensive
computer studies of this model [EA, GD], and it has become perhaps the most famous
model of self-organizing behavior. To social scientists, this model demonstrates that spatial
segregation, or ghettoization, can occur spontaneously, without being imposed by a central
authority, based on relatively modest desires of people to live around those with whom they
empathize. This can result in the clustering of people by gender, age at a social gathering
or in the clustering of people by ethnicity or race in society at large.

In this paper we present a mathematical explanation of the observed limiting behavior
for a variant of Schelling’s model. Schelling originally assumed that no individual would
move if a certain percentage of his neighbours were from the same group. In our variant of
his model we suspend the tolerance levels, thus an individual will move whenever he can
increase his happiness, regardless of his current happiness. However, our model is similar
in spirit to Schelling’s model and exhibits qualitatively similar limiting behavior. We
explain why the limit configurations have striking geometric features and our analysis of
this variant model provides insights that cast light on Schelling’s original model. The two
authors are currently writing a manucript analyzing the original model. The techniques
in the second paper use ideas from ergodic theory and probability theory, and are quite
different than the methods we use in this paper.

We make use of basic ideas in the study of dynamical systems. We construct a Lyapunov
function for the dynamics which has striking geometric, spectral, physical, and sociological
interpretations. The geometric interpretation is that the Lyapunov function of a state is
essentially the total perimeter of the boundary contour separating the two groups. We
prove an isoperimetric result for grid domains on the flat torus to characterize the special
geometry of the global minimizing states.

These models are related to the nearest neighbour lattice gas model introduced by Lee
and Yang [LY], which is a close cousin of the (nearest neighbour) Ising model. For the
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lattice gas in the regular N x N square lattice, if there is a molecule occupying lattice site
v, we put 7, = 1; otherwise 7, = 0. The Hamiltonian (or total energy) of this configuration
is

H({nv}) = _% Z NoTw

v,w:lv—w|=1

where the sum is over nearest neighbours. By changing to spin coordinates 7, = (1/2)(1+
Sy), the function s, attains the values —1 and +1, one sees that the Lyapunov function
L we construct in Section 2 is essentially the Hamiltonian for this lattice gas on a torus,
where essentially means the two functions differ by a first integral of motion. Thus the limit
states for our variant of the Schelling dynamics correspond to the ground state (minimal
energy) configurations for the lattice gas. The lattice gas is closely related to the two
dimensional Ising model on torus, the difference being that for the lattice gas the total
number of gas molecules does not change.

In the physics literature there are several popular dynamics or kinetics related with the
Ising and lattice gas-type models, eg., the Glauber and Kawasaki dynamics. In these mod-
els the usual spin-interaction is replaced by certain local temperature-dependent transition
probabilities of spin-exchange. Our non-local model seems to be a new type of lattice gas
kinetics, which is different from both Glauber and Kawasaki dynamics.

Of independent interest, along the way we find the explicit solution to a natural non-
linear nonhomogeneous variational problem for a graph Laplacian on the torus. We could
find no analytic solution of this problem in the literature. The limit states for our variant
of Schelling’s model are minimizers for this variational problem. Thus we obtain an explicit
solution as an immediate consequence of our study of the dynamics of the model.

1. DESCRIPTION OF OUR VARIANT OF SCHELLING’S MODEL

The phase space for the family of models consists of a N x N square sub-lattice Ay
on the standard two-torus T2. The torus arises because we consider periodic functions
on the lattice. This is probably not an essential assumption, but it helps to simplify the
exposition.?

We first discuss the model with two distinct populations, say 1’s and —1’s, which to-
gether fill all available N? sites. Each possible (global) configuration of 1’s and —1’s is
specified by a function or state or configuration z: Ay — {—1,1}, where one associates a
label 1 or —1 to each site. Let

Hy = {z: Ay — {-1,1}}

denote the collection of all states.

To describe the time evolution of the system, we explain how the system evolves from
state =, € Hy to state z,41 € Hy. Using some mechanism we choose two sites with
different labels, i.e., site v is labeled 1 and other site w is labeled —1. There are many
possible ways of selecting these sites and thus one obtains families of related models. For

2We say probably because we do not consider a thermodynamic limit with N — oo; we fix N which
need not be very large. Computer simulations show that that for moderate sized N, the qualitative features
of the limit set of the models are essentially independent of the boundary conditions.
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example, one can randomly choose sites until one obtains two sites with different labels.
Or we can assume that the N2(N? — 1) pairs of distinct sites are ordered in some way
and systematically run through these pairs until different labelings are found. Finally, one
can select pairs from amongst the unhappiest label 1 and unhappiest label —1 at step n,
meaning the sites containing 1 with the maximal number of nearest neighbours labeled
—1 and the site containing —1 with the maximal number of nearest neighbours labeled
1.3 Or one can specify an ordering of the sites and use this ordering to obtain two sites
with different labels. There are many possible selection rules and our analysis applies to
all such rules, so let us now assume that we have fixed one such rule.

The notation. Let v € An denote a site labeled 1 and w € Ay denote a site labeled
—1. Thus z,(v) = 1 and z,(w) = —1. Since our lattice is periodic we can associate to
each site its four nearest neighbours to the north, east, south, and west. We note that
one can also consider eight point neighbourhoods consisting of the eight neighbours to the
north, northeast, east, southeast, south, southwest, west, and northwest. There are few
qualitative differences for the dynamics with the two choices of neighbourhoods, and we
will work with four point neighbourhoods (see also Section 6).

Let #1, denote the number of nearest neighbour sites to v containing 1, #(—1), the
number of nearest neighbour sites to v containing (—1), #1,, the number of nearest neigh-
bour sites to w containing 1, #(—1),, the number of nearest neighbour sites to w containing
the label (—1). Clearly,

#]-Ua #(_1)Ua #]—wa #(_]—)w € {Oa ]-a ey 4}5
#1, + #(-1), =4, and
#lw + #(-1),, = 4.

The basic algorithm. Suppose we are given the state of the system z,, at time n; we now
describe how to obtain the state x,41. Schelling’s idea is to measure each site’s happiness
by counting the number of nearest neighbour sites with the same label. Thus a labeling 1
at a particular site would be most happy if all four of its nearest neighbours were labeled
1, and would be most unhappy if all four of its nearest neighbours were labeled —1. If the
1 at site v and the —1 at site w would increase their happiness if they switched labels, then
we switch them. Observe that this is equivalent to either site increasing its happiness.

More precisely, if #1,, > #1, (or equivalently #(—1), > #(-1),,), then z,; is pre-
scribed by

Tpt1(v) = —1

Tpr1(w) =1
ZTnt1(2) = xn(2) for z # v, w.

And if #1,, < #1, (or equivalently #(—1), < #(—1),,) then the state does not change,
ie, Tpy1 = Tp.

3Since there could be several 1’s (or —1’s) with the maximal number of nearest neighbours being —1
(or 1), one may need to require some extra conditions to make this prescription well defined, perhaps
the closest nearest neighbour or closest nearest neighbour at smallest angle. With such a deterministic
selection rule the system we will define is a dynamical system, in the usual sense, on a collection of states
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Limiting Configurations. We define the limiting configuration for a system or the
equilibrium state beginning from state zgy of the system to be the pre-fixed points for
the system, i.e., there exists N > 0 such that x,, = zn for n > N.

™ N

Ficure 1:. Four different configurations reaching the same equilibrium
configuration

This procedure generates a well-defined time evolution {z,}, n > 0 of an initial state
x9, which of course depends on the pair selections at each step. The less patient readers
may prefer studying a slightly different process {z}} which is obtained from {z,} by
disregarding consecutive strings of the same state. In other words, if the two chosen sites
from z,, don’t switch labels, then we continue to choose pairs until a switch does occur,
and denote the resulting configuration z;, ;. We call this finite process the accelerated
process. If the selection process is deterministic, the system must eventually reach a
limiting configuration.*

First integrals. Clearly the time evolution preserves both the total number and the aver-
age number of 1’s and —1’s at each step. With an eye towards applications to variational
problems for the Laplacian, we see that the average of the difference between the total
number of 1’s and the total number of —1’s is also conserved, i.e.,

I(z) = % Z z(v)

vEAN

is a first integral of the time evolution. For instance, if for £y one has that # 1’s = # —1s,
then I(z,) =0 for all n > 0.

Plots. Figures 2-11 contain Matlab plots of the initial and final states for two parameter
values with N = 8. In Figures 2-5 the initial configuration contains (almost) an equal
number of 1’s and —1’s, while in Figures 6 and 7, the initial configuration contains 70%
1’s and 30% —1’s. Figures 10 and 11 are plots with N = 30 and where the initial config-
uration contains 60% 1’s and 40% —1’s. Note that one label in the limit set in Figure 5
is not connected. Each label in the limit set depicted in Figure 9.5 has eight connected
components.

4In a modified construction where changes occur even when there is no net gain to the two individuals
concerned, then there is the additional possibility of periodic limiting behaviour.

5



Ini-A

py=05 p=05 # moves =22 il e

Ini-A

#moves =19
=
2
3
<4 <
= iy o ic
7
5
9
2 4 ] ) 2 4 [] 8 2 4 6 8 3 4 [3 []
FIGURE 2 FIGURE 3
Py=0.5 p=0.5 # moves =11 Py=0.5 py=0.5 #moves =15
1 1 1
H 2 2
3 3 3
a4 ) <
% 4 % 4
E &5 3 s
bt | 6 b |
7 7 ]
] 8 8
3 El ]
2 4 8 8 2 4 ] 8 2 4 [ ] 2 4 6 B
FIGURE 4 FIGURE 5
=08 p =08 po—— L el Tl # moves =12
1 1
2 2
3 3
<4 < ﬁ‘
5 £ 29
[ " L
7 7
5 ]
3 3
2 a ) ) 2 4 [ 8 ] 4 B ]
FIGURE 6 FIGURE 7
pye0.3 pe0.7 ormovar=ib fyddp et #moves =15
<
- <
. | g .
gl w
& 4 6 . 2 4 [} 8 z 4 ] ]

FIGURE 8 FIGURE 9

FIGURE 9.5
6



# moves =232 thres =4

Init—A

FIGURE 10: LIMIT SET WHERE ONE LABEL FORMS A CONNECTED SET
ON T2

=005 p_,=04 py=0 # moves =250 thres =4

Finak-A

FIGURE 11: LIMIT STATE WHERE NEITHER LABEL FORMS A CON-
NECTED SET T2

2. LYAPUNOV FUNCTIONS FOR THE BAsIC MODEL

We now construct a Lyapunov function for states of this dynamical system, i.e.,
construct a non-negative function L: {—1,1}*~ — R such that L(z,41) < L(z,) for all
n > 0. We actually construct a strict Lyapunov function for the accelerated algorithm
such that L(z;,,,) < L(z;,) for all n > 0, provided that the state z7, is not a limit state,
in which case L(z}) = L(x;,) for k > n.

We first describe a measure of the average happiness of a state and show that this
function is a Lyapunov function. Given a state z, we define the average happiness
S(z;v) of a site v € Ay by counting the number of immediate neighbours having label
z(v), subtracting the number of immediate neighbours which are not labeled z(v), and
normalizing by dividing by the number of nearest neighbours (i.e, four). We can quantify
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this by defining the happiness of the site v given the configuration x to be

S(z;v) = z(v) - > z(v + (i, 7)).

(i,j):(—l,O),(l,O)
(071)a(07_1)

RN

(We use the convention that we consider the indices modulo N). Observe that —1 <
S(z;v) < 1. The maximum value 1 is achieved when v tales the same value as all of its
four neighbours and the minimum value —1 is attained then v takes the opposite value as
all of its four neighbours.

We then define the average happiness S(x) of a state x by averaging

S(@) = 7 O S;v)

vEAN

1 1 .
=5 > 1 > z(v) - z(v+ (4,5)),

vEAN  (4,7)=(—1,0),(1,0)
(0,1),(0,—1)

where we average the function x over the four nearest neighbours of v. Clearly the function
S attains values in [—1, 1], and thus, in particular, the function S + 1 is non-negative.

Theorem 1. The average happiness function S is increasing, and strictly increasing (until
it reaches an equilibrium configuration) for the accelerated system. In particular, L = —S
is a Lyapunov function.

Proof. This follows from the definition of the algorithm. The system evolves from a config-
uration z,, to a configuration z,,,1 if two prescribed states v, w € Ax with different labels
switch and both benefit by increasing their proportion of similar nearest neighbours. In
terms of the average happiness function S(z), observe that the switch only influences the,
at most, total of four nearest neighbours of these two states. However, if the the switch
benefits labeling at the state v, say, then there must be a greater number of like signed
nearest neighbours to the new site w then at the original site and each of these like signed
nearest neighbour to w increases its own local happiness by 1/4.
If ,(v) = +1 and z,(w) = —1, then a simple calculation shows that

L(zy) — L(zny1) = (#(+Dw — #(+1)y) + (F#(=1)y — #(=1)w)-

Since a switch requires that both (#(41)y — #(+1),) > 0 and (#(—1)y — #(—1)4) > 0,
it follows that L(zn4+1) > L(xy,). [

The next proposition gives a striking geometric characterization of the Lyapunov func-
tion L.

Proposition 1. For a state x, the Lyapunov function

o) = g
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FIGURE 12:. Boundary contour of state =

where P(x) denotes the perimeter of the boundary contour that separates inhomogeneous
neighbours of x.

Proof. For a given state x, the collection of all 1’s comprise finitely many connected regions,
whose boundary consists of finitely many closed contours. The boundary contours are
composed of horizontal and vertical line segments and separate sites containing 1 from the
neighbouring sites containing —1. Any site containing a 1 can be surrounded by one, two,
three or four sites containing —1, and thus can be surrounded by one, two, three or four
segments of the boundary contour.

(From the definition of S(z) it follows that

AN?(1 + L(z)) = AN%(1 — S(z)) = Z Z (1—z() -z + (i,5)).
vEAN (2,7)=(-1,0),(1,0)
(0,1),(0,—1)

For each site v, the inner sum is precisely the number of segments of the boundary contour
surrounding the site v. Thus when summing this quantity over all sites v, one obtains
twice the total number of boundary segments, twice because each boundary segment is
counted by each of the two inhomogeneous sites which the segment separate. The formula
easily follows. [

The next proposition shows that the maximum number of steps for the accelerated
system to reach equilibrium is at most quadratic in V.

Proposition 2. The strict Lyapunov function L provides an estimate for the time T
required for the accelerated system to reach an equilibrium point. More precisely, there
erists T < N2(1 + L(z)) < 2N2, and an equilibrium state z'. such that the accelerated
system reaches its equilibrium state in T steps, i.e., xlp = .

Proof. We need only observe that 1 + L(z') is strictly decreasing at each step, and that
the function attains values in (1/N?)N. [
9



We can define an L'-metric on RA by

d(z,y) = Y |z(v) —y(v)|, =zyeR™W.
vEAN

This induces a metric on H taking values in 2Z*. A natural small neighbourhood around
a configuration z takes the form U(z) = {y € Anx : d(z,y) < 2}. This corresponds to all
configurations which can be achieved by a single interchange of two labels. This will
quantify our notion of nearby configurations.

Definition. Consider a state z € Hy.

The state z is a local minimum for the Lyapunov function L if for any y € U(x), we
have L(y) > L(z);

The state z is a global minimum for the Lyapunov function L if if L(y) > L(z) for
all y € Hy;

The state z is a local maximum for the Lyapunov function L if for any y € U(x), we
have L(y) < L(x);

The state z is a global maximum for the Lyapunov function L if if L(y) < L(z) for
ally € Hy.

The following corollary and proposition are immediate consequence of Proposition 1.

Corollary 1. If a state = is a local (global) minimum for L, then the state x is a local
(global) minimum for P.

Proposition 3. (Contour Minimizing Principle) The limit states are local minima
of the Lyapunov function L and are thus locally boundary contour perimeter minimizing
configurations.

Let R C An be a collection of sites. We say that R is an island if all the sites in R have
the same label, the boundary contour of R has one component and is a simply connected
curve on the torus, and all sites along the boundary contour of R have a different label.
We say that R is a strip if all the sites in R have the same label, the boundary contour
of R has two components, each boundary component is a closed curve which winds once
around the torus, and all sites along the boundary contour of R have a different label.

Proposition 4. The global minimizers of L contain a single island or a single strip.

Proof. 1f we assume for a contradiction there were more than one island, or more than one
strip, or one island and one strip for a configuration, then we could always consider a new
configuration in which one of the domains were translated until it overlaps another along
at least one segment of the boundary contour. This would result in both a strict decrease
in P and a smaller number of components. Proceeding inductively, we see that minimizers
for L are configurations which contain at most a single island or a single strip. [

The limit state illustrated in Figure 5 is a local minimizer of L where one label has two
connected components. Thus the claim of Proposition 4 need not hold for local minimizing
states.
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3. GEOMETRY OF THE LIMIT SET

We will first characterize those configurations which are global minima for L. The
following isoperimetric result states that the global minimal are essentially squares, com-
plements of squares, or strips which traverse the torus.

Case A deals with global minima for L where there are a comparable number of +1s
and —1s. Case B describes the global minima of L in the case of an abundance of +1s (or
—1s). By a strip we mean a k x 1 block of sites with the same labeling.

Theorem 2. (Isoperimetric characterization of global minima)

Case A. Denote by N; the total number of sites with sign +1, N_; = N2 — N the total
number of sites with sign —1, and suppose that

SN1/12<£

RN

Then a global minimum x, for L is a horizontal or vertical band traversing the torus with
the addition of possibly at most one strip attached to the band. More precisely,

(1) if Ny = kN, k € N, then the limit state has the +1 (or alternatively —1s) aligned
in a horizontal or vertical band of width k, and P(z,) = 2N;

(2) Assume that Ny = kN 44, k € N and 0 < i < N, then the limit state has the +1
(or alternatively —1) aligned in a horizontal or vertical band of width k plus a strip
of length i attached at the side, and P(x,) = 2N + 2.

—+1§N11/2<— or

N N N
2 3 =~ V2 2

wl =

Case B. Suppose that

N 1 N 1
N11/2§5+g or Ni/fg?-i-g,

The limit states x!, which globally minimize the function L have islands R of —1s (or
alternatively +1s) in the form of a square with at most two additional strips attached.
Definel € N by 12 < Ny < (I +1)%. Then
(1) if Ny =12, then R is al x | square and P(x)) = 4l;
(2) if 2 < Ny =12+i<I(+1), then R is al x| square with the additional sites
attached as a i X 1 strip to the sides, where P(z') = 4l + 2;
(3) f Ny =1(l+1), then R is al x (I + 1) rectangle and P(x') = 4l + 2;
(4) ifl(l+1) < Ny =1>+i < (I+1)?, then R is al x 1 square with the additional sites
attached to the sides as two strips and P(x!) = 4l + 4.

Proof. By Proposition 4, the global minimizers are connected, and consist of a single island
or strip.

Consider first those limiting configurations x which consist of a strip. We can consider
the torus as a square with edge identifications, and this provides a notion of horizontal and
vertical axes. Without loss of generality lets us assume that 2 contains a vertical strip. Let
W denote the sum total of the lengths of the projections of the perimeter curves onto the
horizontal axis. Clearly, P(z) > 2(N + W) and is minimized when W = 0, in (1) of Case
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A, or when W =1, in case (2) of Case A. Within this latter case P(x) is minimized where
the extra boundary sites occur on just one boundary component and are contiguous.

Consider next those limiting configurations z which form a single island. We can con-
sider the horizontal and vertical projections, and let H and V be their respective lengths.
We observe that P(xz) > 2(H + V), with equality if the island is convex, in the natural
sense. Moreover, since HV > [2, we may write P(z) > 2(I12/V + V). By elementary calcu-
lus we see that P(z) > 41, and since equality only occurs when N; = [? this completes the
proof of (1) of Case B. For (2) and (3) we note that P(z) > 4l + 2, since P(z) = [? cannot
be realized for Ny > [2. In these two subcases P(x) = 41 + 2 can only be realized for a
island contained in a rectangle with sides of length [ and [ + 1. This is achieved precisely
for the islands described in (2) and (3). Finally, in (4), where Ny > [(l 4 1), then we note
that P(xz) > 4l + 4 with equality only for an island contained in a square with sides of
length [ 4+ 1. Amongst such islands, the minimum P(z) = 41+ 4 is achieved for the islands
described in (4).

Finally, one needs to differentiate between case A and case B, i.e., when islands have
shorter perimeters than strips. Since perimeter minimizing islands have perimeter 4/ or
4l + 2 and perimeter minimizing strips have perimeter 2N or 2N + 1 a simple calculation
completes the proof. [ |

Remark. The two chessboard states are the only global maxima for L since they have
maximal perimeter. These chessboard states are not limit states.

FIGURE 13: ONE OF TWO CHESSBOARD CONFIGURATIONS

We will call a limit state which is globally minimizing for L a globally minimizing
limit state. According to Theorem 2, there are two types of geometries for globally
minimizing limit states, corresponding to Case A and Case B.

Local minima for L and P.

Not all minima for L are global minima. Figures 2 and 8 are examples of limit states
which are global minima, while Figures 3, 4, 5, 6, 7, 9, 9.5, 10 and 11 are examples of
limit states which are local but not global minima. Experimentally, it appears that local
minima occur with much greater frequency than global minima.

There are some simple criteria for a configuration not to be a local minimum. For
example, if we have a site with a particular labelling, but its four neighbours are of the
other labelling, then it is clearly not part of a configuration which is a local minimum.
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More generally, consider a state x and denote by I' the boundary between the two types
of sites. We say that the boundary I' has a sharp bend if there exists a site in the
configuation for which three of the four sides are part of the boundary curve I'.

The following result gives a simple geometric criterion to check whether a given config-
uration is a local minimum.

Theorem 3. (Geometric Criterion for Local Minima) Assume that there are at
least three sites of each label. A configuration x is a local minimum if and only if either

(1) the boundary curve contains no sharp bend, or
(2) there exists a single sharp bend which is attached to a disjoint union of rectangular
1slands or bands.

Proof. Let x be a limit state. A necessary and sufficient condition for = to be a local
minimum is that no two sites can switch in such a way as to futher decrease the perimeter.
Assume first that the separating perimeter has no sharp bends. It is a simple observation
that every site must have at least two neighbours of the same type. In particular, a site
could only switch with another site on the boundary of one of these components which
has at least three neighbours with the same label. However, the existence of such sites is
forbidden by our hypothesis.

Consider next the case that the perimeter of z has sharp bends. Any component con-
taining at least four sites can have at most one sharp bend, since if there were more, then
the sites corresponding to the sharp bends could coalesce. Furthermore, if the perimeter
of x has sharp bends then we see that the components must consist of rectangular islands
or strips, with a single site attached to the boundary, since in all other cases the site asso-
ciated to the sharp bend could move into a boundary site (corner). Thus, the only states
whose perimeters contain more than one sharp bend have islands containing two or three
sites.’ [ |
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FIGURE 14: STATE WITH TWO SHARP BENDS (BUT NOT A LIMIT STATE)

5Such islands are isolated, in the sense that their boundary contour is simply connected.
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4. STABILITY OF LIMIT STATES

We now examine the stability of limit states. We begin with the following definition.

Definition. A limit state z is stable if for every nearby configuration y € U(z), there
exists N > 0 such that y, € U(z) for n > N. Thus z is stable if the evolution of every
nearly configuration eventually re-enters U(x) and then stays in U(z) for all future time.
A limit state = is unstable if there exists N > 0 with y,, &€ U(z) for n > N. Thus z
is unstable if the evolution of some nearby configuration eventually moves out, and stays
out, of the neighbourhood U (x).

Proposition 5. Any globally minimizing Case A limit state is stable, while any globally
minimizing Case B limit state is unstable.

Proof. Figure 15 illustates a mechanism which causes any globally minimizing Case B limit
state, which is essentially a square box of sites labeled 1’s in a sea of sites labeled —1’s,
to be unstable. The first picture is of a globally minimizing limit state z. The second
picture shows the perturbation, i.e., the state y obtained from the original limit state by
switching two (different) labels. The perturbation is chosen to introduce three new sharp
bends. Then in two steps, the perturbed state evolves into a limit state yo which is not
globally minimizing. The distance d(z,y2) = 6, and thus ya ¢ U(x).
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FIGURE 15: A GLOBALLY MINIMIZING UNSTABLE LIMIT STATE

On the other hand, suppose one considers a globally minimizing Case A limit state,
which is essentially a strip of sites labeled 1 traversing the torus. First assume that the
limit set is precisely a strip, with no extra 1’s attached. In this case each site labeled 1
has at least three like neighbours. If one now switches any two (different) sites, then the
new site labeled 1 will have at most one like neighbour. If it has one like neighbour, the
system must return to the initial state at the next step of the iteration. If the new site
labeled 1 has no like neighbours, then at the next step it could switch with a —1 to attain
one like neighbour, but then the system must return to the initial state at the next step
of the iteration.

In the case that the initial limit state has some additional 1’s attached to the traversing
strip of 1’s, one must consider a couple of additional cases. For instance, after the initial
switch, the new site labeled 1 may have two like neighbours. We leave the easy enumeration
of additional cases to the reader. Figure 15.5 illustates a typical scenario, and is an example
where after one switches two sites, the system does not eventually return to the initial state,
but to a nearby state. [J
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FIGURE 15.5:

5. THE GRAPH LAPLACIAN AND A NON-HOMOGENEOUS VARIATIONAL PROBLEM

We can associate to our set a finite graph with vertices Ay and edges joining vertices
(1,7),(#,7") € Ay if |i —4'| < 1 and |j — j'| < 1. The spectrum of graph Laplacians on
such graphs are the subject of intense research and practical interest [Chu].

Let us define a graph Laplacian operator A: RA — RA~ acting on the space of states.

Given a function z € RM | we define

(AW =z) -7 Y alv+ (i) (L)
(4,3)=(=1,0),(1,0)
,1),(0,=1)
Given a state x and a vertex v, the Laplacian of x at v is simply the average of x over all
four nearest neighbours of v minus the value of z at v.

We follow the usual convention and work with the positive operator — A instead of the
negative operator A. We denote by (f,g) = (1/N?)>°, ca, f(v) - g(v) the natural inner
product on the set of functions f,g: RA — RA~. This induces a norm || f||3 = (f, f) on
such functions.

The following two relations are immediate.

Proposition 6.
—Az(v) - z(v) =1 - S(z;v)
1
(—Az,z) = N2 Z (—=Az)(v)-z(v) =1- S(z) =1+ L(z).
vEAN
By Proposition 3, the limit state z/, is a local minimizer of the variational problem

inf —Az,z), where a = I(xg). \%
MN_){_M}( ) (o) (V)
I(z)=a
Since we constrain x € Hy, this variational problem is nonlinear. If a # 0, this
variational problem nonhomogeneous.

Since ||z|l2 = 1 for all states + € Hy (because there are no unoccupied sites and
z: A, — {—1,1}), problem (V) is the same as the following variation problem
—-A
inf AT (V¥)
z: Av—{-1,1} ||z|3
I(z)=a

By Propositions 1 and 6, (—Az,z) = 1+ L(z) = P(z)/2N?, and thus the following
corollary provides a geometric interpretation of (V) and (V*).
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Corollary 2. (equivalent geometric variational problem) The following two varia-
tional problems have the same minimizers.

. (—Az, x) 1 .
f = — f P(z).
T: ANIE){—I,I} ||.’17||% N2 5. ANIB){—I,l} (:L.)
I(z)=a I(z)=a

In the special case a = 0, the expression on the left is reminiscent of the famous Rayleigh-
Ritz variational problem for the first eigenvalue \; of A.® However, in the expression on
the left, we require z: Ay — {—1,1} and not z: Ajy — R. This is an essential difference,
since this extra constraint makes the variational problem non-linear!

Proposition 7. The global minimizers attain the values

(1)

A
inf % = A1 =1 (1/2)(1 + cos(2r/N)),
o b TR

where \1 is the first non-zero eigenvalue of the graph Laplacian.
(2) The spectrum of the Laplacian —A : RAN — RAN consists of the set of numbers

_ 1 21p 2mq
Apg=1 5 {cos( N)+COS(N>:|,

where 0 < p,q < N — 1.

3)

Lt % — (1= a®)A = (1—a?)(1 = (1/2)(1 + cos(27/N))),
I(z)=a

where A1 is the first non-zero eigenvalue of the graph Laplacian.

Proof. A calculation shows that the characters are eigenfunctions of — A, i.e., —=Axp 4 =

Ap.qXp,q» Where xp o(2,y) = exp 2mi(pxr + qy)/N.
Another calculation shows that for z = Zp, 4 Cp.aXp,g: the total Laplacian (—Az,z) =

Zp,q Ap.qlCp.ql®. As in the usual Fourier series proof of the isoperimetric inequality, it
follows that (—Az, z) > Ao 1|co,1|>+A1,0/c1,0/2 = AMi(|co,1/2+e1,0/2), with equality if f(z) =

6To some readers, the smooth version of the Rayleigh-Ritz variational problem may be more familiar
than for a graph. The solution on the flat two-torus (or any compact Riemannian manifold) is the first
non-zero eigenvalue A; of the Laplacian A, i.e.,

(AL, f)

ERTFIT RR
rectr  |Ifll2 (RR)
[ fda=o0

A1 =

and the infimum is attained by eigenfunction(s) of A with eigenvalue A1.
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a+bxo,1+cx1,0- The result follows since 1 = ||z||3 = a® + [b]* + |c|*> = a® + |co,1|* + |c1,0/?,
and thus )\1(‘6&1'2 -+ ‘Cl’() 2) = )\1(1 — a2). [ |

With the help of Corollary 2 we have geometrical tools to study the more general
nonlinear nonhomogeneous variational problem (V*). Although the minimization problem
is finite dimensional, this seems to be a very challenging to solve analytically, and we could
find no related references in the literature. Even for a = 0, since we are minimizing which
attain values only +1, the minimizer will certainly not be an eigenfunction.

The following theorem is the nonlinear analog of parts (1) and (3) of Proposition 7 for
states z: Ay — {—1,1}, and follows immediately from Corollary 2 and Theorem 2.

Theorem 4. The global minimizers of (V) attain the values
. (—Az, x) 2 k
—Azx,z
. f 3 _ “ v
e Anoo1} @2 N N2
where k = 0 if N is even, and k = 1 if N is odd. If N is even, the global minimizers
are states which attain the value +1 on a N x N/2 strip or a N/2 X N strip, and
attains the value —1 on the complementary strip. If N is odd the global minimizers
are almost of this form.
(2) If I(x) = a # 0, explicit formulas for the minimizers can easily be obtain from
Corollary 2 and Theorem 3.

We again remark (see Remark 1) that there are many local minimizers to this problem
which are not global minimizers.

The following theorem is the nonlinear analog of part (2) of Proposition 7 for states
z: Ay — {—1,1}. The numbers p, can be thought of as the spectrum for — A acting on
functions z: Ay — {-1,1}.

Theorem 5. Let k = [logy N| and for each n € {1,...,k} let p, denote the global mini-
mizer

—Azx,x
Hn = inf < 2 >’
z: An—{-1,1} ||z||3
z)=0
€Y,

where Y, denotes the subspace of Hn consisting of functions that are orthogonal to eigen-

functions corresponding to p1,..., s Then if N is even,
2n
,U,n:ﬁ ’I’LE{].,"',]{)}.

Proof. To obtain p; the extremal configuration is the square divided into two equal strips.
To get u, the extremal configuration is the square divided into 2™ congruent strips which
are alternating in signs. |

Question. Is it possible to obtain analytic expressions for the minimizers of the discrete
nonlinear problem from the minimizers for the continuous problem?
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6. FINAL COMMENTS

In Schelling’s original model neighbourhoods consist of eight neighbours. However,
there seem to be no essential qualitative differences between using the four and eight point
neighbourhoods or Laplacians in these models.

Some formulas (eg. Proposition 1) become significantly more complicated and lose
their geometric interpretations when using eight point neighbourhoods. One intriguing
difference is that using four point neighbourhoods, there are no unstable equilibrium states,
while the chessboard pattern (Figure 13) is an unstable equilibrium state using eight point
neighbourhoods. Another feature of the model with eight point neighbours is the existence
of additional global minimizing states consisting of diagonal strips.

There is a natural higher dimensional analogue of the model we have been considering.
Consider the phase space consisting of a three dimensional periodic lattice with each site
occupied by one of two distinct populations. If we were to model, for example, the pop-
ulations of quiet and noisy people in a large apartment building, for each site it would
be natural to consider the six nearest neighbours (four on the same horizontal level, plus
the neighbours directly above and below). With this notion of neighbourhood, all of our
results should easily generalize to this setting.

In Schelling’s original model the switching mechanism is essentially based on tolerance
thresholds, where, for example, two labelings for a pair of sites do not switch if the percent-
age of their similar neighbours lies above some tolerance threshold. For example, Schelling
considered the case where sites were happy provided that at least three out of its eight
neighbours share the same labeling. The effect of this is to dampen down the evolution of
the system before the true minimum of the Lyapunov function is attained. Our algorithm
can be viewed as a high tolerance approximation to the Schelling model. Empirically, the
models exhibit some similar features in their limit configurations.

REFERENCES

Cha] I. Chavel, Eigenvalues in Riemannian Geometry, Academic Press, 1984.

Chu] R. K. Chung, Spectral Graph Theory, American Mathematical Society, 1997.

CRS] D. Cvetkovic, P. Rowlinson, S. Simic, Eigenspaces of graphs, C.U.P., Cambridge, 1997.

EA] J. Epstein and R. Axtell, Growing Artificial Societies, Brookings Institution Press and the MIT
Press, 1996.

[FFK] R. Fernandez, J. Frohlich, and A. Sokal, Random Walks, Critical Phenomena, and Triviality in
Quantum Field Theory, Springer Verlag, 1992.

[GD] R. Gaylord and L. D’Andria, Simulating Society, Springer, 1998.

[Kaw] K. Kawasaki, Kinetics of Ising Models, Phase Transitions and Critical Phenomena (C. Doob, ed.),
vol. 2, Academic Press, 1972.

[Klu] P. Klugman, The Self-Organizing Economy, Blackwell, 1996.

[L] K. Liggett, Interacting Particle Systems, Springer Verlag, 1985.

[LY] T. Lee and C. Yang, Statistical Theory of Equations of State and Phase Transitions, Phys. Rev.
87 (1952), 404-419.

[S1]  T. Schelling, Models of Segregation, Papers and Proceedings, American Economic Review 59
(1969), no. 2, 488-93.

[S2]  T. Schelling, On the Ecology of Micromotives, fall, The Public Interest 25 (1971), 61-98.

[S3] T. Schelling, Dynamic Models of Segregation, Journal of Mathematical Sociology 1 (1971), 143-86.

[S4]  T. Schelling, Micromotives and Macro Behavior, Norton, 1978.

18

[
[
[
[



[VH] K. Vandell and B. Harrison, Racial Transition Among neighbourhoods: A Simulation Model In-
corporating Institutional Parameters, J. Urban Economics 5 (1978), 441-70.

MARK PoLLicOTT HowaARD WEISS
DEPARTMENT OF MATHEMATICS DEPARTMENT OF MATHEMATICS
THE UNIVERSITY OF MANCHESTER THE PENNSYLVANIA STATE UNIVERSITY
OxrorD RoAD M13 9PL MANCHESTER UNIVERSITY PARk, PA 16802
ENGLAND U.S.A.
EMAIL: MPQMA.MAN.AC.UK EMAIL: WEISS@MATH.PSU.EDU

19



