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ABSTRACT. The lattice gas provides an important and illuminating family of models in sta-
tistical physics. An interaction ® on a lattice L C Z% determines an idealized lattice gas
system with potential Ag. The pressure P(Ag) and free energy Fa,(8) = —(1/8)P(BAs)
are fundamental characteristics of the system. However, even for the simplest lattice sys-
tems, the information about the potential that the free energy captures is subtle and poorly
understood. We study whether, or to what extent, potentials for certain model systems are
determined by their free energy. In particular, we show that for a one-dimensional lattice gas,
the free energy of finite range interactions typically determines the potential, up to natural
equivalence, and there is always at most a finite ambiguity; we exhibit exceptional potentials
where uniqueness fails; and we establish deformation rigidity for the free energy. The proofs
use a combination of thermodynamic formalism, algebraic geometry, and matrix algebra.

In the language of dynamical systems, we study whether a Holder continuous potential
for a subshift of finite type is naturally determined by its periodic orbit invariants: orbit
spectra (Birkhoff sums over periodic orbits with various types of labeling), beta function
(essentially the free energy), or zeta function. These rigidity problems have striking analogies
to fascinating questions in spectral geometry that Kac adroitly summarized with the question
“Can you hear the shape of a drum?”.

We also introduce the free energy as a new geometric invariant for negatively curved
surfaces and discuss some of its properties. In this case we show that the free energy is
intimately related to a Poincaré-type series which encodes both the lengths of closed geodesics
and word lengths of the corresponding words in the fundamental group. Thus free energy
contains some refined information on the ratio of word length to hyperbolic length of closed
geodesics, as studied by Milnor.
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I.A. PuvysicAL MOTIVATION: DOES THE FREE ENERGY
OF A LATTICE GAS DETERMINE THE POTENTIAL?

The lattice gas provides an important and illuminating family of models in statistical
physics. An interaction ® on Z" determines an idealized lattice gas system, and the pressure
P(®) and free energy Fg(/3) are fundamental characteristics of the system. However, even
for the simplest lattice systems, the information about the interaction or the potential that
the free energy captures is subtle and poorly understood. We study whether, or to what
extent, potentials for certain model systems are determined by their free energy.

Following Ruelle [Rue, pp. 36-38], we consider the lattice Z% and the full shift space
¥m={1,2,--- ,m}Zd of configurations equipped with the product topology. For S C Z¢
define ¥ = ¥g = {1,2,---,m}°. When studying lattice gasses one usually begins with
an interaction ® - a function defined on all finite subsets A C Z? and which satisfies some

regularity condition. For example, the interaction ® for the general Ising model is defined
by

—h(z)é, if A ={z}
0 otherwise,

1The (formal) Hamiltonian for general the Ising model is

HE=— > J@y&by— Y hz)t.

(z,y)ezd z€ezZd

To prove convergence of the key quantities of interest, one is essentially forced to first define these quantities
on finite sets and then take a (thermodynamic) limit.
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where &, denotes the restriction of the configuration & to the site x.
One then constructs a partition function for each finite subset A C Z¢. Ruelle found
that it is often useful to study the associated potential function Ag on X™ defined by

Z o(¢]Y),

OEY

where #Y denotes the cardinality of the set Y. This potential is essentially the contribution
of the lattice site 0 to the energy in the configuration £, and the regularity requirement on
® ensures that Ag is well defined. Using this potential function and the d—dimensional
family of shift maps {o%,z € Z?}, one can construct an analogous partition function for
each finite subset A C Z?. More generally, for any continuous function A on ©™ and finite
subset A C Z%, one can define a partition function

Za(A) = ) exp (Z A(U””i*)) :

gesy zEA

where Y3 = {{ € X, |there exists £* € X™ such that { = £*|A} and where, for each
¢ € ¥} one makes an arbitrary choice of £* € ¥ such that {*|A = ¢.

To define the pressure and free energy of A one needs to compute the thermodynamic
limit as A — oo:

P(A) = “Al/‘oo” #A log Zp(A) and Fa(B)= —%P(ﬁA).

The pressure and free energy are the two fundamental objects of study in statistical physics
of lattice gasses. For instance, phase transitions correspond to non-differentiability for
some derivative of free energy. Establishing the existence of these limits is a non-trivial
task and regularity restrictions on the function A are required for the thermodynamic
limit to exist. A physically important class of interactions are the finite range interactions.
We study to what extent potentials (especially those related to finite range interactions)
are determined by their free energy. In particular, we show that for a one-dimensional
lattice gas the free enerqy of finite range interactions typically determines the potential,
up to natural equivalence and there is always at most a finite ambiguity (Theorem 3 and
Theorem 4); we exhibit exceptional potentials where uniqueness fails (Proposition 3.1); and
we establish deformation rigidity for the free energy (Theorem 5).

1.B. MATHEMATICAL MOTIVATION

Since free energy plays such an essential role in statistical physics, it is natural to study
this quantity for dynamical systems and Riemannian manifolds. In particular, one would
like to have a geometric/topological interpretation of the free energy. In the special case of
locally constant functions for subshifts of finite type, Tuncel [Tun1] introduced a quantity
closely related to free energy. This quantity was introduced as an invariant in coding
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theory for Markov chains and appears to have been studied only in this context. The term
beta function is a bit confusing, since in thermodynamics, beta usually denotes inverse
temperature and there is another beta function in dynamics which is the mapping of the
unit interval defined by £ — Bz mod 1. We will follow the established nomenclature in
the dynamics literature.

For a general smooth dynamical system 7" : X — X one can define the pressure of a
continuous function f : X — R using the variational principle:

P(f) =sup {hu (T) + / fdp : pis a T — invariant probability measure} ,
X

where h,(T) denotes the measure theoretic entropy with respect to the measure p. By
analogy with statistical physics, we define the free energy for f by

Fy(B) = =(1/8) exp P(Bf).

Since the first factor —(1/8) in the definition of free energy plays no further role in our
analysis, it is notationally convenient to replace the free energy by the beta function for f
defined by B¢(t) = exp P(Lf).

For certain classes of dynamical systems, e.g., subshifts of finite type and hyperbolic
maps, the beta function can be defined using Birkhoff sums (or Birkhoff averages) of the
function f over periodic orbits. This is one of a hierarchy of several natural periodic orbit
invariants, including the zeta function, the marked orbit spectrum (the set of Birkhoff sums
around periodic orbits labeled by the periodic orbit), the unmarked orbit spectrum (the
set of Birkhoff sums around periodic orbits labeled by the period), and the orbit spectrum
(the unlabeled set of Birkhoff sums around periodic orbits). The weak orbit spectrum
seems to be a less natural and less useful invariant than the unmarked orbit spectrum
in the context of subshifts of finite type. The main objectives of this paper are to study
the relations between these invariants and to show that in many cases the function f can
be recovered, up to some unavoidable natural ambiguities, from these various spectrum.
Results on subshifts of finite type and Holder functions can be easily reformulated in terms
of one-dimensional Axiom A flows (as we will elaborate at the end of this subsection).

We observe that such rigidity problems in the study of dynamical systems have striking
similarities to fascinating questions in length geometry (spectral geometry) which Kac
adroitly summarized with the question “Can you hear the shape of a drum?”. Given a
compact hyperbolic surface, the unmarked length spectrum consists of the set of lengths
of all closed geodesics, and the marked length spectrum (the analogue of the marked
orbit spectrum) consists of the lengths of closed geodesics labeled by the free homotopy
class of the geodesic. The marked length spectrum determines the hyperbolic surface
up to isometry [Ota], but the unmarked length spectrum does not [Vig, Sun, Bus]. By
analogy, for subshifts of finite type, the marked orbit spectrum determines the function
up to a natural equivalence (Lemma 1.2), while the unmarked length spectrum does not
(Proposition A.II.1). The unmarked length spectrum for a hyperbolic surface typically
does determines the surface [Wol] and there is a uniform bound, depending only on the
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genus of the surface, on the number of non-isometric hyperbolic surfaces having the same
unmarked length spectrum [McK]. By analogy, for subshifts of finite type, the unmarked
orbit spectrum for a locally constant function typically determines the function (Theorem
6) and that there is a uniform bound, depending only on the number of coordinates of
the locally constant function, on the number of locally constant functions having the same
unmarked orbit spectrum (Theorem 6). Finally, Guillemin and Kazhdan [GK] showed that
the unmarked length spectrum for hyperbolic surfaces is deformation rigid, i.e., there are
no smooth curves of non-isometric surfaces. We show the analogue of this result for the
unmarked orbit spectrum for Holder functions in Theorem 7.

We summarize these analogies in Table 1, where the hyperbolic surfaces (with fixed
genus) are determined up to isometry, and the locally constant functions (with fixed number
of coordinates) are defined up to coboundary and automorphism of the shift.

Hyperbolic surfaces Locally constant functions
Marked length spectrum Marked orbit spectrum
determines surface determines function
[Otal] [Livsic]

(true for negatively curved surfaces) (true for Holder functions)
Unmarked length spectrum Unmarked orbit spectrum
does not determine surface does not determine function

[Vigneras/Sunada/Buser] [Proposition A.II.1]
Unmarked length spectrum Unmarked orbit spectrum
typically determines surface typically determines function

[Wolpert] [Theorem 6]
Uniform bound on number Uniform bound on number
of surfaces with same of functions with same
unmarked length spectrum unmarked orbit spectrum
[McKean] [Theorem 6]

No smooth arc with same No smooth arc with same

unmarked length spectrum unmarked orbit spectrum
[Kazdan-Guillemin] [Theorem 7]

(true for negatively curved surfaces) (true for Holder functions)
Unmarked length spectrum Unmarked orbit spectrum
never simple never simple

[Randol] [Proposition 4.2]

TABLE 1. SUMMARY OF RESULTS ON ORBIT SPECTRUM AND COMPARISONS
WITH CORRESPONDING RESULTS FOR HYPERBOLIC SURFACES

In a slightly different direction, we show that there exist uncountably many inequivalent
Holder continuous functions sharing the unmarked orbit spectrum (Proposition A.I.1).
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Our results for the unmarked length spectrum are intimately related to corresponding
results for the beta and zeta functions. For example, a knowledge of the unmarked length
spectrum is equivalent to a knowledge of the zeta function (Proposition 2.2). In contrast,
the beta function is a more subtle invariant.

This paper is organized into separate sections on rigidity for the zeta function (§II),
rigidity for the beta function (§III), and rigidity for the unmarked orbit spectrum (§IV).
The free energy or beta function seems not to have been previously studied for geodesic
flows, and there seems to be no geometric characterization of free energy in the literature.
In §V we show that the graph of the beta function has many features which are reminiscent
of the Manhattan curve of Burger [Bur| and contains some refined information on the ratio
of word length to hyperbolic length of closed geodesics, as studied by Milnor [Mil] (The-
orem 8). In the three appendices we construct functions which exhibit various types of
degeneracy or (strong) nonrigidity. For instance, in Appendix I we construct an uncount-
able family of Holder continuous functions which share the same unmarked orbit spectrum
and thus have the same free energy. We also observe that Theorem 5, deformation rigidity
of free energy, naturally extends to smooth hyperbolic maps.

Whereas the analogy between length spectrum rigidity for geodesic flows and the prob-
lems we consider is a useful guide, it is not possible to translate results directly from one
setting to the other. For example, the height functions over subshifts of finite type corre-
sponding to geodesic flows on hyperbolic surfaces form a very small subclass of all Holder
functions. Furthermore, the automorphism group of a Riemann surface is typically trivial
(and always finite), while the automorphism group for a subshift of finite type is usually
quite large. This crucial disparity arises from the fundamental difference in the topology
of the spaces involved.

More generally, we consider the situation we are studying as the Axiom A analogue
of the results for geodesic flows, at least in the case where the functions are positive.
More precisely, we recall that for any subshift of finite type o : X — X and any Holder
continuous function f : X — R we can construct a space

X' ={(z,t) e X xR: 0<t< f(x)},

where we identify (x,7(z)) ~ (02,0), and a flow ¢ defined locally by ¥ (x,t) = (z,t + u),
subject to the identifications. The following result is a corollary to a theorem of Bowen
and shows the relationship with Axiom A flows. Any Axiom A flow (restricted to a basic
set) is called one dimensional if the basic set has a cross section which is a Cantor set.

Proposition 1.1 [Bow|. For any one-dimensional Aziom A flow we can associate a sub-
shift and Hoélder continuous function for which the length spectrum coincides with the orbit
spectrum. Conversely, given any Holder continuous function and any r > 1 there is a C"
Aziom A flow with a basic set whose length spectrum coincides with the orbit spectrum.

In particular, we see that the questions we consider about Holder continuous functions
could be equally well formulated in terms of the properties of one-dimensional Axiom A
flows. This helps to reinforce the analogies with the problems for surfaces and geodesic
flows.



[.C SUBSHIFTS OF FINITE TYPE AND THEIR PERIODIC ORBIT INVARIANTS

Let A be a n x n aperiodic (transition) matrix with entries 0 or 1. We define

oh= {x e [[{1,2,...,n} : A(zr, 2p41) = 1}
k=0

which is compact, totally disconnected, and zero dimensional in the Tychonoff product
topology. Let o : ¥ — Y7 be the subshift of finite type defined by (0z), = Z,41. Since
A is aperiodic, the shift map is topologically mixing and has a dense set of periodic points.

We let Aut(o) be the group of shift commuting homeomorphisms 7 (i.e., o7 = T00).
This group is always countable and except in cases of small n contains free groups. This is
in stark contrast to the situation for hyperbolic surfaces where the group of automorphisms
is always finite and typically trivial. This crucial disparity arises from the fundamental
difference in the topology of the spaces involved. In particular, it is natural that the zero
dimensional space Ej allows a much larger space of automorphisms.

We define a metric on ¥} by d(z,y) = Yoo (1 — 85,4, )/2™ that enables us to define
the Banach space of Hélder continuous functions on ¥}. An important class of Holder
continuous functions are the locally constant functions, i.e., functions that only depend
on finitely many coordinates. We let LC(n) be the n-dimensional vector space of locally
constant functions which depend on only the first n coordinates. These spaces are nested,
ie., LC(n) C LC(n+ 1) for all n € N. In the physical nomenclature, locally constant
functions correspond to finite range interactions which form an important class of potentials
for lattice gasses. If f is a locally constant function, then after recoding if necessary, we
can always assume that f(z) = f(zoz1), i.e., f is in LC(2) for some subshift of finite type.
For such functions the thermodynamic formalism reduces to matrix algebra.

Let f : ¥} — R be a Hélder continuous function and let S, f denote the sequence of
Birkhoff sums

n—1
Snf(@) =) f(o"x).
k=0
We can associate to f the unmarked orbit spectrum
Ly =A{(Snf(z),n): 0"z =z}
and the weak orbit spectrum
Wi ={Spf(z): o"x = x}.

Since the weak orbit spectrum does not contain the periods of the orbits, it is a weaker
invariant than the unmarked orbit spectrum. In Appendix IIT we construct an uncountably
family of pairwise inequivalent Holder continuous functions with different unmarked orbit
spectrum, but all sharing the same weak orbit spectrum.

The following observation shows two natural ways for functions to have the same orbit
spectrum. The proof is obvious.



Lemma 1.1.

(i) If f1 and fy are cohomologous (fi ~ fa), i.e., there exists a function u € C(X,R)
with fi — fo=uoo —wu, then Ly, = Ly,;

(ii) If fo = f1o7 where T € Aut(o) is a shift commuting homeomorphism (i.e. coT =
To0), then L = Ly,.

Thus when studying the orbit spectrum, it is natural to ignore, or to factor out, these
two type of trivial relations.

Definition. We define two functions f; and fs on Ej to be equivalent, f; =~ fy, if
fa ~ f1 o7, where 7 € Aut(c). We say two functions are non-equivalent if they are not
equivalent .

The simplest type of such shift commuting homeomorphism 79 € Aut(c), at least in
the case of a full shift, is given by some perturbation of the alphabet. For one sided
subshifts of finite type these questions were studied by Hedlund [Hed], who showed that
the automorphism group of the (one-sided) full shift on two symbols is simply generated by
the shift map and permutations of blocks of symbols. In contrast, he showed that for the
(one-sided) full shift on three or more symbols the automorphism group is more complex.

We can also associate to f the marked periodic spectrum

My¢p={(Snf(z),z): 0"z = z}.
The following observation shows that the marked orbit spectrum essentially determines
the function f up to cohomology.
Lemma 1.2. Two functions fi and fa are cohomologous if and only if Ly = Ly,
Proof. This is an immediate corollary of Livsic’s Theorem [Liv]. |

Two other important invariants of a function f: Ejg — R are the zeta-function, (r,
defined by the power series

et Zend T S expltSaf(x),
n=1

o=z

and the beta-function, B¢, defined by (f(t) being the reciprocal of the radius of conver-
gence of the zeta function (¢(2,t), i.e.,

n—oo N

log B¢(t) = P(tf) = lim 110g< S exp (tsnf(:v»), (1)

or=x

where P(g) denotes thermodynamic pressure of a general Holder continuous function g
defined by

P(g) = lim %mg( > e <sng<x>>>.

ohrz=zx
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For subshifts of finite type this definition of pressure is equivalent to the variational defi-
nition given in [.B.

If f is a locally constant function, after recoding if necessary we can always assume that
f(x) = f(zox1). A routine calculation [PP] shows that

1

Gz t) = det(I — zAs.4)’ @)

where Ay denotes the n x n matrix with entries Ay (4, ) = A(4, j) exp(f (4, 7))
The hierarchy of these four invariants is illustrated by the following diagram

himfo= Ly =Lf, = (s, =, = B, = Pp-
In this manuscript we investigate under what conditions these arrows can be reversed.

II. THE ZETA FUNCTION

The main result in this section is that the zeta function for locally constant functions
typically determines the equivalence class of the function. We begin with the following
simple lemma for matrix algebra. We recall that P is a permutation matriz if exactly one
entry in each row and column is equal to 1 and all the others are 0.

Lemma 2.1. Let B = (b;;) be a nxn matriz with non-negative entries and let B(*) = (v%;)
denote the Hadamard t-th power of B with characteristic polynomial q(z,t) = det(tI—B®).

(1) The polynomial q is invariant under conjugation of B by any permutation matriz
P, ie., q(z,t) = det(tI — (P~'BP)®) for all t € R. There are precisely n!
permutation matrices of size n X n.

(2) For integer values of t, the polynomial q is invariant under conjugation of B by
any diagonal matriz D, i.e., ¢(z,n) = det(nI — (D~*BD)™) forn € Z.

Proof. The proof is a straightforward calculation. [ |

Since the characteristic polynomial g(z,n) of B (*) is invariant under conjugating B by a
permutation matrix, Lemma 2.1 implies there is an inherent finite ambiguity in trying to
recover B from ¢(z,n). At best, one can recover B only up to conjugation by a permutation
matrix, and there are n! permutation matrices.

The following is a generalization of a lemma on Newton’s identities [Wae| allowing
negative terms, and is a special case of a result on Dirichlet series due to Mandelbrojt
which will appear in Proposition 2.2.

Lemma 2.2. Consider an expression of the form

S() =AML+ A+ AL = A~ Age =~ Ay
9



where A, > 0 and t € R. Then one can obtain the numbers A\, (up to permutation) from
s(t).

Proof. In the special case that s(t) = A + A5 + -+ X! is a sum of powers, the lemma
follows immediately from Newton’s identities, in which case one only needs to know
s(1),s(2),...,s(m).

Now assume that in s(¢) no two of the numbers A; coincide; the most general case
requires a trivial modification to this argument. Then

0, if0§r<rr5nAk}

‘ ) m Pt m—+n ot
tli)rgort (—t):tlgrolo{z <>\_k) B Z <E) }:{ioo, ifrEII}cin)\k

k=1 k=m+1

where the minimizing A belongs to {1, ..., Ay, } if the limit is +00 and the minimizing A
belongs to { A1, -5 Amant if the limit is —oo. Hence one can first detect the smallest
Ar as the jump point of the limit, remove that A; from the sum, then detect the next
smallest \g, remove it from the sum, and so on. |

When studying the zeta function of a function f € LC(2) it is notationally convenient to
work with the characteristic polynomial ¢f(z,t) = det(z] — A?)) of Agct) instead of (f(z,1).
Using the expression for the zeta function in (2) one can easily see the relationship

qp(z,t) = 2"¢p (1) 2, )L

Proposition 2.1. There ezists an explicit uniform bound C = C(n) > 0 on the number
of n X n aperiodic matrices with non-negative entries (up to conjugation by diagonal and
permutation matrices) with the same characteristic polynomial q(z,t). Furthermore, the
typical such n X n matriz is actually determined by its characteristic polynomial q(z,t) (up
to conjugation by diagonal and permutation matrices).

Proof. Let us first consider the case where the entries of B are positive. We only need to
work with E1(B®), Ey(B®), and E3(B®), the first three principal minors for the matrix
B®, Tt is well known [HJ] that these three minors are the coefficients of the first three
terms (in 2) in gy, i.e., q(z,t) = 2" — Ey(B®)2" "1 + E5(BM)2"~2 — ... £ E,,(B®), where
E;(B®) denotes the i-th principal minor of B(*) and that the principal minors of B are
themselves invariant under conjugation by diagonal and permutation matrices.

By conjugating B by a suitable diagonal matrix, we can assume that each entry in
the first column of B is 1 except (possibly) the entry by;. The first principal minor,
E1(B®) = trace(B®), is the sum Y., b;, which by Lemma 2.2 determines the unordered
list of diagonal entries {b11,b22,...,bnn}. Since we are only interested in recovering the
matrix B up to conjugation by permutation matrices, we can assume we know the ordered
list of diagonal entries.

The general term in the second principal minor corresponds to the determinant of the
special principal matrix B® {4, j} and is of the form bi;b%; — bi;b%;. In particular, when
i =1 and j > 2, the terms are of the form bj,b%; —bf;. Let us assume the genericity
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condition b;b%; # by, by, for all 4, j, k,I. Then Lemma 2.2 allows us to obtain the unordered
list of all double products {b;;b;;}. Included in this unordered list are all the entries from
the first row {bljbjl} = {blj}.

The general term in the third principal minor corresponds to the determinant of the
special principal matrix B {i, j, k} and is of the form b;b% bl — bfbL bt — bbbl —
by D% + bbb 4 bf;bEbE . Let us also assume the degeneracy condition that for all
{i,7,k} all six terms are distinct and do not cancel with any terms in the determinant
of other special principal matrices B(t){q, r,s}. The matrices which do not satisfy all our
nondegeneracy assumptions are easily seen to form an algebraic variety of codimension
one.

Included in E3(B (t)) are terms of the form bzkbﬁj b; x> Where we already know the diagonal
elements bt . This observation, along with our genericity assumptions and Lemma 2.2,
allows us to obtain, without any ambiguity, all double products {b;;b;;}, including all the
entries of the first row {b1,}.

We now show how to recover the general entry bj;. The components of F5(B) include
all terms b;1b1xbg; for j > 2, and thus terms bixbg;. Let 7 be one of the terms in E3(B),
and suppose that

bixbks
T = bigbr; = bip—4—=.
bjk
Inverting this expression, we obtain
bjk Dk

bjr = big—,
T

where we know the terms b1, and b;;b;. Since E3(B) contains terms of the form by;b;;b;x,
it contains the special terms of the form by1b1;b;x, and thus terms by;b;x for & > 2. Thus
if we multiply the expression obtained just above for bj; by the known term b;;, we
must obtain a term in F3(B). If we do not, then our genericity assumption implies that
T # bixbg;. This lets us determine the product by1;b;x, and since we know the element b},
it lets us determine the entry b;.

If B is non-generic, it may a priori happen that the product b1;b,; (in the previous
paragraph) is a term in E3(B), even though 7 # bixbg;. Dividing by bi; would give the
wrong value of bj,. However, very crudely, one can not obtain more than #FE5(B) < 6n?
wrong values for bji. Thus, again very crudely, there are at most C(n) = (6n%)"" such
matrices with the same characteristic polynomial g(z,1).

For a general matrix B with non-negative entries, by assumption, there exists an integer
M > 1 such that B™ has all positive entries. Since the characteristic polynomial for B
determines the characteristic polynomial for B™, we can apply the preceding argument
to the characteristic polynomial for B™, to obtain the matrix B™ up to conjugation by
diagonal and permutation matrices. By extracting the (unique) M-th root of B we can
recover the matrix B up to conjugation by diagonal and permutation matrices. |

We remark that Proposition 2.1 need not hold for a general non-aperiodic matrix with
11



non-negative entries. Consider the matrix B defined by

0 e
1 f
0 1—e—f

B =

o O =

Since the matrix B and hence B® are upper triangular, the characteristic polynomial
q(z,t) = (z—1)%(2 — (1 — e — f)!). Hence one can obtain e+ f from q(z,t) but there is no
way to obtain e and f separately.

We also remark that C(2) = 1. After conjugating by a diagonal matrix we can assume

that
a b
b= (2 1),
The entry b is positive since B is aperiodic. Knowledge of the trace of B®) together with
Lemma, 2 gives the diagonal entries ¢ and d, up to permutation. Since we can conjugate
B by a permutation matrix, we can assume that we know a and d precisely. If det B # 0,

then the knowledge of the determinant of B®) together with Lemma 2 gives b. Since the
only way for det B = 0 is for b = ad, we can obtain b precisely when det B = 0.

We now show that conjugating the matrix representing a locally constant function by
a permutation matrix results in a new function which differs from the original function by
an automorphism of the shift.

Lemma 2.3. Consider a locally constant function f represented by the n x n matriz
Ay. Let P be a n x n permutation matriz and let g denote the locally constant function
represented by the matriz By = P_lAfP = PTAfP, where PT denotes the transpose of
P (we are using the fact that P~ = PT for any permutation matriz). Then the functions
f and g are related by an automorphism of the shift determined by permuting the n letters
of the alphabet by the permutation defined by P.

Proof. Let us write the permutation matrix

T1 11 Ti2 -0 Tin
L) 2,1 T22 -+ T2n
P = =
Tn T, T2 -~ Tnn
The matrix P induces a permutation 7 : {1,...,n} — {1,...,n} by defining rx = e, (1),
where e denotes the row vector (0,0,...,0,1,0,...0) which contains a single 1 in the

k-th place and 0 in all other places. This permutation defines an automorphism o of the
subshift Ej simply by replacing every occurrence of the letter k£ in a word by the letter
7(k).
The (4, j) entry of the matrix By = P~YApPis > ¢, Y1 riir,j exp(f(k,1)), and thus
the (z,7) entry of the matrix for the function goo is Yy, Y7, v ;715 exp(f(7(k), 7(1)))-
12



From definitions, we see that all of the products r ;r; ; vanish unless ¢ = 7(k) and j = 7(1),
in which case the (4, j) entry of the matrix for g o o is exp(f (3, j)). [ |

It is implicit in the hypothesis of Lemma 2.3 that conjugation by the permutation matrix
P preserves the transition matrix of the subshift of finite type. If this is not the case then
the two functions f and g are defined on different subshifts of finite type.

The next lemma says that in all but the trivial case the matrix obtained by conjugating
a column stochastic matrix by a diagonal matrix is not column stochastic.

Lemma 2.4. Let A denote an aperiodic n X n non-negative column stochastic matriz and
D a diagonal matriz such that D=*AD is a column stochastic matriz. Then D is the
identity matrix.

Proof. If A = {A;;} and D = diag{d,...d,}, then D™YAD = {(d;/d;)a;;}. Since the
matrix D~!AD is invariant under multiplication of D by a scaler, we can assume that d; =
1. Since A is column stochastic, the column sum must satisfy Z?:l a;; =1lforj=1,...n,
and thus (1,...,1) is a left eigenvector of A with eigenvalue 1. For D=1 AD to be column
stochastic, the columns must satisfy Y .., d;a;; = d; for j =1,...n, and thus (d4, ... ,d,)
is a left eigenvector of A with eigenvalue 1. By simplicity of the maximal eigenvalue (we are

assuming that the transition matrix is aperiodic) we deduce that (dy,...,d,) = (1,...,1).
|

From the above results we conclude the main result of this section.

Theorem 1. Let A be a n X n transition matriz, (Zj, o) be a mizing one-sided subshift of
finite type, and f € LC(m) be a locally constant function. Then there are at most C(n™)
non-equivalent locally constant functions in LC(m) with the same zeta function. Further-
more, for generic f € LC(m) (i.e., on the complement of a codimension one algebraic set)
the zeta function determines the function (up to conjugation by diagonal and permutation
matrices).

Proof. By recoding, we can assume that f € LC(2) for a new subshift on n™ symbols.
We apply Proposition 2.1 to the matrix A; and use Lemmas 2.3 and 2.4 to show that the
ambiguity in the conjugacy corresponds to equivalence of functions. |

Corollary 1.1. Given any locally constant function f there are alt most countably many
non-equivalent locally constant functions g with the same zeta function.

Proof. Tt suffices to observe that if f € LC(m) and g € LC(m +1) for I > 0, and f and
g share the same zeta function, then Theorem 1 shows that there are finitely many non-

equivalent classes of such functions g. By considering the union over [ the result follows.
[ |

In Appendix IT we construct examples of non-equivalent locally constant functions with
the same zeta function. In particular, this shows that C'(m) > 2 for some m.
In the more general context of Holder continuous functions, it is easy to see that knowl-
edge of the zeta function is equivalent to knowing the unmarked orbit spectrum.
13



Proposition 2.2. The zeta function for a Holder continuous function determines the
unmarked orbit spectrum, i.e., Cy, = (g, tmplies that Ly = Ly,. Thus (y, = (y, if and
only if Ly, = Ly,.

Proof. Let us write ((z,t) = Y oo (2"/n)an(t), where a,(t) = Y n,_, exp(tSnf(z)).
The power series ((z,t) defines a holomorphic function in z in the disk of radius exp 8(t).
This implies that the functions a,(t) are all uniquely determined and can be obtained by
differentiating the power series for fixed t. For each n we can apply Lemma 2.2 to the
sum of exponentials to obtain the set of numbers {S,,f(x): 6™ (z) = z}, and thus we can
recover the entire unmarked orbit spectrum. |

The zeta function, being a function of two variables, seems to contain a great deal of
information about the function. Below we show that if we fix the variable z = 1, the zeta
function still captures the weak unmarked orbit spectrum.

Proposition 2.3. The restricted zeta function (;(1,t) determines the weak orbit spectrum,
i.e., (g (1,t) = (g, (1, ) implies that Wy, = Wy, .

Proof. We can expand a restricted zeta function as a Dirichlet series

Cf(l’ t) = Z Qap €XP (_,unt)a
n=1

where 1 < pg < ... — 00 are real numbers corresponding to the unmarked orbit spectrum
and a,, € C. This series converges on a half-plane containing some point ¢ € R. Then by
a result of Mandelbrojt [Man, p.388] we have for each v € R

N Tgf(1,c+it)
Y ) =Q Tw (ct+it)?

Bn <V 0 if v <.

expv(c+iat)dt ifv>p

In particular, this allows us to recover the coefficients a,, and the exponents p,, uniquely
(up to permutation). [ |

Finally, we show that the zeta function is deformation rigid. We call this property
isozetal rigidity.

Theorem 2. Let (EX,O’) be a mizing one-sided subshift of finite type. Assume that
(—€,€) DA — fr € C*(Z1,R) is a C? family of Hélder continuous functions with identical
zeta functions (i.e., (¢, = (s, for all —e < X\ < €). Then the deformation is trivial, i.e.,
x~ fo forall —e < XA <e.

Since we will prove a stronger result on beta functions in Section III.B, we omit the
proof of this theorem.

14



III.A THE FREE ENERGY AND BETA FUNCTIONS: LOCALLY CONSTANT FUNCTIONS

We remind the reader that we shall use the terms free energy and beta function in-
terchangeably, since they are trivially related. Our formulation will be in terms of beta
functions. We begin by showing that it is not always true that the beta function determines
the zeta function.

Proposition 3.1. There exist locally constant functions fi, fo with By, = By, but Cp #
Crr-

Proof. Let ©5 =[] ,{1,2}. We can choose two rationally independent numbers 0 < a <
b and define locally constant functions

(IifiL‘():l

a if (xo,2z1) = (1,1) or (2,2)
bif (zo,z1) = (1,2) or (2,1)

filz) = { and  foz) = {

We easily see that Sy, (t) = By, (t) = exp(ta) + exp (tb). Using (2), the associated zeta
functions are given by

1—zexp(ta) —zexp (ta)

-1 __
Cfl (Z’ t) = det ( —zexp (tb) 1-— Z eXp (tb

) > =1 — z(exp (ta) + exp (tb))

and
1 1—zexp(ta) —zexp(th)
Cra(2,8)7" = det ( —zexp (tb) 1 — zexp (ta)
= 1—2zexp (ta) + 2 (exp (2ta) — exp (2th)),
which are clearly different provided a # b. |

We now discuss the ambiguity with which the beta function determines the function.
There do exist functions f for which the beta function 3¢ does determine the equivalence
class of the function f. A trivial example is a coboundary f = u oo — u. In this case, the
beta function 8y = 0. Ruelle observed (see Lemma 3.3) that the lack of strict convexity of
the pressure function implies that the function must be a coboundary.

We now show that typically the beta function for a locally constant function f determines
the equivalence class of the locally constant function.

Theorem 3. Let (Ej, o) be a mizing one-sided subshift of finite type with incidence matriz
A. For each m € N, for generic locally constant functions f € LC(m) the B-function
determines the equivalence class of the function in LC(m).

The strategy for the proof of Theorem 3 is as follows. Proposition 3.2 below says that
typically the beta function determines the characteristic polynomial. Proposition 2.1 says
that typically the characteristic polynomial determines the function. Combining these
results then gives Theorem 3. More precisely, we show that typically the characteristic
polynomial ¢¢(z,t) is minimal and thus the beta function determines g¢(z,t).
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We begin with a few preliminaries. Suppose that 8y, = By,, for fi1, fo € LC(m). By
recoding if necessary, we can assume that fi, fo € LC(2). Both functions have the same
pressure P = log 3(1). Let A be the associated n x n transition matrix.

If p; is the unique equilibrium state for f;, let g; denote the the Jacobian function
defined by g;(xo,21) = do*u;/du;(zo,x1), whenever A(zg,z1) = 1, and zero otherwise.
There exists u(z) = u(xg) such that f; = g; +uoo —u+ P. By construction 34, = 34, and
P(g1) = P(g2) = 0. Thus the function g; can be viewed as a canonical representative in
the cohomology class of f;. It suffices to show that generically g; is cohomologous to gs.

We can associate to g; and g, non-negative column stochastic matrices Py = (Py(r, s)):;
and P, = (Pa(r,s))i;j, where P;(r,s) = A(r,s)expg;(r,s) for 1 < r,s < n. The function
Bg; (t) is the maximal eigenvalue for Pi(t) = (P;(r,s)t), the matrix given by raising all of
the entries to the power ¢. The matrices Pi(t) € M,(R), where Myn(R) denotes the ring
of n x n matrices with entries in the ring

k
R = {Znia’; ' n; € 7,a; >0},
i=1

and the beta function Sy, (¢) is a zero of the characteristic polynomial g;(2,t) = det(z] —
rY) e Z[R).

Proposition 3.2. The beta function B¢(t) for a locally constant function defined by a nxn
non-negative column stochastic matrix A typically determines the characteristic polynomial

qr(z,t).

The minimal polynomial p(z) for Bf(t) is the (unique) monic polynomial in Z[R] of
smallest degree for which p(8¢(t)) = 0. Clearly the beta function always determines its
minimal polynomial. We begin by recalling the following result.

Lemma 3.1. The minimal polynomial p(z) for B¢(t) divides the characteristic polynomial
qf(z,t). In particular, if q¢(2,t) is minimal, then it is determined by the beta function.

Proof. We include a sketch of the proof (due to Tuncel cf.[Tun2]) for completeness. Let us
consider the field F of rational fractions on R. We define an ideal Z C F[z| by

I={f(z1t) € Flz] : f(B(t),t) =0}

Since F|z] is a principal ideal domain [Fra, p. 282] there exists an element p(z,t) € F|z]
such that Z = p(z, t)F[z]. The element p(z,t) must have minimal non-zero degree in Z since
it is generating. In particular, we can write g7 (z,t) = p(z,t)-s(z,t), for some s(z,t) € F|z].
Suppose that gf(z,t) = 2! =gzt — ... —q_1z2—qr, p(z,1) = 2% —p12¥ = . —pa_12— D4
and s(z,t) = 2™ —s12™ ' — ... — 8,12 — S, where the coefficients ¢; € R and p;, s; € F.

Let S be the group ring over Z generated using all the exponentials from the p;, and
exponentials from the numerators and denominators of p; and s;. We can assume that
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pi = Pi/po and s; = §;/so, say, where p;, po, 3,50 € S. We can then rewrite g¢(2,t) =
p(z,t) - s(z,t) as an identity in S:

L gz —q
1

sopo 21 — q12'”

= [ﬁozd — P12t !

— . — P17 —ﬁd} [sozm — 512" — . =812 — §m}

However, since S is a unique factorization domain each irreducible factor of pgsy must
divide one of the two terms multiplied on the right hand side. For example, if it divides

the first term, then it divides each term py, ... ,pHq, and is thus invertible (since they can
be assumed to be coprime). Thus pg is a monomial and p(z,t) € R[z]. We deduce that p
is a minimal polynomial of 3(t). [

By a typical matrix A we mean that no non-trivial product of integer powers of entries
a;; is equal to 1 (or equivalently, the numbers log a;; are rationally independent).

Lemma 3.2. A characteristic polynomial q¢(z,t) for a typical n X n non-negative column
stochastic matriz A is minimal, i.e., g7(2,t) # a(z,t) - b(z,t), where a(z,t),b(z,t) € Z[R]
are non-constant functions.

Proof. If we assume for a contraction that the characteristic polynomial is not minimal
and we write it as a product ¢s(z,t) = a(z,t) - b(z,t), then we can multiply out the
coefficients and obtain a contradiction by comparing equations from the coefficients of the
two polynomials multiplied together.

First, consider for the purposes of illustration the case of degree 2. The general case is
similar. Assume for a contradiction that we can write

qr(z,t) = 22 — tr(A®)z — det(AD)

= (2= D1z = D myn)

=2 Zli)\g + ij,u;- z+ Zlimj)\ﬁp,;.
@ J 4,J

Let A = (lfq 1;p>. Then tr(A®) = pt + ¢* and det(A®) = ptgt — (1 — p)t(1 — 1)%.

Comparing the z coefficients we see that {\;, u;} = {p,q}. However, comparing the con-
stant terms we see that we have {\;u;} = {pg, (1 — p)(1 — q)}. However, this means that
pg=(1-p)(1—4q),p?=(1—-p)(1—q) or ¢> =(1—p)(1 — q), which imposes relations on
p and ¢. For typical functions this condition fails. This contradiction shows that gz (z,t)
is minimal in the case n = 2.

For the general case, let us consider a typical matrix

a11 QAi2 -+ Q1n

Q21 Q22 ~--- Q2
A=

Gn1 QAn2 -~ Qnn
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Then we can write
n
qar(z,t) = 2" — (Z a;:‘,-) AN DI D ah)he(a) Oy
=1 ’L:,é] TES

where S,, denotes the set of permutations on n symbols. Let us assume for a contradiction
that gf(z,t) = a(z,t) - b(z,t) where a(z,t),b(z,t) € Z[R]. If we write

a(z,t) = 2% + (Z li)\f) P (Z miﬂi)
i r
b(z,t) = 2" % + Z kjad | 2" 4+ (mels) )
J !

then we see that

qf(z,t) = 2" — (Z L+ Zkia’;) 2+ Zmipl,uﬁnf . (4)
i A Tl

Comparing the coefficients of (3) and (4) we see the following:

(1) By comparing the constant terms we have that

+ Z a‘im)agf(z) m(n) Zm"pl“T"l
TESH

In particular, there is a correspondence between the terms p,7n; and the terms
A17(1)A27(2) " Anr(n) for some 7 € S,,.
(2) By comparing the z¢ term we have that each 7, must be of the form

A17(1)027(2) * * " An7(n)

: (5)

ailil cte a’in—din—d

for some permutation 7 € S,,, which also fixes precisely d-terms iy, ... ,iq (i-e., (5)
represents the terms for all the fixed points of the permutation). This is easily seen
since in the expansion of det(zI — P?) the z¢ contribution comes from d entries on
the diagonal corresponding to rows (and columns) iq,... ,iq, say.

(3) Similarly, by comparing the 2”~¢ term we have that each p, must be of the form

A17(1)27(2) * " An7(n)

6
Qiygy -+ - Qi _gin_g ’ ( )
for some permutation 7 € S,,, which additionally fixes precisely (n — d)-terms

Zla 7’7’1, da-
18



Consider any term ai,(1)G2r(2) " * " Gnr(n) Where 7 € S, has no fixed point. This must
occur in the constant term described in (1). However, this cannot be written as a product
of a term 7, of the form (5) and a term y,. of the form (6).2 This contradiction shows that
qf(z,t) is irreducible. [

Remark. For n < 4 one can also show these results using the quadratic, cubic, and quartic
formulae. In the case n = 2 let
a 1—-0
A= .
(1 —a b )

The characteristic polynomial of A® is q(z,t) = 22 —trA® z+det A®). For this expression
to be factorized into two linear non-trivial polynomials over R we require that the square
root, of the discriminant lie in R, i.e.,

VirZA® — 4det A® = \/(at + bt)2 — 4(atb? — (1 — a)t(1 — b)) € R.

This can only hold when a + b = 1.
Since B(t) is the maximal eigenvalue of A®) it follows that

285 (t) = trA® + \/tr2A®) — 4det A®),

If tr2 A®) £ 4det A®) | the beta function determines both trA® and vtr2A®) — 4det A®).
Substituting trA®) into the term in the square root, one sees that the beta function also
determines det A®, and thus ¢(z,t). The nondegeneracy condition is equivalent to the
condition a 4+ b # 1.

The following theorem shows that for any f € LC(m) there are only finitely many
functions in LC(n) with the same beta function. The proof uses an interesting interplay
between ring theory and thermodynamic formalism.

Theorem 4. Let (Ez, o) be a mizing one-sided subshift of finite type. For eachm € N and
every locally constant function f € LC(m), there are at most finitely many non-equivalent
locally constant functions in LC(m) with the same beta function.

Proof. Given the beta function associated to f we can consider the family of stochastic
matrices given by

n
S = {P : Y P(i,j) =1, for all j and det(8(t)] — PM) =1, for all t € ]R} .
=1

2To illustrate this, consider the case of a full shift on 4 symbols and n = 4. The “factors” of degrees
d = n—d = 2. The constant term of det(zI — A?) is a sum of 24 terms of the form 1a17(1)027(2)837(3)347(4)>
where 7 € S4 is a permutation on 4 symbols. This includes ai2a23a34a41 corresponding to the cyclic
permutation (1234) The coefficient of 22 must be a sum of the terms a;jaj; and ag;a;;, since each 22
contribution eliminates 2 rows (and columns) and the corresponding coefficient is the determinant of the
remaining 2 X 2 matrix. In particular, we need that ai2a23aszqaq1 = a;jaj;arsasr, say, which is impossible
for a typical matrix.
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By analyticity considerations this is equivalent to
n
S = {P : ZP(i,j) =1, det(B(t)I — P®) =1, for all j and for all k € N} .
=1

It is convenient to use this latter formulation to think of S as being an algebraic set in
R" given by an infinite set of polynomials. However, any such algebraic set can always
be defined by only finitely many polynomials by the Hilbert Basis Theorem [Ful, p.13]. In
particular, there are two possibilities:

(i) S is a finite set; or
(ii) S contains non-trivial connected components.
However, case (ii) cannot occur, since it contradicts Theorem 5 (Deformation Rigidity).
We therefore conclude that S is finite, as claimed. [ |
The proof of the following corollary is very similar to the proof of Corollary 1.1.

Corollary 4.1. Given any locally constant function f there are at most countably many
non-equivalent locally constant functions g with the same beta function.

III.A THE FREE ENERGY AND BETA FUNCTIONS: HOLDER CONTINUOUS FUNCTIONS

In this section we prove the beta function is deformation rigid. In particular, this
implies that there are no connected sets of isobetal functions. We call this phenomena
isobetal rigidity. We observe that our proof easily extends to the beta function for smooth
hyperbolic maps and Holder continuous functions.

Let us briefly recall Ruelle’s derivative formulas for pressure [PP, Rue].

Lemma 3.3. Let f and g be Holder continuous functions on Ej{.

(a) The first derivative of pressure can be expressed as

9
0s

P(f + sg) =/ gdpy,
)Y

s=0

where g is Gibbs measure for potential f.
(b) The second derivative of pressure can be expressed as

82
[ P pu—
95| _, (f + sg) = var(yg),
where py is the Gibbs measure for potential f (i.e., P(f) = hy, (o) + fEX fdug),

and

n—1 2
1 .
= li — ') — > 0.
vary,(9) = lim — /E ) <k§=09(0 z) /2 \ gduf> dpg(x) > 0

(c) The expression vary,(g) = 0 if and only if g ~ c, where c is a constant.

This brings us to the statement of isobetal rigidity.
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Theorem 5. Let (Zz,a) be a mizing one-sided subshift of finite type. Assume that
(—€,€) DX — fr € C*(ZH,R) is a C? family of Hélder continuous functions with identical
beta functions (i.e., By, = By, for all —e < A < €). Then fr ~ fo for all —e < X <.

Proof. For any sg € (—¢,€) we can use the C? assumption to make the expansion
Js = foo + (s = 50)F) + (5 = 50)2 £ + O((s — 50)*),

where fs((} ) , g ) € ce (Ej). The hypothesis implies that the beta functions for this one
parameter family all coincide. Thus P(—tfs) = 0 for all t € R. From Lemma 3.3 we obtain
that

0
= — P(— - _ (1)
0= Gyl Pt =t /. R 7)
and )
_ 9 Pl—tf) = — gy + 12 (1)
0 - 82 ( tfs) - 4 fso ,U,+t Va’rlt(fso )’ (8)
5| s=sq =

where p = p_yyz, denotes the Gibbs measure for the potential —1fs,.
Choose arbitrarily small ¢ having the opposite sign of ij fs(g )d,u. The expression on the

right hand side of (8) is thus non-negative, and it follows that var( S(; )) = 0. Lemma 3.3(c)

allows us to conclude that fs((}) ~ ¢, and (7) implies that ¢ = 0. Thus for all sg € (—¢,¢€)
there exists hs, € C%(X},R) such that

0fs
0s

$=s0

= hg, 00 — hyg,.

We integrate both sides with respect to s, sum over each periodic orbit, and apply the
Livsic theorem to conclude that for each s the function f; ~ fo. [ |

For a smooth hyperbolic map we can apply the proof of Theorem 5 directly on the
manifold to obtain the following extension of isobetal deformation rigidity to Axiom-A
diffeomorphisms.

Corollary IV.1. Let M be a smooth manifold and suppose that A C M 1is a basic set
for an Aziom-A diffeomorphism T: M — M. Assume that (—€,€) 2 A — f € C*(A,R)
is a C? family of Hélder continuous functions on A with identical beta functions (i.e.,
Bty = By, for all —e < XA < ¢€). Then fx ~ fo for all —e < X <.

IV. THE UNMARKED ORBIT SPECTRUM

We now turn to the final type of periodic orbit invariant we shall consider. This is the
analogue of the unmarked length spectrum for hyperbolic surfaces where one labels the
closed geodesics by word length.

Recall that the length spectrum for a hyperbolic surface is never simple, and in fact has
unbounded multiplicity [Ran]. By contrast, a transversality argument easily shows that
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the length spectrum of a non-constant negatively curved manifold is generically simple
[Abr].

We say that the orbit spectrum for the function f is simple if the elements of the set
Wy are all distinct. The next result shows that the orbit spectrum is generically simple,
as analogous with the case of negatively curved surfaces.

Proposition 4.1. Fixz o > 0. There erists a dense Gy subset of a—Holder continuous
functions for which the unmarked orbit spectrum is simple.

Proof. The space C* (X7}, R) of a—Hélder continuous functions is a complete metric space,
and hence a Baire space. Let B,, denote the set of a—Holder continuous functions which
give distinct weights to periodic orbits up to period n. This is clearly an open dense set.
It follows from the Baire category theorem that the intersection of all B,, will be a dense
G set. [ |

Even through we know by Proposition 4.1 that generically the spectrum is simple, every
locally constant functions has non-simple spectrum, by analogy with the case of hyperbolic
surfaces.

Proposition 4.2. FEvery locally constant function has non-simple unmarked orbit spec-
trum with unbounded multiplicity, i.e., for each m sufficiently large, there exists M periodic
points of the same period with the same Birkhoff sum.

Proof. Let f € LC(n), say, have range {1, ... ,ax} then the values {S,, f(z) : for o™z =

x} are contained in the set
k k
{leaz : lezm},
i=1 i=1

which has cardinality at most m”*. However, since the number of periodic orbit of period
m grows exponentially fast the result easily follows. |

We now consider the extent to which the unmarked orbit spectrum determines the
equivalence class of the function and prove the analogs of the theorems of Wolpert and
McKean for hyperbolic surfaces (i.e., that typically the unmarked length spectrum deter-
mines the surface and there are uniform bounds depending on the genus of non-isometric
surfaces having the same unmarked length spectrum).

Theorem 6. Let (X7,0) be a mizing one-sided subshift of finite type. If f € LC(n)
is a locally constant function then there are at most C(n) non-equivalent locally constant
functions in LC(n) with the same unmarked orbit spectrum. Furthermore, for generic
f € LC(n) (i.e., on the complement of a codimension one algebraic set) the unmarked orbit
spectrum determines the function in LC(n) (up to conjugation by diagonal and permutation
matrices).

Proof. This follows immediately from Theorem 1 and Proposition 2.2. |

We now observe that the unmarked orbit spectrum is deformation rigid.
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Theorem 7. Let (Zz,a) be a mizing one-sided subshift of finite type. Assume that
(—€,€) DX — fr € C*(ZH,R) is a C? family of Hélder continuous functions with identical
orbit spectra. Then the deformation is trivial, i.e., fx ~ fo for all —e < A < €.

We have already proved a stronger result on beta functions in Section III.B.

Finally, although for generic f € LC(n) we know that the beta function does determine
the unmarked orbit spectrum, the following result shows that exceptional examples exist.

Proposition 4.6. There erist non-equivalent fi, fo € LC(2) with By, = By,, but Ly, #
Ly,.

Proof. Let £5 = [[°_,{1,2}. Choose a < b such that exp|a]+exp[b] = 1 and define locally
constant functions

_ Jaif (zo,z1) = (1,2) or (2,1)
fl(x) - { bif (;[;0’.1:1) = (1; ) or (2’2)

_ faif (zo,z1) = (1,1) or (2,2)
fz(x) - { bif (.’13(),331) ( ) ) or (2’1) .

We can easily compute

< expth expta ) "

Z expt(Sy f1(x)) = trace expta exptb

olr=x
= (expta + exptb)™ + (exptb — expta)”
< (expta + expth)"

as n — oo and

B expta exptb\"
Z exptSy fox)) = tr (exptb expta

onr=x
= (expta + expta)™ + (expta — expth)"
=< (expta + expth)"”

as n — oo. It immediately follows that 3, = By,. By considering periodic points of period
3, we see that 38 € Ly, and 3o ¢ Ly, while 3a € L, and 38 ¢ Ly,. Thus fy o froT, for
any shift automorphism 7. |

V. GEOMETRIC CHARACTERIZATION OF FREE ENERGY
AND BETA FUNCTION FOR HYPERBOLIC SURFACES

In this section we introduce natural notions of free energy and beta function for a
hyperbolic surface, or more generally, a negatively curved surface. All results apply in the
more general case, but for ease of exposition we only state them for hyperbolic surfaces. We
show that it has many features which are reminiscent of the Manhattan curve of Burger
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[Bur] and contains some refined information on the ratio of word length to hyperbolic
length of closed geodesics, as studied by Milnor [Mil].

The link with subshifts of finite type is via special Markov partitions for the geodesic
flow [BS]. In particular, we can always associate to the geodesic flow ¢ : S1V — S1V on
the unit tangent bundle to a hyperbolic surface V' a subshift of finite type o : ¥ — ¥7 and
a function f : Ej — R, so that the associated suspended flow models the geodesic flow.
Moreover, given two hyperbolic surfaces with the same genus, the underlying subshifts
o : ¥ — X7 are the same. Let I'g be a standard set of generators for the fundamental
group, denoted by 71 (V). We can assume that [ is symmetric, i.e., g € I'g, then g~ € I'y.
Given g € 71 (V) — {e} we can define the word length |g| to be the smallest number of
generators from 'y needed to represent g.

Using the Bowen-Series coding, we can associate a subshift o : ¥ — X7} and a Holder
continuous function 7 : Ej — R. In particular, every closed geodesic v corresponds to
periodic orbit {z,ox,...,0" lz} with 6"z = z and we can identify r"(z) = I(y) and
n = |7y|, where [ denotes the hyperbolic length in V. This property of the coding is crucial
for our analysis, and we are not aware of any other construction of Markov partitions where
this property has been verified.

We can associate to the hyperbolic surface V and generating set I'y the beta function

B(t) = Brow () = lim —log [ 3 exp (~t())

n—+oo n
[v|=n

It is easy to see that this function is always strictly convex. This is closely related to a
modified Poincaré series for V and I'g by

p(a,b) = pryv(a,b) = exp(—al(y) — bly]).

This infinite sum converges provided a,b > 0 are sufficiently large. We denote by R =
R(Ty,V) = {(a,b) € R? : p(a,b) < oo} the domain of convergence of the function p. We
define L = L(T'y, V') to be the boundary curve for this set (see Figure 1).

Lemma 5.1. The curve L is parameterized by (a, f(a))

Proof. Using symbolic dynamics we can write

p(a,b) = Z % Z exp (—aSyr(z) — bn).

o=z

By the root test, this series converges if

1/n
exp (P(—ar — b)) = nli_)rgo ( Z exp (—aSyr(z) — bn)) < 1.
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In particular, we see that
R={(a,b) e R? : P(—ar —b) < 0} and L = {(a,b) € R? : P(—ar —b) = 0}.

Since P(—ar — b) = 0 we see that b = P(—ar) = (a). [ |

We recall that by a classical result of Milnor that for any hyperbolic surface there
exist A, B > 0 such that A < I(y)/|y| < B for all closed geodesics 7. If we choose
A =inf,I(y)/lv| and B = sup, I(7)/|v| then using the Anosov closing lemma it is easy to
show that the ratios {l(7y)/|y| : v = closed geodesic} are dense in the interval [A, B].

Theorem 8.

(a) The curve L is real analytic and strictly convex.
(b) The points (0,1) and (h,0) lie on L, where

1
h= lim - log Card{~ : |y| =n}.

n——+00
(c) The asymptotic slope of L as a — oo are —A and — B, respectively.

Proof. Parts (a) and (b) follow easily from standard properties of pressure [PP]. In par-
ticular, h is the topological entropy of the subshift o : Ej — Ej;.
For part (c) we recall that the slope of the curve at (a, 8¢(a)) is %(a) = = [g+ fdp—ay,
A

where p_,¢ is the Gibbs measure for —af. By the variational principle we know that
hu_. (o) — a/ fdp_qr > hy(o) — a/ fdu,
oh ok

for all o-invariant probability measures p. Thus fgﬁ fdp_qf < inf,, ij fdp+ 2h/a. In
particular, letting a — oo we see that

lim fj(a)=— lim [ fdy_os = —inf /E+ fdp=—infi(y)/lv|= -A.
A

a—o0 a—00 [st "
A

The proof of the second part of (c) is similar. [

Remark: Comparison with the Manhattan curve. We recall that Burger introduced the
Manhattan curve in association with two length functions Iy, I on the same hyperbolic
surface. More precisely, one can define a Poincaré-type function of two variables by

n(a,b) = exp (—ali(y) - bl2(7)),

which converges providing a, b are sufficiently large. We denote by Ras(l1,12) = {(a,b) €
R? : n(a,b) < oo}, and the Manhattan curve Lps(l1,12) is the boundary curve of Rjy.
Burger showed the following result.
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FIiGURE 1. THE CURVE L

Proposition 5.1 [Bur].
(a) The curve Lys(l1,12) is analytic and convex, and strictly convezr except when ly = la;
(b) The normal to Ly(ly,1s) tends to the Thurston stretch dily (11,13) and dily (11,13)
as a — £oo;
(¢) The normals as Lps(l1,1l3) crosses the axes are the intersection numbers i(lq,1s)
that are intimately related to the Weil-Petersson distance between the two hyperbolic
metrics in Teichmiller space.

APPENDIX I: UNCOUNTABLY MANY HOLDER CONTINUOUS FUNCTIONS
SHARING THE SAME UNMARKED ORBIT SPECTRUM (AND FREE ENERGY)

In contrast to the case of locally constant functions, the following result shows that for
some Holder continuous functions there are uncountably many mutually non-equivalent
Holder continuous functions with the same unmarked orbit spectrum.

Proposition A.I.1. There exists an uncountable family of mutually inequivalent Holder
continuous functions which share the same unmarked orbit spectrum.

Proof. Let E; denote the full one-sided shift on the three symbols 0, 1 and 2. To construct
uncountably many functions with the same unmarked length spectrum we choose as our
index sequences i = (i,,)3%; € {0,2}Y, and define the Holder continuous functions

fulw) = { 0" i@ € [inin1-..011]

0 otherwise,

where [i,4,_1...711] denotes the obvious cylinder set. It is easy to see that for a fixed i
the function f;(y) = 0 for every periodic point y having period n that is not of the form

y:yi:yo...ynlikl e 1 Wiy - Yng ey - - 01l Y - Yn ke, - - 01
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where
(1) Yn; 7é ik:j+la for .7 = 17 cee 7k7‘;
(ii) y; €{0,2} for m; <l <njand j=1,...,r (where m; = 0);
(iii)) 0 < ky,...,kpand k1 +...+ k. +7 < n.
If one considers the Birkhoff sum over the periodic orbit for such a point y, an easy

calculation shows that
1—6m 1— gk

Snfily) = T g +...+ R

Let us observe that for the two periodic points (for different maps)

Yi = Y0 Ynilhky 211 Ymy oo Ynolhy - 211 Yy oo Yn, ks, -+ - 211

Yi =Y YniJks - I Yms o+ - YnoJko - - J11 oo Yy o Yny Jk, - - - J11,

the functions f;(y;) = fj(y;) and Spfi(yi) = Snfj(y;). This observation allows us to
conclude that for each n > 1 the sets {S,f;(y) : o™y = y} coincide for all i € {0, 2}N. Tt
immediately follows that for all i € {0,2}" the unmarked length spectra for fi coincide.
Since different functions must necessarily have different marked length spectra, none
of these functions differ by a coboundary. To see that there are uncountably many non-
equivalent functions we need only recall that the space of automorphisms is countable. A
simple cardinality argument completes the proof. |

Corollary A.LI.II. There exists an uncountable family of mutually inequivalent Holder
continuous functions which share the same beta function.

APPENDIX II: LOCALLY CONSTANT FUNCTIONS WITH THE
SAME UNMARKED ORBIT SPECTRUM (AND FREE ENERGY)

We continue our study of the ambiguity in recovering functions from their unmarked
orbit spectrum. Here we work by close analogy with a basic construction of isospectral
non-isometric hyperbolic surfaces using a construction of Buser [Bus| involving cospectral
graphs. Buser’s construction is really a reinterpretation of Sunada’s common covering
surface construction [Sun]. The goal of this appendix is to prove the following result.

Proposition A.I1.1. There exist non-equivalent locally constant functions fi and fo on
the one-sided full shift on six symbols with Ly, = Ly, .

To make the proof of this result as self-contained as possible, we present some prepara-
tory material. If we construct distinct cospectral graphs G; and G, i.e., two directed
graphs with the same number of closed loops (or cycles) of any given period, then it would
immediately follow that the corresponding subshifts of finite type have the same number
of periodic points of any given period.

Consider the shift on n symbols o : Ej — Ej, and let G be a finite group with a finite
set of n generators Gog = {A1,...,A,}. We can associate to Gy C G a directed graph
G =V, &), called the Cayley graph [Bus, Bol] having the following properties:

(a) There is a 1-1 correspondence between the vertices V of G and the elements of Gj
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(b) The edge set £ contains the edge from vertex g; to vertex g provided there is a
g € G such that g1 = ggs.

There is a natural (right) action on the graph, by which g € G carries a vertex g; to the
vertex g9, and the edge g; to go is carried to an edge from g;9 to gag. Given a subgroup
H C G we can also consider the quotient graph G/H. A trivial example is Gy = G/G,
which consists of both a single vertex and a directed edge for each element (and inverse)
in Gy. In particular, the corresponding subshift of finite type is the full shift.

Given any directed graph G, let N,,(G) be the number of closed loops of length & (k >
Two directed graphs G; and Gy are called cospectral if Ng(G1) = Ng(Gz), for all k£ >
Two subgroups Hy, Hy C G are called almost conjugate if

).
1.

#{lg] N Hi} = #{[g] N Ha}

for every conjugacy class [g], for every g € G.

Lemma A.IL.1. The quotient graphs G/H, and G/Hy of two almost conjugate subgroups
are cospectral.

Proof. The argument can easily be extracted from the proof of Sunada’s theorem [Bus,
Sun]. Let GE denotes words of length k in elements of Gy. Observe that

Ni(G:) = #{(9,90) € G x G§: gogH; = gH,}

= Y #{g€G: g 'gogH; = H}
goEGE

1 —
7 Z #{geG: g 'gog € H;}
7
goEGE

For g,h € G, the expression g 'gog = h~'goh holds if and only g9 = gh~lgohg™! =
(gh1)go(gh™*)~!, which holds if and only if gh™! € C,, (or equivalently g € Cy h),
where Cyy = {9 € G: ggog™ = go} denotes the centralizer of go in G. Hence for fixed

g1 = 9~ 'gog, one has that #{h € G: h=rgoh = g1} = #{gCy,} = #Cy,. Thus #{[go] N
H;} - #C,y, = #{g € G: g~ 'gog € H;}, and we obtain

Ne(@) = g 2 ool 1 HY - #Cy.
ZQOEG(’;

It immediately follows that Ni(G1) = Nk (G2) if and only if the subgroups H; and Hs are
almost conjugate. |

Ezample [Bus, Lub]. Consider the group G = SL(3,Z2) and Gy = {A, B} where

011 100
A:(om) andB:<001>
100 011
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There are two almost conjugate subgroups

* % % * 00
le{(O**) eSL(2,Zz)} andH2={(***> eSL(2,Zz)},
0 * * * ok

which are not conjugate. The quotient graphs G/H; and G/H, are non-isomorphic® cospec-
tral graphs each with seven vertices. See Figure 2.

-----

FIGURE 2. CAYLEY GRAPHS FOR H; AND H,

Remark. Suppose G is a finite group that acts freely and isometrically on a compact
Riemannian manifold M. Sunada showed that if H has two almost conjugate subgroups
H; and Hs, then the quotient manifolds M /H, and M/H, are isospectral (for both lengths
of closed geodesics and eigenvalues of the Laplacian).

We now prove Proposition A.IL1.

Proof of Proposition A.II.1. We can colour the edges of the two non-isomorphic quotient
Cayley graphs G/H; and G/H, in the above example according to the generator A (solid
edges in Figure 2) or B (dashed edges in Figure 2) which corresponds to that edge. In
Lemma A.I1.1 we have seen that for each n, the number of closed loops of length n, coincide
for these two graphs, and it is easily seen that the number of closed loops of length n which
have the same colouring, also coincides for each n.

We can extend each of these two graphs G/H; by adding additional edges so that every
vertex is connected to every other vertex. The corresponding subshift of finite type is then
the full shift (on 6 symbols). For the larger graphs, we declare that the edges labeled by A

3Two graphs A and B are isomorphic if there exists a one-to-one mapping ¢ from the vertex set of A
onto the vertex set of B such that whenever vertices P and @ of A are connected by exactly k edges, then
¢(P) and ¢(Q) are also connected by exactly k edges.
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have length «, the edges labeled by B have length 3, and the additional edges have length
1, where 1, o and S are rationally independent. We can define f1, fo € LC(2) by declaring
that f;(xzoz1) equals the length of the edge connecting vertices zo to 21 for the extension
of G/H;. Since the graphs G/H; and G/H, are non-isomorphic, the functions fi, fo are
non-equivalent, however, by design, L¢, = Ly,. [ |

APPENDIX III: UNCOUNTABLY MANY HOLDER CONTINUOUS
FUNCTIONS SHARING THE SAME WEAK ORBIT SPECTRUM
BUT HAVING DIFFERENT UNMARKED ORBIT SPECTRA

In the following proposition we construct an uncountably family of pairwise inequivalent
Holder continuous functions with different unmarked orbit spectrum, but all sharing the
same weak orbit spectrum. The construction is in the same spirit as the construction on
Appendix 1.

Proposition A.III. There exists an uncountably family of pairwise inequivalent Holder
continuous functions with different unmarked orbit spectra, but all sharing the same weak
orbit spectrum.

Proof. Let 2;‘ denote a full shift on the two symbols 0 and 1. for any n > 0 we denote
[0"1]:={reX] :7,=0,0<i<n-—1and z, = 1}.

Let 0 < 8 < 1 and then we can define a function

[ ifxeon]
f(m)_{o y if z = (0,0,0,...).

To write down the orbit spectrum it is convenient to relate this to the shift on infinitely
many symbols [0"1] (with allowed transitions [0"1] — [0""!1] and [1] ~ [0"1]). The
representation of the locally constant f on this shift with infinitely many symbols is given
by f([0™1]) = ™. By a simple calculation we see that the length spectrum is the semi-group
generated by the values 1+6 + 6%+ ...+ 6" = (1 —60"T1)/(1 - 9).

As a first step consider for any k > 1 the function defined by

(9" if z € [0"1],n & {k,k+1,k+2}
oF + pk+1 if z € [0%1]
fr(x) =<4 —0k+1 if z € [0F11]
OF+1 1 0k+2  if ¢ € [0FF21]
L 0 if z = (0,0,0,...).

It is easy to see that for k > 2 the weak orbit spectra agree (i.e., Wy, = Wy, ) although the

unmarked orbit spectrums differ (i.e., Ly, # Ly, ). It immediately follows from the latter

observation that these functions are not mutually cohomologous. Moreover, it is a simple
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matter to modify this construction so that the function is either changed in a similar way,
or left unchanged, for £ = 3,6,9,.... In this way we can construct an uncountable family
of functions having the same weak orbit spectrum as the original function. This is easy
checked to be Holder.

First observe that none of these functions differ by a coboundary. This is easily seen by
observing that different functions must necessarily have different marked length spectra.
For example, the weighting for f and fi of the closed orbit of period k£ + 1 in the cylinder
[0F1] are 14+0+...+0% +0% and 1+6+...+ 0%+ 0% respectively. A similar observation
applies in other cases. Secondly, observe that there are uncountably many non-equivalent
functions we need only recall that the space of automorphisms is countable. A simple

cardinality argument completes the proof. |
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