Spectral Properties of Hypoelliptic Operators

J.-P. Eckmann'-2 and M. Hairer!

1 Département de Physique drique, Universi de Geave
2 Section de Matématiques, Univergitde Geave

Email: Jean-Pierre.Eckmann@physics.unige.ch

Email: Martin.Hairer@physics.unige.ch

Abstract

We study hypoelliptic operators with polynomially bounded coefficients that are of
the formK = Zzl XT X, + Xo + f, where theX; denote first order differential
operatorsy is a function with at most polynomial growth, ai&d” denotes the formal
adjoint of X; in L. For anye > 0 we show that an inequality of the forfju||s s <
C(J|lullo,e + [[(K + ty)ullo,0) holds for suitable) and C' which are independent of

y € R, in weighted Sobolev spaces (the first index is the derivative, and the second the
growth). We apply this result to the Fokker-Planck operator for an anharmonic chain
of oscillators coupled to two heat baths. Using a method @fad and Nier [HNO2],

we conclude that its spectrum liesinacysptiy | z > |y|” —¢,7 € (0,1],c € R}.

1 Introduction

In an interesting paper, [HNO2], &lau and Nier studied the Fokker-Planck equation
associated to a Hamiltonian systdihin contact with a heat reservoir at inverse tem-
peratures3. For this problem, it is well-known that the Gibbs measure

ps(dpdq) = exp(—BH(p,q)) dpdq

is the only invariant measure for the system. In their study of convergence under the
flow of any measure to the invariant measure, they were led to study spectral proper-
ties of the Fokker-Planck operatdr when considered as an operator Gifyds). In
particular, they showed th#l has a compact resolvent and that its spectrum is located
in a cusp-shaped region, as depicted in Figure 1 below, improving (for a special case)
earlier results obtained by Rey-Bellet and Thomas [RBT02b], who showed thats
compact and thaf has spectrum only in Re> ¢ > 0 aside from a simple eigenvalue
at 0.

Extending the methods of [HNO2], we show in this paper that the cusp-shape of the
spectrum ofL occurs for many lrmander-type operators of the form

K=Y XIX;+Xo+f, (1.1)
i=1
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Figure 1 Cusp containing the spectrum 6f

(the symbol™ denotes the formal adjoint in?). when the family of vector fields
{ X}/, is sufficiently non-degenerate (see Definition 2.1 and assumptibelow)
and some growth condition ghholds.

The main motivation for our paper comes from the study of the model of heat
conduction proposed in [EPR99a] and further studied in [EPR99b, EH00, RBTQO,
RBTO02b, RBT02a]. These papers deal with Hamiltonian anharmonic chains of point-
like particles with nearest-neighbor interactions whose ends are coupled to heat reser-
voirs modeled by linear classical field theories. Our results improve the detailed knowl-
edge about the spectrum of the generafoof the associated Markov process, see
Sect. 5. As a by-product, our paper also gives a more elegant analytic proof of the
results obtained in [EHOQ]. A short probabilistic proof has already been obtained in
[RBTO2b].

The main technical result needed to establish the cusp-form of the spectrum is the
Sobolev estimate Theorem 4.1 which seems to be new.
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2 Setup and Notations

We will derive lower bounds for hypoelliptic operators with polynomially bounded
coefficients that are of the form (1.1). We start by defining the class of functions and
vector fields we consider.

2.1 Notations
For N € R, we define the seF?oIéV of polynomially growing functions by

PolY = {f €C¥(RY) |V, sup (1+ Iz]) Vo f(z) < ca} . 1)
TER™
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In this expressiong denotes a multi-index of arbitrary order. We also define the set
PolYY of vector fields inrR™ that can be written as

G = Go(@)+ Y Gi)d;, G;ePoly .
j=1
One can similarly define seEoI{CV of kth order differential operators. It is clear that if

X € Poly andY € Poly’, then [X, Y] € Pol M, . If fisinPol, but notinPol) **
for anye > 0, we say it is of degreév.

2.2 Hypotheses

Definition 2.1 A family {A;}72, of vector fields iRR™ with A; = 37, A; ;0; is
callednon-degeneratiéthere exist constantd” andC' such that for every: € R™ and
every vectow € R" one has the bound

N m
ol < C(L+1|2]%) " D (Ai(2),0)?,
=1

with (A;(z), v) = 37, Ai j(@) v;.
The conditions orf{ which we will use below are taken from the following list.

a. The vector fieldsX; with j = 0,...,m belong toPoIf’ and the functionf
belongs taPol?’.

bo. There exists a finite numbe¥/ such that the family consisting ofX;},
{1X6, X510 { [[X5, X5, Xk]} ko @nd s0 on up to commutators of rank
M is non-degenerate.

b1. There exists a finite numbe¥/ such that the family consisting ofX;} ,,
{1X5, X510 { [[X0, X5, Xk]} + j.x—o @nd s0 0N up to commutators of rank
M is non-degenerate.

The difference betweely andb; is in the inclusion of the vector field (in by), so
thatb, is stronger tham,.

Definition 2.2 We call Ky the class of operators of the form of (1.1) satisfyingnd
by above, andC; the class of those satisfyingandb,. Clearly, b; is more restrictive
thanbg and thereforeC; C K.

Remark 2.3 If K is in Ky then K is hypoelliptic. If K is in ; thend, + K is
hypoelliptic.
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3 Localized Bound

The main result of this section is Theorem 3.1 which provides bounds for localized test
functions.
We letB(x) denote the unit cube arounde R":

Ba)={y eR" | lyj—a;|<1,j=1,....,n}.

To formulate our bounds, we introduce the operatpdefined as the positive square
rootof A> =1 — 3", 87 = 1 — A. Later on, we will also need the multiplication
operatorA defined as the positive root of (multiplication by} = 1 + ||=||2.

Theorem 3.1 Assumek’ € K. Then, there exist positive constaats C., and N,
such that for every: € R" and everyu € C5° (B(z)), one hasuniformly fory € R™:

1A ul| < CL(1+ )™

ul +[[(K +iy)ul - G.1)

If K isinCy (but notinkC;) the same estimate holds, but the constantvill depend
generally ony.t

Proof. The novelty of the bound is in allowing for polynomial growth of the coeffi-
cients of the differential operators. Were it not for this, the result would be a special
case of hrmander’s proof of hypoellipticity of second-order partial differential opera-
tors [Hor85, Thm. 22.2.1]. Since the coefficients of our differential operators can grow
polynomially we need to work with weighted spaces.

We introduce a family of weighted Sobolev spacs?® with «, 3 € R as the
following subset of tempered distributiord onR™:

SO = fu e .7 | ANy € L2(R™)} .
We equip this space with the scalar product
(f:9)ap = (AN f,A“A )12 3.2)

writing also (-, ), instead of(-, -),,0. We also use the corresponding norins|| . s.
Note that these spaces are actually a particular case of the more general class of Sobolev
spaces introduced in [BC94].
The following lemma lists a few properties of the spasés’ that will be useful in
the sequel. We postpone its proof to Appendix A.

Lemma 3.2 Leta, 5 € R. We have the following:

a. EmbeddingFor o/ > aand3’ > §3, the spaces®-?" is continuously embedded
into S*”. The embedding is compact if and only if both inequalities are strict.

b. Scales of spaceJhe operators\” and A” are bounded frons# into S«~7-#

and S*#~7 respectively. IfX € PolY then X is bounded fromS®# into
Sa—k.ﬂ—N.

1The norms areinorms.
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c. Polarization:For everyy, 6 € R, one has the bound

(f,9as < C | fllars gllargr s o + " =20, B'+ " =28,
which holds for allf and g belonging to the Schwartz spacé,. The constant
C may depend on the indices.

d. Commutator:Let X € PolY andY € Poll’. For everyy € R, [X,A"] is
bounded fromS®# into S+1=k=76=N_ Similarly, [X,[Y,A"]] is bounded
from 57 into §o+2-k—HK —7.f-N-N'

e. Adjoint: Let X € PolY andletf, g € .%,. Then

<fa Xg>a,6 = <XTf> g)a,ﬁ + R(fa g) ’
where the bilinear forn? satisfies the bound

[R(f, )| < Cllfllar g llgllar o s
with
o +d'=20+k—-1, B +p"=20+N. (3.3)
The constan€ may depend on the indices.

Notation 3.3 We write K, instead ofK™ + iy. We also introduce the notatich < %
to mean: There exist constants and NV independent of and y such that for all
u € C§° (B(w))
N
O <O+ l=]))™ (Nfull + [H<yull) -
We will show below that
| AN || < 2, (3.4)

holds forA taking values among all of the vector fields appearing ior by. Assuming
(3.4) one completes the proof of Theorem 3.1 as follows: Notice that if the collection
{A;}F_, is non-degenerate, then

k
N
[Aul> < Oy (1+ [l2]?) ™) ([ Agull?

i=1

for everyz € R" and everyu € C3°(B(x)). Therefore, by (3.4) we find

k
[ull2 = AN ]l < Ci(1+ ||x||2)N1ZHAZ-AHUH2 < B
=1

Polarizing, we obtain:

N.
lull/e < lullllulle < Collull (X + [l2]*)™ (llull + || yull)

A

2N. 2
CHllul® (@ + Nll*)™™ + (lull + [[Kyul)

2
N-
(Callull(t + 212 + flull + 1Kyl )

IN

IN

and hence (3.1) follows with, = £/2, N, = N5, andC, = Cy + 1.
It remains to prove (3.4).
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Remark 3.4 To the end of this proof, we use the symb6lsand N to denote generic
positive constants which may change from one inequality to the next.
By the bound on fi, A~!] of Lemma 3.2(d)—and the fact that € C5°(B(z))

implies ||ullo,y < C(1+ Hx||2)N/2\|u|| for every N > 0—we will have shown (3.4)
if we can prove

Notice that by Lemma 3.2(b), the estimate (3.5) yields
JAulZ_ , < Cy (U4 [l (lul® + [ Kyull?) (3.6)

for everyy > 0, z € R", andu € C§°(B(x)).

To prove (3.5), we proceed as follows. First, we verify it for= X, with i =
1,...,m (as well as forA = X in the caseCy). The remaining bounds are shown by
induction. The induction step consists in proving that if (3.5) holds for sﬂn&ePolf’
then

I[A, Xi]ullc/s—1 < % for i =0,...,m. 3.7)
The first step. By the definition of K and the fact tha®; mapsC§©(B(x)) into itself,
we see that
IXiu| <A, i=1,...,m, (3.8)
that is, (3.5) holds for < 1 andA = X;.

We next show that it also holds fot = X, whenever < 1/2. (This will be the
only place in the proof wher€ depends omy, but we need this estimate only for the
casely.) Using (1.1) and Lemma 3.2(c), we can write

1Xoull2 1 o < 1 Xoull -2 (1wl + | full + yl llull) + > (Xou, X Xyu) s -

i=1

Using Lemma 3.2(b) to estimateXoul||_1, the first term is bounded byg?, so it

remains to boundXou, X7 X,u)_ . Using this time Lemma 3.2(e), (with = —3
andg = 0), we write
(Xou, X[ X;u) 1 /0 = (XiXou, X;u)_1 /2 + R(Xou, X;u) , (3.9)

where R(Xou, X;u) is bounded byC'|| Xou||-1||X;u||, which in turn is bounded by
8%, using the previous bounds ¢X,u|—1 and||X;u||. The first term of (3.9) can be
written as

[(XiXou, Xju)_1/2| < C||X; Xoul| -1 [| Xiul| -
Since || X;u|| < £ by (3.8), we only need to bounflX; Xou||—; by 4. This is
achieved by writing

| X Xoul -1 < [ XoXu|l -1 + [Xs, Xo]ull -1 .

The second term is bounded B using Lemma 3.2(b). The first term is also bounded
by 2 since|| X; ullon < C(1+ |lz]))"|X;ul| and X, is bounded fromS- into
S—1.0 (for someN) by Lemma 3.2(b). Therefore, we conclude that

[ Xoul| 12 < %# , (3.10)
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whereC will in general depend op.

The inductive step.Let A € PollY and assume that (3.5) holds. We show that a similar
estimate (with different values far, C', and V) then also holds foB = [A, X;] with

i =10,...,m. We distinguish the case= 0 from the others.

The casei > 0. We assume that (3.5) holds and we estimat.||.._; for some

¢’ <'1/2to be fixed later. We obtain

|Bul|2_, = (Bu, AX; u)er 1 — (Bu, X;Au)er 1 =Ty + Ty .
Both termsT} andTy; are estimated separately. Fgr, we get from Lemma 3.2(e):
T, = —(ABu, X; u)or—1 + R(Bu, X; u) ,
where (since’ < 1/2),

|R(Bu, X; w)| < C(1+ [|2[)™ | Bull -1 | X; ull < C(1L+ [Jal)™ [ull[|X; ul| < 27 .
(3.11)
The term{ABu, X; u).,_1 is written as

(ABu, Xy u)er1| < | BAulloer—s|| Xi ull + [[A, Blul| 1| X; ul]

The second term is bounded B2 like in (3.11). The first term is also bounded 47
by combining Lemma 3.2(b) with the induction assumption in its form (3.6) (taking
2¢’ < ¢). The estimation of;, is very similar: we write again

Ty, = —(X;Bu, Au)o—1 + R(Bu, Au) . (3.12)

The first term is bounded b§/|| X; Bu/||-1]| Au||2e-—1. The second factor of this quan-
tity is bounded by# by the inductive assumption, while the first factor is bounded
by

| X;Bu| -1 < [|BX; u||-1 + ||[[B, X;]u||-1 < £, (3.13)

using Lemma 3.2(b) and the estimdit&; ||, v < . The remaindeR? of (3.12) is
bounded by
|R(Bu, Au)| < || Bul| 1]l Aullzer—1

which is bounded by%2, using Lemma 3.2(b) for the first factor and the inductive
assumption for the second. Combining the estimates,and7; we get

|Bulle—1 < % for & <e/2,

which is the required estimate.

The case = 0. To conclude the proof of Theorem 3.1, it remains to boliBad||._;
by 4. In this expression = [A, X] ande’ > 0 is to be fixed later. We firstintroduce
the operator

f(:inXi,

i=1
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which is (up to a term of multiplication by a function) equal to the real parkgf
when considered as an operator dn\We can thus writeX,, as

Xo=K-K+fi=K-K"'+f,
for two functionsfy, fs € PoléV for someN. This allows us to expres8 as
B=[A X =AK, + KIA+[K, Al —-2KA+ Af1 — f2A.

We write || Bul|?,_; = (Bu,[A, Xo]u),—1 and we bound separately g2 each of
the terms that appear in this expression according to the above decomposition of the
commutator.

The two terms containing; and f» are bounded by#? using the inductive as-
sumption. We therefore concentrate on the four remaining terms.
The term AK,. We write this term as

(Bu, AKyu)er—1 = —(BAu, Kyu)or—1 + ([A, Blu, Kyu).r—1 + R(Bu, Kyu) ,

where the two last terms are bounded%#y using Lemma 3.2(b,e). Using assumption
(3.6) (assuming’ < £/2) and Lemma 3.2(b,c), we also bound the first term;
The term KJA. We write this term as

<Bu, K5A>€/,1 = <KyB’U,,A>5/,1 + <A2_25/[K, AQE/_Q]BU, Au)s/,l == T1 + T2 .

The termT; is bounded by| K, Bu||_1 || Au||2.—1 by polarization. The second factor
of this product is bounded hy, using the induction hypothesis and the assumption
¢’ < ¢/2. The first factor is bounded by

1Ky Bul| -1 < | BEyul -1 + [[[K; Blul| -1 - (3.14)

The first term of this sum is obviously bounded & The second term is expanded
using the explicit form ofK as given in (1.1). The only “dangerous” terms appearing
in this expansion are those of the fotif"X] X, B]u|| 1. They are bounded by

IIXF X, Blul| -1 < [IXF, BIX;ul -1 + [ X3, BYXF | -1 + || [XF, [ X, B]]ul|_, -

The terms in this sum are bounded individually 8 using the estimates dphX;; u||,
together with Lemma 3.2(b,d). We now turn to the téfn We bound it by

Ty < C|A?~2'[K, A% 2| Bu|| || Aull2er_1 -

The second factor is bounded B by the induction hypothesis, so we focus on the
first factor. We again write explicitly< as in (1.1) and estimate each term separately.
The two terms containing(y, and f are easily bounded hy? using Lemma 3.2(b,d).
We also writeX} X, = X? 4+ Y; with Y; € PolY’ and similarly bound by? the terms

in Y;. The remaining terms are of the type

Qi = A7 [X2, A* "2 Bul|_; .
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They are bounded by
Qi S 2”A2—25/[X7;’A25/_2]XiBu||_1 4 HAQ—QE/ [Xi’ [Xi,AQE/_2HBu||71 .

In order to bound the first term, one writé§ B = BX; + [X;, B] and bounds each
term separately by, using the bound X, u||o , < % together with Lemma 3.2(b,d).
The last term is also bounded 9 using Lemma 3.2(d).

The term [K, A]. We write K = 37" | X' X, and we bound each term separately:

(Bu,[XTX,, Alu)er—1 = (Bu, XF'[X;, AJu)er_1 4+ (Bu, [X], A1 X; u)er_1
=Ti1+Tio.
The first term is written as
T;1 = (X;Bu,[X;, Alu)er—1 + R(u) ,

where R(u) is bounded byC'| Bu||_1||[X;, Alu||2e-—1. The first factor is bounded by
% using Lemma 3.2(b) and the second factor is bounde@#buysing the estimate for
the case # 0 (we have to assume& < /4 in order to get this bound). The term
(X;Bu,[X;, Alu)e 1 is estimated by

{(X;Bu, [X;, Alu)er—1] < | X Bu| -1 |[X;, Alul|2er—1 -

The first factor is bounded by as in (3.13) and the second factor is again bounded by
2, using the estimate for the case 0. It thus remains to bound; », which we write
as

Ti,2 = <Bu7Xi[X;T7A]u>E’—1 + <Bu» [[XvaA]aXi:Iu>E/_1 .

The first term in this equation is similar to the terfBu, X [X,, Alu).,_; and is
bounded by%? in the same way. The second term is bounded by

(Bu, [[X7, AL XiJu),,_y < | Bullo|[[[X7, AL Xilull,,

which can also be bounded 3?2, using the estimate for the case# 0, provided
e’ <eg/8.
The term KA. In order to bound this term, we need the following preliminary lemma:

Lemma 3.5 Letv € %, a,d € R, and letK, be as above. There exist constats
and N independent of such that the estimate

Re(K,v,v)a — > || X3

i=1

<O IXwllys vl apsn + CllvI2 5 (3.15)
=1

holds.

Proof. Obviously (K,v,v), = (Kv,v),. We decomposé’ according to (1.1). The
terms containing{y and f are bounded b¢‘||vH(2y7N according to Lemma 3.2(b,e), so
we focus on the terms containing! X,. Using Lemma 3.2(e), we write them as

(X7 X0, 0)0 = | Xv]]3 + Ri(v)

where R;(v) is bounded byC||X;v|/a—s5 n]||v|a+sn- This concludes the proof of
Lemma 3.5. O
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We now write the term containinf 4 as
N m
(Bu, KAu)er 1 = ((X;Bu, X;Au)er 1 + R;) (3.16)

=1
and we apply Lemma 3.2(e) with= Bu, g = X;Au, X = X' Then we find
|Ri| < | Bull-1,n[1XiAull2e -1 < || BullZy y + [ XiAul3e_, -

By Lemma 3.2(b), the first term is bounded B#. Using Lemma 3.2(c) to polarize
the scalar product in (3.16) we thus get

[(Bu, KAu)o_1| < %+ C Y || X;Bul®>, + CY_ | X;Aulf3., _, .
i=1 i=1

The term involving| X; Bul|? ; is bounded by#? as in (3.13). The last term is bounded
by Lemma 3.5, yielding

|(Bu, K Au)er 1| < B2 + C(Ky Au, Auyor 1|+ C Y || X Aul? | ¢
i=1
+Cll Al 5
The last term in this expression is bounded4sy by the induction hypothesis if we
choose:s’ < ¢/4. The term containing(; Au can be bounded bys? as in (3.13), so
the only term that remains to be bounded (&, Au, Au)s..—1|. By polarizing the
estimate obtained by Lemma 3.2(c), one gets

(K yAu, Au)oer 1| < Cl|Aulli + C|K, Aull?, .

The first term is bounded byg? using the induction assumption. The second term is
bounded by#? exactly like (3.14) above. Summing all these bounds this proves (3.7)
and hence the inductive step is completed.

Since K was assumed to satisfy; (or ), we see that afteM inductive steps
the proof of Theorem 3.1 is complete. O

4 Global Estimate

The results of the previous section were restricted to functiomsth well-localized
compact support. In this section, we are interested in getting bounds forewery,, .
The main estimate of this section is given by

Theorem 4.1 AssumeX is in KC; or in ICy and letK,, = K + iy be as above. For
everye > 0, there exist constants> 0 andC' > 0 such that for the norms defined by
(3.2) one has

[ulls.s < Cllullo.e + 1Kyul)) (4.1)

holds for every: € .%,. The constant§’ andé are independent of if K € K.
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SinceS%? is compactly embedded intd Lthis result implies:

Corollary 4.2 Let K be as above. If there exist constant§’ > 0 such that

l[ullo.e < Cllull + [|Kull) 4.2)
then K has compact resolvent when considered as an operator actiihg.on
Proof of the Corollary. Combining (4.1) with (4.2), we get

lulls.s < Cllul + [ Kul) -

This implies that for\ outside of the spectrum @€, the operatork — )~ is bounded
from L2 into S%9. By Lemma 3.2(a), it is therefore compact. O

Proof of Theorem 4.1Let ¢, and N,. be the values of the constants obtained in esti-
mate (3.1) of Theorem 3.1. Observe that Theorem 3.1 also holds for any bigger value
of N,, and we will assuméV, is sufficiently large.

We choose > 0. As a first step, we will show that there exist constanédC'
such that, for any: € R™ andu € C§°(B(x)), the following estimate holds:

lullss < COL+ [l2)2)™ Jullo. +C(1+ |22 |lul] - (4.3)

Denote byJ the smallest integer for which

N,
J21+8 ;
9

and define .
5:m'n{2N*,f,—*}. 4.4
! 27 (44)
First, we note that wheH is a positive self-adjoint operator on some Hilbert sphce
one has the estimate
[ Aull” < CllA ul| ul ", (4.5)

whenever both expressions make sense. In the £ase2’ for j an integer, this can
be seen by a repeated application of the Cauchy-Schwarz inequality. It was shown in
[KS59] to hold in the general case as well.

We next use Jensen’s inequality to write

[A°wul]

il

J
<1+||x||2>N*+5/2||A6u||sc( ) lull & C(1 + [fe ]2y 020+ 750)

Dividing this expression byl + ||z[|2)"* and using the definition of, we get

_ Adul\”
(1+ el 2%l < -+ ol (Eel)

+C0(1+ ”x”2)(N*+5/2)(1+5/(8N*))7N*
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Using (4.5), the fact thag5— < ﬁ by (4.4), andu € C5°(B(x)), we get (4.3).

In order to prove Theorem 4.1, we use the following partition of unity. ket
R — [0, 1] be aC** function with supportinz| < 1 and satisfying _, _, xo(z—17) =1
for all x € R. The family of functions

P={x.:R"—=[0,1] |z €2},
defined by
Xa(2) = [ [ xolz; — ),
j=1
is therefore a partition of unity foR™. By construction, whem, 2’ € Z theny, and
Xz have disjoint support if there exists at least one inglexith |z, — 2| > 2. We
can therefore spli into subsetsPy[,_, ;. such that any two different functions
belonging to the san®; have disjoint supports.

Consider next an arbitrary functian € .#,. We defineu, = x,u, and then the
construction of théP;, implies

> ualloe < 3"[lulloe - (4.6)

TeZ™

Using (4.3), then Theorem 3.1 and (4.6), we find

2
o (U 2l )

— N,
lllss < D7 uallss <€ 32 (A4 2l ™ e
rel™ xel™
—N. 2
<C Y (luall + (1 + el Kyl 4+ (1 + 2]2) s )
reZn
< O3 ([lull + l[ullo.e) +C Y (1 + ll*) ™V [ Kyue] -
zeZm™
Fork € {1,...,3"} we now define
Je = Z L+ [|2[1*) ™™ Xkt -
Xk, €Pr
With this notation, we have
3”1
lulls.s < Cllulloe +C D 1Ky frul -
k=1
The claim (4.1) thus follows if we can show that
1Ky frull < Cllull + Cl Kyul| - (4.7)

Since thef, are bounded functions, it suffices to estimyt&’, fi.]u/||. By construction,
every derivative off;, decays like(1 + ||z[|2) ™.

Note that for sufficiently largeV., the functions K, f.] and [ Xy, [X;, f«]] are
bounded. Since Theorem 3.1 allows us to cha¥seas large as we wish, (4.7) follows
from the estimatél X; u|?> < |lu|| || Kyul|. 0
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4.1 Cusp

Our statement about the cusp-like shape of the spectrughisinow a consequence of
Theorem 4.1.

Theorem 4.3 LetK € POIQ’ be of the type (1.1). Assume that the closur&oh L2 is
m-accretive and thak’ € K. Assume furthermore that there exist constants > 0
such that

[ullo,e < C(llull + [ Kyull) (4.8)

for all y € R. Then, the spectrum &f (as an operator o?) is contained in the cusp
{AeC|Rex>0,|Im\ <C(1+Re\)"},
for some positive constanésandv.

Remark 4.4 In principle, our proofs give a constructive upper bound-otHowever,
no attempt has been made to optimize this bound.

Proof. The proof follows very closely that of Theorem 4.1 in [HNOZ2], however we give
the details for completeness. One ingredient we need is the following lemma:

Lemma4.5 Let A : L2 — L2 be a maximal accretive operator that ha as a core.
Assume there exist constadtsa > 0 for which

[Aull < Cllullaa,  Vue F.
Then, for everyV € N, there exists a constanty such that
|AYNu|| < Onllullajna/n » Yu € SN

Proof. By Lemma 3.2(b), one can boutfj@|| . by

[l < Of (A/2NAG/NA/2N) Ty |
The generalized Heinz inequality presented in [Kat61] then yields

AV Nu|| < C||A/2N AN ANy
This concludes the proof of Lemma 4.5. O

We now turn to the proof of Theorem 4.3. Singe € Pol)’, one has forx =
max{2, N} the bound

K + Du|| < Cllullae, Yue A .

By Lemma 4.5, one can find for evesy> 0 an integerd/ > 0 and a constant’ such
that:
(u, (K + 1) (K + 1)) < Cllul3s (4.9)
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Furthermore, Theorem 4.1 together with (4.8) yields constanémdd such that for
everyu € .%, and everyy € R:

lullfs < Cllull® + (K + iy)ull?) - (4.10)

Since K is m-accretive by assumption, we can apply [HNO2, Prop. B.1] to get the
estimate

1 , *
Tl Pl < (4 1)+ 1) Mo ) + (K = 2l
< Cllullfs + (K = 2ul*,

where the second line is a consequence of (4.9). Using (4.10) and the triangle inequality
for z = Rez + 7 Imz, we get

1 g
112+ UM lul® < C((+ Re?[lul® + [|(K — 2)ulf?) .

Together with the compactness of the resolvenkofthis immediately implies that
every\ in the spectrum of( satisfies the inequality

1
AUl < €A+ ReX)? ful .

This concludes the proof of Theorem 4.3. O

5 Examples

We present two examples in this section: A first, very simple one, and a second which
was the main motivation for this paper.
5.1 Langevin equation for a simple anharmonic oscillator

Our first example consists of one anharmonic oscillator which is in contact with a
stochastic heat bath at temperatiiteThe Hamiltonian of the oscillator is given by

2 2.2 4
D veq q
H(p,q):?—i—

2 g
For this model the associated spectral problem can be solved explicitly aveen,
because it is an harmonic oscillator. The spectrum lies in a cone as shown in Fig. 2.
We also show that in first order perturbation theory jthe spectrum seems to form a
non-trivial cusp, but this result remains conjectural, because of non-uniformity of our
bounds.

The Langevin equation for this system is

dp = —12qdt — eq® dt — ypdt + /27T dw(t) , dq =pdt, (5.1)

where~ > 0 measures the strength of the interaction between the oscillator and the
bath. Denote by({, P) the probability space on which the Wiener procegs) is de-
fined. We writey, ., (x) with w € Q for the solution at time for (5.1) with initial
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conditionz = (p, ¢) and realizationv of the white noise. The corresponding semi-
groups acting on observables and on measurd&’are given by

(Tof) (@) = /Q (f © pr(@)) dP() (5.2a)
(T7 p)(A) = / (110 i h(A) dPW) | (5.2b)
Q

whered c R? is a Borel set. It is well-known that

dpr(p, q) = exp(—H(p,q)/T) dpdq

is the only stationary solution for (5.2b).
The It formula yields forf; = T; f the Fokker-Planck equation given by

O fr =TO) fr +pOyfe — (WPq+eq® +vp) Oy fr - (5.3)

We study (5.3) in the spacks = L2(R?, dur). and make the change of variables
ft = exp(H/(2T))F; in order to work in the unweighted spat& = L2(R2,dgdq).
Equation (5.3) then becomésF, = —L.F;, where the differential operatat. is
given by

5 2 Y .2 7 2 3

L. = —’yTap—i—Ep —3 —pOy+vq0,+eq°0p .

By rescaling timep andg, one can bringC. to the form

Le= (*312;+P2*1)+Oé(q3p*p8q)+csq38 ,

DO =

wherea = 2v/2Tv/~ andc > 0.

The operatol = L. is thus of the type (1.1) witty = a(q 9, — pd,) + ceq® 8,
and X; = 0,. We now verify the conditions of Section 2.2. It is obvious that
these vector fields are of polynomial growth, thus conditiors satisfied. Since
[X1,X0] = —ad,, the operatoll. satisfies conditiorb; as well, and so the con-
clusion of Theorem 4.1 holds. Proceeding like in [EHO0O, Prop. 3.7], one shows an
estimate of the type (4.8) (see also the proof of Theorem 5.5 below, where details are
given). Therefore, Theorem 4.3 applies, showing that the spectruin isflocated in
a cusp-shaped region. In fact, we show in the next subsection that the cusp is a cone
whene = 0, and then we study its perturbation to first ordet.in

5.1.1 First-order approximation of the spectrum of L.

We will explicitly compute the spectrum and the corresponding eigenfunction&,for
and then (formally) apply first-order perturbation theory to get an approximation to the
spectrum ofL.. We introduce the “creation and annihilation” operators

a:p+8p a*:p_ap b:q+aq b* q_aq
ﬂ L ﬁ 1 ﬁ 1 \/§ L}
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in terms of whichZ, can be written as
L.=a"a+alb*a—a*b)+ceq® 0, .

With this notation, it is fairly easy to construct the spectrunCef Note first thal is
an eigenvalue foC with eigenfunction exp{p?/2 — ¢*/2). This is actually the vac-
uum state for the two-dimensional harmonic oscillator in quantum mechanics (which
is given bya*a + b*b), so we call this eigenfunctiojf2).
A straightforward calculation shows that the creation operatordefined by
1 402 — 1
¥ ¥ b* , — :l: LV - ,
ck=a"+fe P 20 =" 2a
satisfy the following commutation relation with:
X N 1, V4o -1 «
[;CO,Ci]:Aj:Cj:, Ai:§i2#:—ﬂ

Therefore \j""”™" = nA4 +mA_ with n andm positive integers are eigenvalues f&y
with eigenvectors given by

()™ (e)™[Q) -
We conclude that forv > 1/2 the spectrum of consists of a triangular grid located
inside a cone (see Figure 2).

ImA ImA

e o o o

A
.
o o o o
.
.

Figure 2 Spectrum ofZy. Figure 3 Approximate spectrum of..

Remark 5.1 Although the spectrum of, is located inside a sectag, is notsectorial
since the closure of its numerical range is the half-plank Ré).

In order to do first-order perturbation theory for the spectrunt ofve also need
the eigenvectors faff;, which can be obtained by applying successivElyandd* to
|2), where

di =a" - pg5b".
With this notation, €% )"(d* )™|<2) is an eigenvector of;; with eigenvalue\;"™. By
first-order perturbation theory, the eigenvalue£pfare approximated by
(Qd™d ¢*0(c3)™ ()™ [9)

AT R AT 4 cg0nm Onrn, = — - ) (5.4)
0 (e ) () )
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The resulting spectrufris shown in Figure 3 (the sector containing the spectrufyof
is shown in light gray for comparison). One clearly sees that the boundary of the sector
bends to a cusp. A (lengthy) explicit computation also shows that

X.»,_ o

+ 9n .

Va2 -1 402 — 1
In principle this confirms the cusp-like shape of the boundary, were it not for the non-
uniformity of the perturbation theory (in).

dn0 =—12n(n —1)

5.2 A model of heat conduction

In this subsection, we apply our results to the physically more interesting case of a
chain of nearest-neighbor interacting anharmonic oscillators coupled to two heat baths
at different temperatures. We model the chain by the deterministic Hamiltonian system
given by

N 2 N
H = Z(% + Vl(qi)) + Z‘/é(qz‘ —¢i-1) -
i=0 i=1

(We will give conditions on the potentialg, andV5 later on.) In order too keep nota-
tions short, we assume, ¢; € R, but one could also take themRf instead. The two

heat baths are modeled by classical free field theasiesind oz with initial condi-

tions drawn randomly according to Gibbs measures at respective inverse temperatures
61 andfg. (We refer to [EPR99a] for a more detailed description of the model.) Itis
shown in [EPR99a] that this model is equivalent to the following system of stochastic
differential equations:

dq; = p;dt, i=0,...,N,
dpo = —V{(qo) dt + V5(q1) dt + r dt |
dpj = —Vi(gy) dt — V5(q;) dt + V5(gj+1) dt j=1...,N-1,

dpy = =Vi(qn)dt — V5(Gn) dt + rr dt ,
dry, = —yprp dt + X2ypqo dt — Ap\/2v0 Ty dw(t)
drp = —YrrR dt + N YRAN dt — Ar\/27RTR dwr(t)

whereT; = ﬁ;l, ~; are positive constants describing the coupling of the chain to the
heat baths, and); are two independent Wiener processes. The variablesdrg
describe the internal state of the heat bathgIf= Tr = T, the equilibrium measure
for this system islur(p, q,7) = exp(—G(p, q,7)/T) dp dq dr, where the “energyG

is given by the expression

2

2
e L TR
- - .

(.pa CLT) H (pa q) 2/\2L qoTL 2)\% dNTR

2Actually the se{ A" + cedn,m | n,m > 0}.
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If T;, # Tg, there is no way of guessing the invariant measure for the system. We can
nevertheless make the construction of Section 5.1 with the reference méaguiar
some temperature

T >max{Ty,Tr} ,

which is a stability condition, as one can see in (5.6) below. The resulting operator
K = L is given by

L=X;X, +X;Xp+ f2+f2+Xo, (5.5)
where
XLp= /\L,R\/’mamR ,
for= \/’VL,R(TL,R/T — 1)(re.r — A\L.RGO.N) » (5.6)
Xo=V,HV, —V,HV, +br(rr, — A\3.q0)0r, — 1.0y,
+ br(r, — ARaN)0n, — 10.0py
with

YL,R =
br.r = —T,r—T).
A2 RT?

We are now in a position to express the conditions of Section 2.2 in terms of sufficient
conditions on the potentials of the model. The first two assumptions guarante® that
isin KCy.

Assumption 1 There exist real numbers, m > 0 such thatD*V; € Pol?)”‘a and
DV, € Polg™ = for a < 2.

Assumption 2 There exists a constant> 0 such thatl,’(z) > cfor all z € R.

Remark 5.2 The second assumption states that there is a non-vanishing coupling be-
tween neighboring particles in every possible state of the chain.

The verification that these assumptions implys easy, and the verification that
holds can be found in [EPR99a, EHOO].

Proposition 5.3 Let £ be defined as above and ket and V5 fulfill Assumptions 1 and
2 above. Thelf satisfies the assumptions of Theorem 4.1 and satisfies Eq.(4.X) with
and¢ independent of.

In order to show that the spectrum 6fis located in a cusp-shaped regiare(that
the hypotheses of Theorem 4.3 hold), two more assumptions have to be made on the
asymptotic behaviour df; andV5s:

Assumption 3 The exponents andm appearing in Assumption 1 satisfy< n < m.
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Remark 5.4 The physical interpretation of the conditian< m (actuallyl < n <m

would probably work as well, see [RBT02b], but we could not apply directly the results
of [EH00]) goes as follows. I, > m, the relative strength of the coupling between
neighboring particles decreases as the energy of the chain tends to infinity. Therefore,
an initial condition where all the energy of the chain is concentrated into one single
oscillator is “metastable” in the sense that the energy gets transmitted only very slowly
to the neighboring particles and eventually to the heat baths. As a consequence, it is
likely that the convergence to a stationary state is no longer exponential in this case,
and so the operatat has probably not a compact resolvent anymore.

Our last assumption states that the potentials and the resulting forces really grow asym-
ptotically like |z|™ and|x|™ respectively (and not just “slower than”).

Assumption 4 The potentiald/; andV; satisfy the conditions
Vi(z) > 1 (1 + Hx||2)n —ca, xV{(x) > 03(1 + ||35H2)n —c4,
Va(2) > es (14 [[2]®)" —c,  aVa(@) > er(1+ [l]®)" — s,

for all x € R and for some positive constants

Theorem 5.5 Let £ be defined as above and Igt and V5 fulfill assumptions 1-4
above. Thenf has compact resolvent and there exist positive constartsd NV such
that the spectrum of is contained in the cusp

{)\ eC \ Re\>0 and Im\<C(1+ |Re>\|)N} .

Proof. We will apply Theorem 4.3, and need to check its assumptions. It has been
shown in [EHOO, Prop. B.3] thaf is maccretive. The fact thaf € ; was checked
above, and (4.8) was shown fgr= 0 in [EHOO, Prop. 3.7]. However, closer inspection

of that proof reveals that whenev&g, was used, it only appeared inside a commutator.
Therefore, we can replace it by, + iy without changing the bounds. Thus, we
have checked all the assumptions of Theorem 4.3 and the proof of Theorem 5.5 is
complete. O

A Proof of Lemma 3.2

The pointsz andb of Lemma 3.2 are standard results in the theory of pseudodifferential
operators (see.g.[H6r85, Vol. ll1] or, more specifically, [BC94, HT94a, HT94b]). The
pointcis an immediate consequence of the Cauchy-Schwarz inequality combined with
a. In order to prove the poingande, we first show the following intermediate result:

LemmaA.l Letf : R® — Randa € R. Letk be the smallestveninteger such that
|a] < k. Then, iff satisfies

sup [0°f(y)l <k, V[0 <k,
yER™

the corresponding operator of multiplication is bounded fréf? into S®# and its
operator norm is bounded byx. The constanf’ depends only on and 5.
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Proof. By the definition of S®#, it suffices to show that the operatar fA~ is
bounded byCx from L2 into L2. Sincef is obviously bounded by as a multipli-
cation operator from3.into L2, it actually suffices to bound“[f, A—%]. Assume first
thata € (0, 2). In that case, we write

o A“ 1
«a —a] —a/2 2
NUATY = Co [ G N g e

The commutator appearing in this expression can be written as

n

[£ A% = (20:f0i + 07 f) . (A1)

i=1
Itis clear from basic Fourier analysis th;(z + A?)~!/2|| < 1 and therefore
ILF, A%z + A%) 72 < O

Furthermore, the spectral theorem tells us that for any fundtigh¥'(A?)| is bounded
by sup >, F'(A). Therefore there exists a constahtndependent ot > 0 such that

C

« 2y—1
1A+ AN < s

Combining these estimates shows the claim when (0, 2). The caser = 2 follows
from the boundedness of [A?2]A—2. Values ofa greater thar2 can be obtained by
iterating the relation

Aa+2fA—(x—2 _ AafA—a + Aa[f, A2]A—a—2 .

Using (A.1), the fact thad; commutes with\, and the fact tha®; A~2 is bounded, we
can reduce this to the previous case, but with two more derivatives to control. The case
a < 0 follows by considering adjoints. This concludes the proof of Lemma A.10

Remark A.2 Since the direct and the inverse Fourier transforms both fifap con-
tinuously intoS#, the above lemma also holds for bounded function8,cénd not
only for bounded functions af.

We are now ready to turn to the
Proof of point d. Let X € Pol,iv. We first considery € (—2,0). Since, in Fourier
spaceA? is a multiplication operator by a real positive function, we can write

o 1
X, A7 = 17— X, A?
XA =0, [l A

dz
2+ A2

In order to bound this expression, we defie= [X, A%], commuteB with the resol-
vent, and obtain
o A277dz o /2 dz

X, A" = - 2= AY2B = ___[B,AN]—.
[ ’ ] O’Y 0 z (Z+A2)2 +O’Y 0 (Z+A2)2[ I ]Z+A2
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The first term equal€’, A" 2B becausef,” 27/222~7(z + 2?)~% dz does not depend
onx > 0. This, in turn, is bounded frord®# into S**+1~%=75=N ysing B € Poly, ,
and Lemma 3.2(b). To bound the second term, we rewrite

/2 dz % /2N A?
2 B AN = [ ZIE B AZAR. .
/0 Grap B T / (= + A%)? (B AN TR e

The factorA?(z + A%)~! is bounded fromS®# into itself, uniformly inz. Using
Lemma 3.2(b) as before, we see that the faator![ B, A2]A~2 is bounded frons 4

into §+1—F=7.6-N = ga".0" " Finally, using Lemma A.1 and counting powers, we
see that the first factor has norm bounded¥y —3/2) for large = and O(z7/2) for =
near0 as a map frons#" to itself. This proves the first statement of Lemma 3.2(d).
The second one is proven similarly and is left to the reader.

Proof of point e. Recall that we want to bound

I={f,Xg)ap — (X" f,9)asl,
whereX ¢ Pol?Y andX” denotes the formal adjoint (irf).of X. We write this as
I=([A2PA72 XTIN AP £ g)0p -
We rewrite the operator as
[1_\—2[3A—2a7XT]A2a[_\26 _ A—ZB[A—Qa’ XT]AQa[_\25 + [/_\—257XT][_\2[3 .

The second term is i@olff_1 by inspection, and the required bound follows at once
from Lemma 3.2(b,c). The first term is bounded similarly by using Lemma 3.2(d,b,c).
This concludes the proof of Lemma 3.2. O
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