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ABSTRACT

Chemical Thermodynamics is the unified theory of physical and chemical transitions. This work
presents three theorems on which the whole subject can be grounded. The first of them reveals
the existing connection between the Lagrange multipliers method of the non-stoichiometric
formulation and the homogeneity condition which is implicit in most of thermodynamic
equations. However, this condition is less restrictive than the homogeneity of the system, i.e. of
all its properties; it solely deals with the Gibbs energy homogeneity with respect to the
composition vector. Thus, equations can also be applied to equilibrium multi-phase systems. The
second one looks into the element definition used in the physical approach to chemical
equilibrium problems: element potentials do not depend on the particles state because the Gibbs
energy is an homogeneous function of the element composition vector. The third one shows the
relationship between the definition of element potential and the dynamics of equilibrium at the
microscopic level: this definition corresponds to a change in the element particles number in any
state—element potentials are homogeneous magnitudes of zeroth degree. These three theorems
are different ways to present the same idea: the concept of homogeneity and its consequences.
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1. INTRODUCTION

Gibbs’ success in solving the problem of energetics in phase changes led to
transferring his conclusions to chemical transitions, giving rise to Chemical

Thermodynamics.

In physical transitions, both forms (states) of a substance are separate by a
surface. In chemical transitions, both forms are mixed. The sole difference
between a phase change of a pure body and an homogeneous isomerisation lies on
the mixing free energy. In the case of a vapour-liquid transition, equilibrium is
possible because the particles energy, which is mostly kinetic in the vapour state,
is mostly potential in the liquid state. In the case of an isomerisation, the
coexistence of both forms is due to the stabilization produced by the mixture,

associated to an always negative free energy.

These differences do not prevent the development of a common formalization for
all these transitions. This is possible working with partial molar properties: the
mixing effect corresponding to differential changes in composition is null.
Therefore, the condition of equality of the Gibbs energy changes associated to
differential changes of the element mass (1) is the equilibrium condition for any

physical or chemical transition.

In this work, we will look into the root reasons for unifying the study of all
transitions. For this purpose, it will be demonstrated that the homogeneity
condition of the Gibbs energy with respect to the composition vector is
responsible for the existence of element potentials (multipliers) (First Theorem).
The existence of such potentials brings down the barrier that separates physical
from chemical transitions, i.e. the change in names which goes with the latter
ones. On the basis of this conclusion, it is possible to assign a change in names to
vapour-liquid transitions or not to do it in the case of isomerisations (Second
Theorem). Equality of partial molar properties ¢ have the implicit idea of
dynamics at microscopic level, which is shown by means of experiments (Third

Theorem).

The First Theorem reveals the connection existing between the traditional,
non-stoichiometric formulation of chemical equilibrium problems (Smith &
Missen 1991) and a variant of the method introduced by Alberty (1997) to obtain
the expression of element potentials. The Second Theorem shows the

independence of potentials on states, and it is a generalization of the statement
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given by Beattie & Oppenheim (1979). The Third Theorem highlights the

essentially dynamic aspect of element potentials definition (Gerasimov 1971).

The three statements are conceptually closed related, so they are presented
together and in the mentioned order. They can serve as foundation for the whole
Chemical Thermodynamics (Luetich 2001).

This work is the third of a group of four related works written to clarify the
physical sense of the idea of microscopic reversibility. The emphasis here is laid

on the concepts of homogeneity and dynamics at the microscopic level.

2. STATEMENTS AND DISCUSSIONS

FIRST THEOREM
LINEAR MINIMIZATION AND THE HOMOGENEITY CONDITION

When the objective function of the Lagrange multipliers method is a homogeneous
function with respect to the variables subject to constraints, the auxiliary function
(Lagrangian) is the complete Legendre transform of the objective function with
respect to the same variables. The auxiliary function and the objective function

contain the same information.

HYPOTHESES

a. Let the function
G = G (m, n) (2.1)

be homogeneous with respect to n, i.e.,

Gm, kn)=%k£G(@m, n) : k eR. (2.2)
Otherwise,
C
G = Zni His 2.3)
i=1

being n; the components of n, and C the dimension of n.

b. There is a matrix C = Cg,(, so that

C
n = Zcijni, j=1, .,E<C, (2. 4)
=1
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where c¢; is the component of C corresponding to line ; and column j, and E the

dimension of n*.

DEMONSTRATION

According to hypotheses a and b, G could be written in a more compact way:

E
G=)> ng, (2.5)

where (; are linear combinations of ;.

Defining the transformed function

E
G2 G- Z nie;, (2.6)
Jj=1
we have
E
anﬂl domg o=@ 2.7
Jj=1

Then, substituting the variables n*, we obtain

an,ul Zchn,g = (2.8)

Jj=11i=1

In a more practical way,

C

E
Z[ui—Zcij{jJni = G*, (29)
j=1

i=1

and, giving a name to the first factor of the sum,
c
Z;ﬂ; n = G (2. 10)

For this equality to be always achieved when G* = 0,
u; =0, (2.11)

and we finally deduce that
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E
ui—zciJ-g,: 0,i=1,..,C, (2.12)
j=1

expressions from which ; can be obtained.

According to hypothesis a,

S 4G

6mk

C
dmy, + Z i dn, (2.13)

=1

dG =
k=1

where S is the dimension of m, and
C
dG) = ) pidm. (2.14)
i=1

From equation (2. 6),

E C
dG)m = [dG - ) d(eyn) +eymdl))| ; (2.15)
j=1i=1 m
dG* B & d(c; n;) d;
( on; )mn[i] - M _;;(g on; Tyt a_m)mn[i]’
1 =1, ..., C. (2.16)

This equation is equivalent to equation (2.12), since the left-hand side is zero

and the second term of the sum is null.

When G* =0,
dG)y = 0. (2.17)
Therefore,
E
dG)y = —an d¢; . (2.18)
j=1

Thus, on the one hand, according to equations (2.5) and (2. 18), and definition
(2.6), G* is the complete Legendre transform of G with respect to the
components of n*; and, on the other hand, according to the same definition, G*
can be viewed as the Lagrange auxiliary function (Lagrangian) for the

optimization of G subject to conditions (2. 4): {; are the "multipliers".
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COMMENTS
In the Lagrange multipliers method, variations of G are linear combinations of

the variations of the components of n. This is the same reason why we say that

G is homogeneous of first order with respect to n (figure 1): linearity and

homogeneity are equivalent properties.

® 0o O |®0/0

Figure 1
Illustration of the homogeneity of G with respect to n in a vapour-liquid binary system
For the contained region: (i) G(n;) and (ii) G(Any) = AG(ny). (Here, A = 2.)

(G is not homogeneous with respect to V)

Therefore, when the complete Legendre transformation of a function to which
the Euler theorem conclusions can be applied (homogeneous function) is
performed, the results coincide with those obtained using Lagrange multipliers.

The Lagrange auxiliary function can be identified to the complete Legendre

transform of the function G with respect to the components of n* (Luetich
2002b). Note that the Lagrangian

¢ = o, ), @19
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and the complete Legendre transform G(m, n) with respect to n is
G* = G" (m, p), (2.20)

but as m remains unchanged and the Legendre transformation is done with

respect to n*
G =Gm,{ =G =Gm,. (2.21)

The functions in pairs {G(m, n), G*(m, )} and {G*(m, ¢), G(m, n*)} contain the
same information because each of them is the complete Legendre transform of
the other with respect of the second variable. To connect these two sets and
show that G(m, n) contains the same information as G(m, n*), this theorem
shows that G*(m, ¢) contains the same information as G(m, n). This "diagonal"
demonstration (figure 2) shows the equivalence of the non-stoichiometric
formulation using Lagrange multipliers and the traditional Chemical

Thermodynamics formalization resorting to Legendre transformations.

complete Legendre
transformation with respect ton

A

complete Legendre
ansformation with respect to

n*=An G-m")TC n*=An

complete Legendre
transformation with respect to

A

complete Legendre
transformation with respect to n*

Figure 2

Diagonal demonstration of the equivalence of G(m, n) and G(m, n*)

SECOND THEOREM
ELEMENT COMPOSITION VARIABLES AND ELEMENT POTENTIALS

For systems at equilibrium, the potential calculated for a particle is independent

of its environment.
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HYPOTHESIS

Let a system be at thermal, mechanic and chemical equilibrium; and a be certain

aggregation state of the j-th element particles.

DEMONSTRATION

Going back to equation (2.5) and taking into account that transformed variables

include the particles in their various states, we obtain

*

n; = ng+ > nf, (2.22)
[

separating the part corresponding to state a from the other ones (¢) (figure 3).
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Figure 3
« and the other states (3 ¢) of element A(®) in the homogeneous two-element system A-B-AB-AyB

The Gibbs energy of each species is the sum of the Gibbs energies of the species
in each state.

G =G+ G (2.23)
(2

The Gibbs energy of the whole system is the sum of the Gibbs energies of each
state.

G:iGFG%ZGw (2.24)
J=1 ®

The variation of the Gibbs energy with the number of particles of element j in

the state of aggregation « is:
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0G aG* 020" oG®
Onj ) rpgsia onj ) ppgel onj onj ) pppgel

elJ]
TPnfl4]

where nf[[ﬁ] is the set of composition variables, except for the one for state @ of

element ;.

Superscript @ can represent any aggregation state, i.e.

. (GG“

B ) ( oG
& anf TP

@ )
anj TPn]

¢
On; )rpngj)
This property leads to the definition of the j-th element potential:
()
O Jrpwijy

= gj ’ (227)

where n*[j] indicates all components of n* except the j-th one.

This potential is the Lagrange multiplier of the element according to the
composition variables transformation (2.22), i.e. the conjugate of the resulting

composition variable.

The potential per particle is

4 (96

_ (24 , (2.28)
A (aNJ )TPN*[j]

where -4 is the Avogadro's number. This value is the same for each particle of

element ;.

COMMENTS

a and, generically, ¢ are the states (of aggregation) of the j-th element particles.
The various states can correspond to physical or chemical aggregation.
Therefore, transitions are represented using the same symbols in both members.
The species that do not change during transitions are called elements. Examples
presented in the table specify what must be understood when speaking of
elements and states (Luetich 2002a).
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Table

Elements and states in five systems: (i) heterogeneous, (ii)-(iv) homogeneous

system statesof A states of B states of C
) Agig) = Awap) | liquid | vapour o o
(ii) 2A=2 Ay free | Ag o o
(iii) A+B=AB free | AB free | AB °
A+B=AB
i fi AB| Ay B |fi AB | A3 B °
av) {2AB:B+A2B ree |AB Az B | free | AB | Ay
v) | AC+B=C+AB AB | AC free | AB free | AC
THIRD THEOREM

DYNAMIC EQUILIBRIUM AND THE ELEMENT POTENTIALS DEFINITION

For systems showing no changes at the macroscopic level, the possible changes in
aggregation states at the microscopic level are those which cause equal and

opposite variations in their respective Gibbs functions.

HYPOTHESIS

Let a system be at thermal, mechanic, and chemical equilibrium.

DEMONSTRATION

Let us suppose that a non-observable quantity of the j-th element atoms
(particle) changes from the aggregation state a to the aggregation state g (figure
4). This transition would be associated to the following change in the Gibbs

energy:

@ B
dG)py = (aGa) dn“+(£] dn”. (2.29)
ong ) rpy: on® P

J

Trans. Luv. Acad. 2002, 1, 41-55



Three theorems on Chemical Thermodynamics 51

Figure 4
Dynamics at microscopic level. Opposite variations of the j-th element mass

in two states (@ and B) in equilibrium

Since the Gibbs energy of the system can be written as follows:

G = G“+Gﬁ+ZG¢, (2. 30)
®

and, since the remaining states ¢ are not involved,
dG = dG" +dG". (2.31)

Remembering the result of the Second Theorem and the property of derivatives

(8G)=(—8G)=_( oG )’ ©.32)
on —-on -on
we obtain
« B
(6Ga ) = [%) . (2.33)
On§ Jrpy ;) ppy:

Given the relation between the potential and the fugacity concepts, this equation
is the mathematic expression of the definition of fugacity as the "atoms" capacity

to escape from an aggregation state.

Therefore, if

onf = —an?, (2.34)
the relation
G = - 9GP (2. 35)
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can be obtained, which constitutes the thermodynamic formalization of the

dynamic equilibrium idea.

This property is a consequence of the equality of the Lagrange multipliers for

particles of the same element in two different states.

oG )
N Jrpn:

gﬁ:#( = gf:#[ﬁ) (2. 36)
TPN*

ON?

The effect of the movement of an unobservable particle on the Gibbs energy of

the whole system is null.
d@rpn = 0 (2.37)

COMMENTS
In the First Theorem, it has been demonstrated that the equivalence of linearity
and homogeneity gives rise to equality of potentials (zeroth order homogeneous

properties).

The zeroth order homogeneity of the element potential u:
KX, kn) = p(x, n), (2.38)

where x is the vector of molar fractions n/};n;, is due to the fact that the
element potential is the derivative with respecto to a variable of a first order

homogeneous function with respect to the same variable.

G, kn) = kG (x,n) (2.39)

0G(x,kn) 0dkGx,n)] kiGx,n) 0G X, n)

okn - kon B kon B on (2.40)

In an homogeneous system, both variables are homogeneous, but to the word
homogeneous must be assigned a different sense: G is not changed by the
number of particles being considered (otherwise, it is not changed by units: a
mole is assigned so many calories as kilocalories correspond to a kilomole); m,

instead, has the same value in every point.

At this point, it is important to stress that partial molar properties have the
same value as molar properties, not only in the case of pure bodies, but also
when the system size is so large that the removal or addition of a small quantity

of a component does not alter the composition.
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At the atomic-molecular level, Leibnitz notation (and the whole infinitesimal

calculus) is especially revealing.

In brief, in a system at equilibrium, the movement of particles from one
aggregation state to another does not disagree with the thermodynamic laws of

macroscopic systems.

The idea of dynamic equilibrium is closely related to the concept of microscopic
reversibility (Luetich 2002c¢).

3. CONCLUSIONS

The condition of homogeneity of G with respect to n is on the grounds of the
whole reasoning that successively leads to: (1) the element potential definition;
(2) the physical approach to equilibrium problems; and (3) the formalization of
the equilibrium dynamics at the microscopic level. This is so because: (1)
homogeneity is related to the linear feature of the Lagrange multipliers method;
(2) Lagrange multipliers are the conjugate of the element composition variables;
and (3) changes in the state of aggregation at the miscroscopic level do not
modify the Gibbs energy of the system because, at equilibrium, element

potentials are zeroth degree homogeneous properties.

The homogeneity condition is not so restrictive as we may think when
considering the fact that we call a system homogeneous if its properties are all
homogeneous, i.e. a phase. If we take any simple system in equilibrium and
consider a number of particles n; of each class, the Gibbs energy of that
subsystem is G; if we consider a quantity An;, the corresponding Gibbs energy is
AG, independently of the aggregation state of the particles (figure 1). Therefore,
the same reason that leads to defining element potentials, that is to say,
homogeneity of G with respect to n, also gives validity to the physical approach to

equilibrium problems.

In multi-element systems, the potential of each of them is the derivative of the
Gibbs energy with respect to the corresponding composition variable, keeping the
remaining variables constant. In terms of variations (Leibnitz notation), an
element potential is the quotient of the Gibbs energy change in relation to the
change in the element composition variable: the idea of variation, i.e. of dynamics
—even in closed systems— is implicit in the definition of potential. For that

purpose, the remaining variables must be kept constant and mixing effects
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avoided. But precisely, differential variations are the ones that avoid these
effects, since they do not modify the overall composition. Not only is dynamics at
microscopic level not forbidden by Chemical Thermodynamics formalization, but

it is implicit in it.
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