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ABSTRACT

A comparison of three methods to deduce a property of element potentials that allows to write the
Gibbs energy expression for systems at chemical equilibrium is presented. These methods are: (1)
the algebraic procedure widely used in reactive distillation modelling to obtain the ¢transformed
composition variables, (2) the classical non-stoichiometric formulation of chemical equilibrium
problems, and (3) the complete Legendre transformation of the Gibbs energy with respect to
element composition variables. These three techniques lead to the same result in most cases, i.e.
when elements are chosen among the system components. Because of its consistency with the rest
of the Thermodynamics formalization, the latter gives deeper insight into the transformed
composition variables and the auxiliary function of the Lagrange multipliers method. The
element composition variables are the conjugate variables of the element potentials. The auxiliary
function of the Lagrange multipliers method is the complete Legendre transform of the Gibbs
energy with respect to element composition variables, and its value is zero for equilibrium states.
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1. INTRODUCTION

In reactive mixtures, changes in composition variables are not independent.
Thus, for reactive closed systems, the differential form of the fundamental
equation takes a simpler form than the one for open non-reactive systems
(Luetich 2002). It has been demonstrated that this simplification is due to the
fact that such variables can be transformed in others which do not change when

the equilibrium is displaced modifying the state variables.

An algebraic method to carry out this transformation was introduced by Barbosa
& Doherty (1987) with the purpose of transferring to reactive distillation

techniques of non-reactive distillation modelling.

Pérez Cisneros et al. (1997) treated the same systems by means of the classical
non-stoichiometric formulation (Smith & Missen 1991), showing that this
method makes it possible to use composition variables which do not advance even
in the case of reactions such as esterification, i.e. when not all the elements exist

free in the mixture.

At the same time, Alberty (1997) presented a method based on the use of
Legendre transformations to treat systems containing a component with
constant chemical potential. His approach was based on previous works related
to the reduction of the number of composition variables in systems containing

pseudoisomers (Alberty & Oppenheim 1990).

In this work, it is demonstrated that using complete Legendre transformations of
the Gibbs energy with respect to the element composition variables allows for a
deeper interpretation of the physical sense of the transformed composition
variables (Luetich 1999) and the auxiliary function of the Lagrange multipliers
method (Luetich 2001).

A comparison of the three techniques is done by applying them to the solution of

a problem for which all lead to the same result.

This paper is the second of four related works written to clarify the concept of
microscopic reversibility. With this purpose, the emphasis here is laid on the
information contained in the different forms of the fundamental equation for

reactive systems.
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2. WRITING THE GIBBS ENERGY EXPRESSION

OUTLINE OF THE PROBLEM

Given the reactive system studied by Brandani & DiGiacomo (1984)

{ formaldehyde + water = methylene glycol @.1)

methylene glycol = water + polyoxymethylene
the simplest expression for the Gibbs energy is to be found.

SOLUTIONS

m LINEAR COMBINATIONS

To simplify the notation, generic components A, B, C, and D, instead of

formaldehyde, water, methylene glycol and polyoxymethylene, respectively, will

be used.
{ A+B=C ©.2)
2C=B+D )
The Gibbs energy of system (2. 2),
G=(pa M pHe pp)(na ns ne np), (2.3)
at equilibrium, is subject to the restrictions
1 0
1 —
(Ma HMB Hc Hp) 1 9 = (0 0). 2.4
0 -1

(This property accounts for the use of the adjective "chemical" for the magnitude

M)

Then, only two chemical potentials are independent.

10 120 0 2.5
(Ha ,UB)(l _1)+(Nc ,UD)( 0 _1)—( ) (2.9)
~ 1 0)\(-1 2\ 0 6
(pc pp) = —(ua #B)(l _1)( 0 _1) (2.6)

C and D are the so-called reference components (Barbosa & Doherty 1987).
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On the other hand, associating terms in the matricial expression of the Gibbs

energy,
G = (ua ps)(na np) +(pc wp)(ne np)'. 2.7)

The following step is the most important one since, by means of it, two variables

are eliminated:

na+nc+2n
G = (ua uB)( A D)- (2.8)
ng+nNc+np
This relation allows to define the transformed composition variables ().
n
(Ha ,uB)(,\A)éG 2.9)
ng

In appendix A, it is shown that this procedure is equivalent to eliminate the
degrees of advance of both reactions.
m LAGRANGE MULTIPLIERS

The system can be viewed as constituted by "element" A and "element" B

(physical approach):

{ A+B=AB 2.10)
2AB= B+AyB '
Therefore, it is intended to minimize the function
G = G(T7 P,(nA ng nc nD))} (211)
subject to restrictions
na
y 101 2
(nA)z( ) | 2.12)
n 011 1)|nc
np

which define the composition variables n* and n%. These variables arise by

inspecting the number of "atoms" that conforms each molecule.

The problem is just the classical minimisation one, with bound variables, solved

by Lagrange using multipliers.
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Let
na

1012 ng
Q_G—[(AA )LB)(O - 1)} (2.13)

nc

np
be the corresponding auxiliary function [the Lagrangian, ®(n, A)].

Its derivatives with respect to mole numbers are

0D
ony
o - 1012y
S I bl R (RN )
_ a2 . 92.14
s e (Aa Ap) 0111 ( )
anc U
0D ?
(97LD

The matrix product should be transposed because

0
5gA nay (100 0]
010 0)°
ong (| 7w || )T . 2.15)
0 || nc (00 10)
anc n T
P b [ (0 0 0 1) |
L 6nD ]
These derivatives become null —giving GG its minimum value- when
HMa 1 O AA
0 1|(2A A
) ( A) - g 2.16)
U 1 1|\ As + A
Up 21 225+ Ap
Therefore,
: Aa
min G = (ny+nc+2np nB+nC+nD)()t ); (2.17)
B
N V0 NN
(n’y ny) v = min G. (2.18)
B

The relation between both preceding methods is shown in appendix B.
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m LEGENDRE TRANSFORMS

For this reactive system, the Gibbs energy expression is

HMaA
HB
pe |
Mp

G = (na ng n¢ np) (2.19)

At constant T and P, the equation which determines the change of this

magnitude with composition variables is

np
n
dG)rp = (pa HB Mc Mp) d . (2.20)

nc
np

Then, the problem consists of finding out the minimum number of times in
which the Gibbs energy should be transformed when variables are bound by
chemical reactions stoichiometry so as to obtain its complete Legendre
transform. But this number is just the number of elements. In other words,
variables that remain constant during a reaction are the element composition

variables. Thus, the transformation (2. 12) shoud be used.

For this case, the complete Legendre transform of G is

a

G—(n, ”*B’(gg

) £ G (2.21)

[A new symbol () is introduced here because it is not known yet which variables
should go with the transformed mole number. Variables ¢ are the element

potentials.]

Operating on equations (2. 21) and (2. 12)

d(G—(n’; n*B)(gA)):o; (2.22)
(B
na
(ua—Can =88 pc—4a—{B ﬂD—ng—fB)d ZB = 0. (2.23)
C
np
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Since this equation holds for non null variations, we obtain the expressions for

element and compound potentials:

(ua pB pc Hp) = (4a &8 QG+ 200+ 0B). (2.24)
Therefore,
G = (n', n*B)(“A). 2. 25)
B

This is the same result obtained by means of the Lagrange multipliers method.
Note that this technique —using integral equations— is the inverse of the linear

combinations method (appendix C).

From here on, to complete the deduction, it will be convenient to use the

following notation:
A * * 3k *
(pa—8n ps—E pc—4a—80s o —240—48) = (W Hp Hc Mp), (2.26)
where y* is the transformed potential.

In addition, transformation (2.21) defines a thermodynamic potential whose

expression in terms of the original and the transformed composition variables, is

na
. ng
G =(0 0 pc—pa—ps pp—2pa— pip) it 2.27)
C
np
na
% o ng
G = (0 0 pg pp) , (2.28)
nc
np
which is zero at the equilibrium state.
Thus, the differential form of this function is
, (d
dGyp)rp = —(ny ny) ( d” . ) (2.29)
Mg

Formulae, which relate the transformed and the original thermodynamic
potentials and their derivatives with the transformed composition variables for

equilibrium states, are shown in table 1.
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Table 1
A+B=aC

9C=B+D’ in terms of the Gibbs and the transformed

Equilibrium conditions for the system {

Gibbs functions

G = minG =n* uya+niusg + 0 |Gy = minGyy = ponc+upnp =0
dG)rp = padn’y+pupdny =0 | (@Gyp)pp = —niyduy —nydug = 0

Both functions (G and G’,3) have null differentials at equilibrium states, but only
the transformed potential is zero. In the first case, the differential nullity is due
to the invariability throughout the reaction of the transformed composition
variables. In the second case, it is so, because the transformed composition
variables are bound to potentials by a relationship analogous to the so-called

Gibbs-Duhem equation.

m Generalisation

The general expression of the Gibbs energy for systems undergoing chemical

reactions is
G =Gm,n)=n" g, (2. 30)

where m is the vector of the state variables and n is the vector of the composition

variables.

m= (T, P) (2.31)
Stoichiometric constraints reduce the number of composition variables:

Cn =n". (2.32)

The intensive variables which go with the transformed composition variables in

the shorten expression of the Gibbs energy can be related to chemical potentials.
G=m)"¢ (2.33)
w=p-C'¢=0 (2.34)

The general integral and differential forms of the transformed Gibbs function are

Trans. Luv. Acad. 2002, 1, 25-39
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dG)m = —mHTd¢. (2. 36)

From equations (2.34), the components of { can be obtained. When replacing
them in equation (2.36), they provide the expression of dG* according to the
original chemical potentials (u). The transformed potential results from
equations (2. 34). If they are replaced in equation (2. 35), the integral expression

of G* can be obtained.
Otherwise, adding to equation (2. 23) the Gibbs-Duhem equation,
pH'dn+ndy = 0; (2.37)
dG-m)HT¢) = dG* = - (m")' d¢. (2.38)
Therefore, we obtain the equation:
dG = {'dn’, (2.39)

whose importance is apparent when studying chemical equilibrium problems

within the frame of the physical approach (Luetich 2002).

The transformed composition variables are the conjugate variables of the
element potentials (Luetich 2001).

Table 2 presents a summary of the three methods used to solve this problem.
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Table 2

One problem, three focuses

THE PROBLEM ALTERNATIVE FORMS
Given the reactive system Linear combinations
{ A+B=C Transform the mole numbers of C and D
2C=B+D

to put them as combinations of
the simplest the ones of A and B in the expression of G.
expression for the Gibbs ¢ = 5, Ua + N B + NC He + 1D fp
energy is to be found. s+ pug—pc =0
{—ﬂB+2uc—uD =0
Lagrange multipliers
Using the element
composition variablesn* and n%,
give an expression to the minimum
of the function
G =G, P,(ns ng nc np)).
Legendre transforms
Find the conjugates of element composition
variables to write the differential form of

G = G(T, P, (n%, n%)).

3. CONCLUSIONS

In the method introduced by Barbosa and Doherty (1987), the composition
variables come after defining the way in which chemical potentials will be
combined (equilibrium condition). On the contrary, in the Lagrange multipliers
and the Legendre transforms methods, the selection of variables to be used in
describing the system composition is made before obtaining the expressions for
potentials. That is what allows us to find a simple expression for the
thermodynamic function that defines the equilibrium states in the case of
reactions such as esterification (Pérez Cisneros et al. 1997), i.e when elements

are always combined.

When "elements" are chosen in such a way that information on the system
composition is not encoded -i.e. when elements and the reference species of the
linear combinations method coincide- results converge and correspond to the

same Legendre transformation.
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The advantage of resorting to Legendre transformations lies on the fact that,
during the demonstration, the physical sense of the variables remains explicit.
This allows for an interpretation of the Lagrange auxiliary function, which has a
clear physical meaning: it is the complete Legendre transform of the Gibbs
energy with respect to the element composition variables, and its value is zero

for equilibrium states.

The transformed composition variables are those linear combinations of such
variables independent of the degrees of advance. They are also the conjugate
variables of element potentials. These potentials are: (1) the intensive variables
which go with certain mole number combinations (appendix A); (2) the Lagrange
multipliers when minimizing the Gibbs energy subject to stoichiometric
constraints; and (3) the conjugate of element composition variables when

obtaining the complete Legendre transform of G.

ACKNOWLEDGEMENTS

This work was financially supported by FOMEC (Fondo para el Mejoramiento de la
Calidad Universitaria, Secretaria de Politicas Universitarias, Ministerio de Cultura y
Educaciéon de la Nacion, Republica Argentina), Project No. 824, and the Luventicus

Academy of Sciences.

Trans. Luv. Acad. 2002, 1, 25-39



36 J. J. Luetich

APPENDIX A
TRANSFORMED COMPOSITION VARIABLES AND DEGREES OF ADVANCE

Taking as a basis the system approached in section 3, here it will be demonstrated that
the transformed composition variables are the linear combinations of the composition

variables that turn out to be degree of advance-independent.

By separating from the initial quantities of B and C the ones participating in each

reaction, we obtain

¢ ng —ndt na—nd ny —n
1 = = =
-1 1 1 ’
1 _ 01 )
ng = ne —&;
0 )
na = np +¢&i;
1 01 )
ng = ng +&i;
§ ng —n np — nf nk —n®
2 = = = .
-1 -1 2 ’

np = np —&;
ng =n@+26&.

And, choosing adequate linear combinations of the composition variables,

1 2
na+nc+2np = nd +& +nd —& +nP¥ + 286+ 20 - &);

=nd +nd +2nY;
01 02 01 02 0 )
ng+nc+np = ng +&é1+ng —&+ng —é1+ng +286 +np —&;

nd +nd +nd.

No £ corresponds to these variables: they do not advance.

Note that the key of this reasoning is the separation of the initial quantities of B and C

into two parts whose extensions are not arbitrary.
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APPENDIX B
COMPARISON OF TWO TRANSFORMATIONS

Transformations of composition variables in the Lagrange multipliers and the Legendre

transforms techniques is previous to the application of these methods and can be written

as follows:
na
ngp n®
A
nC n B
np

On the contrary, the transformation of the linear combinations technique is the result of

the application of this technique and can be expressed as follows:

() -2 ()= ()

The circumstances in which they lead to the same result can be found solving the

equation
na
ng (nA) (bn blZ) (nc)
C = - .
ne ns bs1 be) \np
np

The components of C are

(011 Ciz Ci3 014) B (1 0 -bn —b12)

C21 Co2 Co3 Co4 0 1 -by —by

Thus, they lead to the same result when matrix C can be divided into a diagonal matrix
and another one that is the opposite of B, i.e. when elements are selected among the set

of components.
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APPENDIX C
DIFFERENTIAL AND INTEGRAL EXPRESSIONS IN THE LEGENDRE
TRANSFORMATIONS TECHNIQUE

In section 2, the problem was solved by means of the Legendre transformations method,
using differential equations. The same problem can be solved using these equations in
their integral form. In this case, the method becomes the inverse of that introduced by
Barbosa and Doherty (1987): given equations to obtain n* from n, the goal is to obtain

the relation between { and p.

na
1 01 2V\]|ns
G‘[((A fB)(O 11 1)] - =0 (2.17)
np
na
(a—8n =88 pc—la—{8 Hp—20a—{B) ZB =0 (2.18)
C
np

This condition must be fulfilled when not all mole numbers are null (trivial solution),

(Ha pB Hc pp) = ({a &8 {a+d8 200+ (B). (2.19)
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