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ABSTRACT

A general Gibbs energy representation of the fundamental equation for multi-phase
multi-reaction systems is presented. The integral expression of the Gibbs energy comprises of as
many terms as variables which have been chosen to describe the composition. The simplest set of
composition variables is the one used in the physical approach to equilibrium problems. Within
this frame, the differential form of the Gibbs energy for closed systems consists of two terms, like
the one corresponding to systems with invariable composition. The central point of the argument
is the following property: at given conditions, the stable equilibrium state of any system is the
particular state for which the potential of "element" i

Hi = (22 )TPn[i]

is independent of the state of the "atoms" taken to carry out the variation dn; that, keeping
unchanged the remaining variables, produces the variation G. To prove this, the interpretation
of the employed composition variables is facilitated by using the complete Legendre
transformation of G, homogeneous function of n, instead of the traditional, mathematically
equivalent method of Lagrange multipliers. No difference is made between physical and chemical
aggregation, i.e. between phase and combination changes. A modification of the phase rule
expression is also discussed.
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Thermodynamics; phase rule; Legendre transformations
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1. INTRODUCTION

The stoichiometry of chemical reactions imposes restrictions on the evolution of
composition variables, that are not present when only physical transitions occur.
Therefore, systems undergoing chemical reactions can be identified by means of a
composition vector whose dimension is smaller than the one for the same

systems when chemical reactions are inhibited.

Works related to the writing of fundamental equations for systems at chemical
equilibrium were published by authors from different areas (Alberty &
Oppenheim 1988, Norval et al. 1989, Ung & Doherty 1995). In this work, systems
at simultaneous physical and chemical equilibrium are studied in order to
highlight a property of the potentials of the elements that allows the Gibbs
energy to take several forms, the simplest one being to the so-called physical

approach to equilibrium problems.

These problems arise when modelling operations involving physical and chemical
equilibria, like reactive distillation, reactions accelerated by using phase-transfer

catalysts, and transitions in the solid state of interest for metallurgy.

This paper is the first member of a tetralogy conceived to give insight into the
concept of microscopic reversibility. To this end, here emphasis will be placed on

the role of the observer who describes the system composition.

2. THEORETICAL BACKGROUND

THE FUNDAMENTAL EQUATION

The combined First and Second Law of Thermodynamics for closed simple
systems of invariable composition that traverse quasi-static paths performing

only mechanical work is

dU = TdS-PdV. (2.1

When a natural law settles a relationship among variations of certain
magnitudes, it is said that the function of the left-hand side has as its natural
variables those of the right-hand side. Thus, for closed systems that only perform

mechanical work, S and V are the natural variables of U.

Trans. Luv. Acad. 2002, 1, 1-23
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An appropriate name for the internal energy would be: constant function in the

isentropic-isometric differential evolutions of closed systems.
dU)gy =0 (2.2)

When the natural variables of a thermodynamic function are kept constant, the

function remains also constant.

By transforming equation (2. 1), we obtain another one that is important in other

processes.
dU+dPV)-d(T'S) =dG = -SdT +VdP (2.3)

G is the constant function of the isothermic-isobaric quasi-static evolutions of

closed simple systems.
dGrp =0 (2.4)

The integral expressions of equations (2.1) and (2. 3) are different forms of the

fundamental equation.

U=U(ES,YV) (2.5)

G =G(T, P (2.6)

For systems with invariable composition, if we know how the Gibbs function
varies with temperature and pressure, we will have all the information needed to

know whether a state is a stable equilibrium one or not.

Extending these conclusions to systems where composition changes is simple: it
is done by adding the (mole) number of particles of those species constituting the

system to the state variables.
G= G(T, P, n) 2.7)
The differential form of this representation of the fundamental equation is

0G )
on; )rpnji

C
dG = —SdT+VdP+Z( dn,, 2.8)
i=1

where n[i] denotes the components of vector n, except the i-th one, and C is the

number of components.

Trans. Luv. Acad. 2002, 1, 1-23
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However, in section 4 it will be shown that, by selecting the appropriate

composition variables, equation (2. 3) can be also used in this case.

LEGENDRE TRANSFORMATIONS

The name Legendre transform of the function

y =y 2.9)
is given to
qQ =q(p) =y-px, (2.10)
where
dy
= —. 2.11
p d ( )

Equations (2.9) and (2. 10) contain the same information, i.e. they represent the

same (convex) curve.
What is interesting about this transformation is that
dqg =dy—-xdp—-pdx = —x dp. (2.12)
Differentials of y and g have their variables exchanged.
x and p are called conjugate variables.

A Legendre transformation of a thermodynamic function is carried out with the
purpose of obtaining another function with certain natural variables. This is

especially useful when these variables have fixed values (Alberty 1997).

It should be noted that for closed systems, G is the complete Legendre transform
of U.

In the textbook by Tester & Modell (1997), a detailed discussion on this

technique is presented.

THE PHYSICAL AND THE CHEMICAL APPROACHES

The mass balance of a closed reactive system can be expressed as follows (Smith
& Missen 1991):

Trans. Luv. Acad. 2002, 1, 1-23
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Cvr =0, (2.13)

where C is the matrix that provides the number of atoms in each formula, v is

the matrix of the stoichiometric coefficients, and 0 is the zero matrix.

In principle, these formulae are the ones that correspond to independent species
(molecules, ions). But this is not the unique option. An "atom" can be the unit of
any "element". Even "atoms" can be constituted by true atoms which are not

physically together. This point was illustrated by Pérez Cisneros et al. (1997).

For example, the reaction of adding methanol to isobutene to form methyl
tert-butyl ether (MTBE) studied by Smith et al. (1984), can be written in two

ways:
C4Hg+CH,O = C5Hjo O; (2.14)

(C4 Hy) + (CH4 O) = (C4 Hy) (CH4 O) (2.15)

The expression of the right-hand side of the second equation is not a structural
formula, but it has the advantage of making it more evident that the reaction

only involves two "elements".

The following C and v matrices correspond to equation (2. 14).

4 1 5

C,=|8 4 12 (2.16)
01 1
1

v=|1 (2.17)
-1

It is easy to prove that they fulfill condition (2. 13).

A simpler C matrix corresponds to equation (2. 15).

(2.18)

101
C2:(01 1)

In this case, condition (2. 13) is also met.

In the first case (chemical approach), the composition vector consists of three
components (nc,u,, 7cy,0, o H,0); in the second one (physical approach) it

consists of two components (n, y,, 7y, o). Here the asterisk denotes reference

Trans. Luv. Acad. 2002, 1, 1-23
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to the element. The number of "elements" (E) can be obtained by subtracting the

stoichiometric restrictions (R) from the number of components (C).
E=C-R (2.19)

[Not very frequent cases, in which mechanistic restrictions must be considered,
have been pointed out by Smith (1979). In reactive distillation, there always exist
a way to describe the composition of the system by means of magnitudes whose

values don't change.]

According to the above discussion, variables can be classified as follows:

composition variables (what-how much) }th d . bl
. ermodynamic variables
state variables (how) Y

3. THE TRANSFORMATION OF THE COMPOSITION VARIABLES

In this section, the system (2.14), previously studied by Pérez Cisneros et al.
(1997) using Lagrange multipliers, is treated by means of another equivalent
technique —a variant of the one introduced by Alberty (1997)- (Luetich 2002b).

isobutene + methanol = methyl fert-butyl ether 3.1)

To simplify the notation, generic components A, B, and C, instead of isobutene,

methanol, and methyl fert-butyl ether, respectively, will be used.
The transformation
ny

(n;)‘(o L) 3.2)
nc

defines the composition variables n* and n%. This relation can be obtained by
inspection of the quantity of "atoms" that make up each molecule (matrix Co).
Therefore, the values of these new variables do not change throughout the
reaction; they coincide with the transformed composition variables (Barbosa &
Doherty 1987).

For this system, the Gibbs energy expression is
G = napa+nsus +nc lc . 3.3)

At constant T and P, the equation that determines the change of this magnitude

with the composition variables is

Trans. Luv. Acad. 2002, 1, 1-23
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d@rp = padna + psdng + pcdnc . (3.4)

In addition, for example,

dGo)rp 2 [10(G - nc uo)lrp (3.5)
= d (na s +ng s + Ng Uc) — pedne — nedug; (3.6)
(dGC)TP = Ma dnA + U dnB — ¢ d,uc (3 7)

This was a first-order Legendre transformation of the original function.

As equation (3. 4) gives a relation between the variations of G and the variations
of the composition variables, its complete Legendre transform will give a relation

between the variations of potentials.

The complete Legendre transform of G with respect to the (constant) element

composition variables is

Here, ¢ is the symbol used to represent the variables which go with the

transformed mole numbers.

G%p is the constant null function in the quasi-static isothermic-isobaric

evolutions of this system.
dGi)pp = 0 (3.9)
Replacing definition (3. 8),
d (napa+np s +nc pic —Ny S —n'g &) = 0; (3.10)
(s — {a) dna + (up — () dng + (e — {a — {s)dnc = 0. (3.11)

Since this equation holds true when not all these variations are null:

Ha = a; (3.12)
Uz = {B; (3.13)
Hc = {a+ B, (3.14)

Trans. Luv. Acad. 2002, 1, 1-23
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which proves that, at the stable equilibrium state, the potential of a free element
is equal to the one of the combined element. This is what has been demonstrated

in another way by Beattie & Oppenheim (1979).
Therefore,
G = T’LXA Ma + n’§3 MB. (3.15)

It should be noted that the transformation of “chemical” potentials uy and ug
does not result in other chemical potentials. In fact, there is no property for the

potentials of the elements equivalent to:
Ha+ps—pe = 0, (3.16)

because, when working with elements, it does not make sense to talk about
chemical reactions. Thus, an appropriate name for these magnitudes would be

element potentials.

GENERALIZATION

The general expression of the Gibbs energy for reactive systems is

G = n"p, (3.17)
where u is the chemical potentials vector.
Stoichiometric constraints reduce the number of composition variables:

Cn =n". (3.18)
Here, n* is the element composition vector.

The intensive variables ({) which go with the transformed composition variables

in the shorten expression of the Gibbs energy,

G =m)"¢, (3.19)
can be related to chemical potentials:

u=Cly¢ (3.20)

If we take as "elements" a subset of the system components, ¢ will be a subset of u.

Trans. Luv. Acad. 2002, 1, 1-23
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4. A PROPERTY OF THE ELEMENT POTENTIALS

Here, the most important conclusion of the argument given in section 3 is used to

introduce and comment on a general statement (Luetich 2002a).

At stable equilibrium states, the potential of an element is independent of the
aggregation state (surroundings) of the particles being considered to carry out the
variation on; which, keeping constant the remaining variables, produces the

variation 0G.

Let @ and B be two certain aggregation states of the particles of species A in

equilibrium by the transition #:
A" = AP, 4.1

For any transition, the equilibrium condition is

(%)TP - 0, 4.2)

where £ is the degree of advance of the transition.

The Gibbs free energy corresponding to a differential composition change is

NG = Z Vk(ﬁ) = 0. “4.3)
s ong )rpagk)

Then,

( oG ) 3 ( oG ) 4. 4)
ony TPnf! 6nf TPngo[ﬁ], '

1[A]

where ¢ is a generic aggregation state and i is a generic component.

Superscripts @ and S could correspond to any aggregation state. That is to say, it
doesn't matter which is the state (phase or chemical aggregate) where the
variation in mole number is carried out, the change in the system Gibbs energy is

the same.

COMMENTS

A single-component system with two phases in equilibrium (@ and g) fulfill the

condition:

Trans. Luv. Acad. 2002, 1, 1-23
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u= 4l = pa (4.9

However, there is no conceptual difference between physical and chemical
aggregation. This can be made evident by the difficulty in setting down a limit
between them. That is why there is a study field called Chemical
Thermodynamics. Its historical origin must be traced to the attempts to transfer
the results of phase transitions thermodynamics developed by Gibbs (1875-1878)
—-a physicist- to the energetic studies on chemical reactions carried out by
van’t Hoff and other physical chemists in the last decades of the nineteenth

century (appendix A).

The importance of the above statement lies on the fact that because of the
employed notation and nomenclature, the results are valid for any transition: if
n, is the vector of the mole number of element A in each phase (primary
interpretation), «, B, and generically ¢ will be the phases, and the equilibrium
will be a physical equilibrium. But if n, is the vector of the mole number of
element A in each compound (secondary interpretation), a, B, and ¢ will be the

compounds and the equilibrium under analysis will be a chemical one.

With this notation, the composition of a multi-phase multi-component system is a
vector of vectorial components, i.e. a matrix (n), vector of components n; of

components nf.

Let us assume that we have a vapour-liquid system constituted by A, B and
C=AB.

The following equilibria are present

Atig = Aap)

Biig = Bap 4.6)
ABjigy = ABap)

A+B = AB

As shown in figure 1, if the emphasis is placed on the division made by the
interphasial surface, a composition vector like the following one will be used for

component A:
n, = (ny, ny) “4.7)

where n% and n} are the number of particles of element A in the liquid and the

vapour phases respectively.

Trans. Luv. Acad. 2002, 1, 1-23
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A : A
AB g AB 4
|
]
|
|
AIB B A B
A A
Figure 1

Two ways to define the composition of the system: A+B = C:

paying attention to phases or to elements

But if the focus is on element A, a different composition vector will be defined:
free

n, = (ny”, ny) (4.8)

where nf is the number of free particles of element A and n§ is the number of

particles of element A combined in C.
The conclusion is valid for both cases.
Nevertheless, in the first case,

n = (N, Nz, Ng); 4.9)
while in the second one,

n = (n,, ng). (4.10)
Therefore, by adopting the second criterion we deal with two less variables.

Phases, within the chemical approach, play the same role as components in the
physical approach. Moreover, in the physical approach, there is no difference

between phases and compounds: they are both aggregates of "atoms".

In summary, the composition can be described at four levels (figure 2),
considering particles of different species: (i) those in different phases (Smith &
Missen 1991) or combination states, (ii) those in different combination states,

(iii) those in different phases, or (iv) those of different elements.

Trans. Luv. Acad. 2002, 1, 1-23
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@ (ii) (iii) (iv)

Figure 2
One system: A+B = C; four observers, who discriminate:

(i) phases and components, (ii) components, (iii) phases and elements, (iv) elements

The following expressions of the Gibbs energy correspond to each of the

mentioned levels.

: _ L L, V,V, L, L,V ,V, L, L,V V
() G = ng px +ny uy + ng g + Ny Wy + 16 e + g fo

(11) G = N Us + N U + Nc Uc (4 11)
(iii) G =nt s +nt Y pl +ntt s+t )
(iv) G =n' us+ni s

Expressions (ii), (iii) and (iv) were obtained from (i) through the relations showed
in table 1.

Table 1
Formulae for converting the Gibbs energy expressions
of the two-phase system A+B = C. ¢ = phase (L or V)

A% L
. .. M = M
(i) - (ii) o
ni+ni = n;
A+ g = e
(1) — (iii) nf+nf =n'¥
nf+nf = n2¥
v o _ L
H = M
L ps + ph =l
(l)_>(1V) L \'% L \ *
nA+nA+nC+nC =nA
ng+nyg +ne+nd = nh

If a still more detailed description had been made (figure 3), expressions of eight

(v) and four (vi) terms would have been obtained. Schemes i-vi work as matrices.

Trans. Luv. Acad. 2002, 1, 1-23
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A AB B
A AB B
A AB B
) (vi)
Figure 3

More detailed descriptions of the system A+B = C:

(v) phases, elements and states of combination, (vi) elements and states of combination

Not always, observer (ii) employs less terms to write the Gibbs energy expression

than observer (iii). For this system,

phases x elements > components, (4.12)

but for the system studied by Brandani & DiGiacomo (1984)

{ formaldehyde + water = methylene glycol (4.13)
methylene glycol = water + polyoxymethylene '

which in the physical approach is

{ A+B=AB

2AB=B+A2B “.19

phases x elements = components = 4. (4.15)

A NOTE ON THE PHASE RULE

From the above discussion,

species = terms in the Gibbs energy expression. (4.16)

Nevertheless, the number of variables, which when fixed, determine if the state
of the system is a stable equilibrium one or not (state variables), is independent

of the observer.

The number of free variables (F) is the number of species (o) plus 2, less the
number of phases (¢), and physical (Ry,) and chemical (Ry,) restrictions

(transitions).

Trans. Luv. Acad. 2002, 1, 1-23
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F=0+2-¢—Ry—Ren (4.17)

Here Ry, is the number of restrictions of a physical nature. R, is the number of

stoichiometric restrictions (R).

The values of these variables for observers i-vi is shown in table 2 (¢ = 2).

Table 2
Species (o), physical restrictions (Rpp), and chemical restrictions (Rc), for the system A+B = C.
Free variables (F) = 2

observer |1 |ii |iil |iv |V | Vi
o 634|284
Ry, 3/0/2]0(|6/|2
R, 1/1/0[0(0|0

Figure 4 illustrates what it should be viewed as a physical constraint.

S 2 2 % 4 N 7 B L 2 |«
@) (iii) (v) (vi)
Figure 4

Physical and chemical restrictions of the system A+B = C:

Vertical and horizontal adjacency
Ry is the term which connects the two approaches.

Formula (4. 17) can also be deduced in a slightly different way than that used by
J. Willard Gibbs (appendix B) and is anologous to the one given by Denbigh

(1966) for a single observer:
F=C+2-¢-R. (4.18)

Here, the stoichiometric constraints can be associated with physical constraints

or with components.

F=C+2-@+R)=E+2-¢ 4.19)

Trans. Luv. Acad. 2002, 1, 1-23
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Note that magnitude F + ¢ — 2 is the same for any observer.

c-Ry,—Reyy, = E (4. 20)

THE FUNDAMENTAL EQUATION FOR CLOSED SYSTEMS

For the reactive system (3. 1) the number of natural variables of the transformed

Gibbs energy is 4.

G = Gu (T, P, ua, pn) (4.21)
It is not necessary to include the potential of species C, because:

Hc = Ha + UB. (4.22)
The minimum number of natural variables for the Gibbs energy is also 4.

G (T, P, (ny, np)) (4.23)

With no loss of generality, this fact can be shown by placing together the
definitions (3. 2) and the equation of the equilibrium constant (K) for a mixture of

ideal gases:

K = K,PY = "% (ny +ng +n0) 1 (4.24)
nang P
In other words, the rank of CT —which relates u and ¢~ is equal to the rank of C

—which relates n and n*-.

In general, the number of equations (3.2) is E and the number of equations like
(4.24) is R. The total is E+R = C. Given the components of n*, the components

of n are univocally determined.

Thus, taking into account the property of element potentials deduced in section
3, the Gibbs energy form of the fundamental equation for multi-phase
multi-reaction closed systems observed by someone who does not distinguish

nothing but elements is

E

2 oG
G:G(T,P,n*):zﬂinj :Z( *) n’. (4. 25)
) — N’ Jrpn (i
And its differential form,
dG (T, P,n*) = -SdT +V dP, (4. 26)

Trans. Luv. Acad. 2002, 1, 1-23
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is valid even when the system contains inert components or catalysts, because
their variables remain unchanged throughout transformations like (3.18). [The

extensive variables G, S, and V relate to the whole system.]

Equations (4.25) and (4.26) hold for any simple closed system, i.e. for systems
which are devoid of any internal boundaries and not acted upon by external force
fields or inertial forces (Tester & Modell 1997).

For example, if system (3. 1) also contains the inert component 1-butene (Smith
et al. 1984),

n’, 1010
n=|ny|=|0110 4.27)
n 0001

As the number of moles of species D (1-butene) remains unchanged during the
reaction, the Gibbs energy should be also transformed according to definition

(3. 8), i.e. not transforming the D-element variables:
G:TLA,UA+TLB,UB+TLCIU(3+TLD,UD (428)

dG (T, P, (n*,, n%, np)) = -SdT +V dP (4.29)

In summary, for closed systems, T' and P are the natural variables of G [equation

(2.3)], i.e. G can be represented as a surface in the 3D-space.

THE VARIABLES OF ELEMENT POTENTIALS

The problem: Which are the variables of y; in equation (4.25)?, can be solved in

two different ways:
i. The same variables as its primitive G, i.e. T, P, and n*.

ii. At given T and P, for each phase there is a relation between potentials and
composition.

L

p"(am®)

{ﬂv VeV (4. 30)
uo= p ()

Here, a and S are positive real numbers.

The phase equilibrium condition is:

Trans. Luv. Acad. 2002, 1, 1-23
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peo=p =, (4.31)
and there exists a relation between the compositions of both phases:

an" = an"(Bfn"). (4.32)
Therefore, being

an"+Bn" = n, (4.33)

given n, n* and n' are determined: there is only one equilibrium state. (This is
one of the basis of the application to phase equilibrium of the so-called Monte
Carlo method.)

THE FUNDAMENTAL EQUATION FOR OPEN SYSTEMS
The differential form of the fundamental equation for open systems is

E
dG(T,P,n*) = -SdT +VdP + Z wdn’ . (4. 34)

=1

In this case, T, P, and n% are also the variables of G and y;. (It doesn't matter
how fast reactions are; quasi-static processes are slow enough to allow

equilibrium to be reached.)

For multi-phase systems, the composition of the currents leaving [entering] does
not depend only on the characteristics of the exit [entrance] but also on its
position. In batch reactive distillation operations, for example, the mixture leaves
the distiller in the vapour state. In other experiments, selective membranes allow

certain components to leave or enter the system.

Trans. Luv. Acad. 2002, 1, 1-23
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5. CONCLUSIONS

The species to be used to describe the composition of a reactive system were
chosen before performing the Legendre transformation of the Gibbs function.
There is an arbitrary aspect in this selection, and the final form of the
thermodynamic equations is conditioned by this contribution of the system
observer (figure 5). As a consequence, expressions like (4. 26) should indicate not
only the system but also the observer characteristics (n*). If a simple expression
is to be found for that thermodynamic function defining stable equilibrium
states, the best choice for the composition variables is the element one, since in

every reactive system, the quantity of each element remains constant.

0

b

S

B e
equation [« v @

v

e

T

Figure 5

The role of the system observer

Following the discussed procedure, when dealing with reactive systems, the
left-hand side of equation (2. 1) must be modified, and not the right-hand side as
was done to obtain equation (2. 8). There always exists a way to identify a system

by means of a set of constant composition variables.

Sometimes, because of limitations in the analytic technique —case of certain
isomers determined by chromatography- groups of components are quantified as
a single one. In other cases, it is very difficult to discriminate phases —case of
reactions begenning in a medium containing small drops which then become a
microemulsion, and then a solution. This fact reduces the options when selecting
composition variables. Nevertheless, in most cases, the final decision on which

species are to be used to describe the composition is up to the observer.

If a reaction occurs while an inert substance is present, the corresponding term
will not be transformed, since such a substance could be considered as a separate

system.

Trans. Luv. Acad. 2002, 1, 1-23
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For any closed simple system, T' and P are the natural variables of G and this
thermodynamic function can be represented as a surface in the 3D-space. For
open systems, G is a hypersurface in the (3+E)D-space, and the differential form
of the fundamental equation can be obtained adding the terms corresponding to

element work [equation (4. 34)].

The potential of an element does not depend at equilibrium on its particles state
(environment), is a characteristic of the element. (This is also the answer to the
question: Why can the "atoms" of an "element" be constituted by physically
separate atoms?) If a system contains the same element in two different states,
the corresponding potentials are equal. Taking this property into account helps
us in modelling the element potential at the most convenient conditions, as we do
when we calculate by means of ab initio methods the Gibbs energy of a pure gas
at its saturation pressure instead of that of the liquid. Moreover, even when
modelling, the former requires modelling the latter and vice versa —case of

mixtures— this property can help us to carry out data-consistency tests.

By concept, there is no difference between physical and chemical aggregation.

For any element A, transitions
Amapoury = Aliquid)
and
Affreey = Afcombined)
are then comparable. Any transition is a (pseudo)isomerisation.

In the physical approach, the expression of the phase rule should be modified to
obtain another one useful when no difference is made between physical and
chemical aggregation [equation (4.17)]. An appropriate name for it would be

physico-chemical constraints rule.
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APPENDIX A
THE MIXING OF PRODUCTS

The difference between the following transitions:

A(liq) = A(Vap)
A = B

is that in the phase transition, vapour and liquid are in different phases, while in the
isomerisation A and B are mixed. The first transition is of a physical nature, and the

second one —which we represent changing names- is a transition of a chemical nature.

The following are examples of opposite cases.

A
A+B

Ay
Cl

N
~
—
~

Here, monomer and dimer are mixed, and C is separate from the mixture of A and B.

A value for the Gibbs energy can be assigned to a mass of any component in any state

(free, combined, mixed). If we want to separate components in transitions like

A+B = C

to study only chemical aggregation, we will need to make a thought experiment like that
introduced by van't Hoff (figure 6). The so-called van't Hoff chamber, is a chamber held at
a constant temperature and pressure which works as a reversible reactor where pure

substances ingress and leave through selective membranes at their partial pressures.

The van't Hoff chamber, a reversible reactor.

A, B, and C enter and leave the reactor through selective membranes at their partial pressure

Trans. Luv. Acad. 2002, 1, 1-23
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APPENDIX B
LEGENDRE TRANSFORMATIONS AND THE PHASE RULE

The complete Legendre transform of function
G =G(T,P,n),
with respect to the composition variables, is the function
G =G (T, P, p,
which contains the same information about equilibrium, i.e. about intensive properties.

This is equivalent to say that
Q = Q(T’ P: ”)5
where @G is the molar Gibbs energy.

However —as was shown by J. Willard Gibbs- the latter one is preferable to deduce the
phase rule (Denbigh 1966).

The traditional use of components leads to C (dimension of u) plus 2 (T and P) variables
in both cases. The Gibbs-Duhem equation, reduces in 1 the number C+2 for each phase,
because phases differ in their composition but not in their element potentials (equations
are linearly independent). Moreover, each independent reaction establishes a relation
between chemical potentials and reduces in 1 the number of free variables [equation
(4.18)] (Denbigh 1966).

When we consider particles in different states as particles of different species, each
transition —physical or chemical- is a restriction and reduces in 1 the number o+2-¢
[equation (4.17)].

Trans. Luv. Acad. 2002, 1, 1-23



The fundamental equation for multi-phase multi-reaction systems 22

REFERENCES

Alberty, R. A. & I. Oppenheim 1988 Fundamental equation for systems in chemical
equilibrium. J. Chem. Phys. 89, 3689-3693.

Alberty, R. A. 1997 Legendre transforms in chemical thermodynamics. JJ. Chem.
Thermodynamics 29, 501-516.

Barbosa, D. & M. F. Doherty 1987 A new set of composition variables for the
representation of reactive phase diagrams. Proc. R. Soc. Lond. A 413, 459-464.

Beattie, J. A. & I. Oppenheim 1979 Principles of Thermodynamics, pp. 298-300.
Amsterdam: Elsevier.

Brandani, V. & G. DiGiacomo 1984 Thermodynamic consistency of vapor-liquid
equilibrium data for the water-formaldehyde system. Ind. Engng chem. Fundam.
23, 126.

Denbigh, K. 1966 The Principles of Chemical Equilibrium (with applications in
Chemistry and Chemical Engineering), p. 187. London: Cambridge at The
University Press.

Gibbs, J. W. 1875-1878 On the equilibrium of heterogeneous substances. Trans.
Connecticut Acad. 111, 108-248., 343-524.

Luetich, J. J. 1999 The choice of variables to define the composition of systems in
chemical equilibrium. Proceedings to the 3rd Meeting of Young Researchers,
UNL, Santa Fe, Argentina.

Luetich, J. J. 2001 Five Contributions to Reactive Distillation Thermodynamics.

PhD thesis, Universidad Nacional del Litoral, Santa Fe, Argentina.

Luetich, J. J. 2002a II. Linear combinations, Lagrange multipliers and Legendre
transforms—a look at three methods to write the Gibbs energy of reactive
mixtures. Trans. Luv. Acad. 1, 25-39.

Luetich, J. J. 2002b III. Three fundamental theorems on Chemical Thermodynamics.
Trans. Luv. Acad. 1, 41-55.

Norval, G. W., M. J. Phillips, R. W. Missen & W. R. Smith 1989 On Chemical
equilibrium of pseudo-one-element systems: application to oligomerization.
Can. J. Chem. Eng. 67, 652-657.

Pérez Cisneros, E. S., R. Gani & M. L. Michelsen 1997 Reactive separation systems—
I. Computation of physical and chemical equilibrium. Chem. Engng Sci., 52,
527-543.

Smith, L. A., D. Hearn & K. Parker 1984 Catalytic distillation. Proc. Intersoc. Energy
Convers. Engng Conf., 19th, Volume 2.

Smith, W. R. & R. W. Missen 1979 What is chemical stoichiometry? Chem. Eng. Educ.,
Winter, 26-32.

Smith, W. R. & R. W. Missen 1991 Chemical Reactions Equilibrium Analysis.,

p. 30, Malabar: Krieger Publishing Company.

Tester, J. W. & M. Modell 1997 Thermodynamics and Its Applications, 3rd edn,

pp. 142-162. New Jersey: Prentice Hall.

Trans. Luv. Acad. 2002, 1, 1-23



23 J. J. Luetich

Ung, S. & M. F. Doherty 1995 Theory of phase equilibria in multireaction systems.
Chem. Engng Sci. 50, 3201-3216.

Trans. Luv. Acad. 2002, 1, 1-23



