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This dissertation establishes the Whitney regularity with respect to
parameters of implicit functions obtained from a Nash-Moser implicit function
theorem. As an application of this result, we study the problem of wave

propagation in resonating cavities.

Using a modification of the general setup in [Zeh75], we consider func-
tionals F : U x V' — Z which have an approximate right inverse R: C x V —
L(Z,)Y). Here U C X and V C Y are open sets of scales of Banach spaces
(scale parameters are suppressed here for brevity) and C C U is an arbitrary
set of parameters (in applications C is often a Cantor set). Under appropriate
hypothesis on F, which are natural extensions of [Zeh75], we show that given
(x0,y0) with F(xg,yo) = 0 for x € C near x, there exists a function g(z),

Whitney regular with respect to x, which satisfies F(x, g(z)) = 0.

The problem of wave propagation in a cavity with (quasi-periodically)
moving boundary can be reduced to the study of a family of torus maps. Be-
cause of their extremely degenerate nature, this family is not covered by known
versions of KAM theory. However, our implicit function theorem approach al-
lows us to overcome these problems and prove a degenerate KAM theory. Our

approach can also be applied to other problems of current interest.
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Chapter 1

Introduction

In this dissertation we present a Nash-Moser implicit function theo-
rem and establish the Whitney regularity of the resulting implicit function.
This is the thrust of Chapters 2-7 where we extend the abstract formulation
of hard implicit function theorems (in particular [Zeh75]) to include smooth
dependence on parameters, even when the parameters range over Cantor sets.
As an application of this Nash-Moser implicit function theorem with Whitney
regularity in Chapters 8 and 9 we establish a KAM theory for a family of torus
maps that arise in the study of wave propagation in a domain with a quasi-
periodically moving boundary. This family is extremely degenerate since the
frequencies available lie in a one-dimensional space. Moreover the dependence
on parameters turns out to have critical points in the region of interest. We
introduce the method of “borrowing of parameters” which allows us to prove

versions of the KAM theorem which apply to such degenerate situations.

Recall that implicit function theorems allow one to solve equations
provided the function defining the equation satisfy some non-degeneracy con-
ditions. An important prototype is the classical implicit function theorem that

allows one to solve the equation F(z,y) = 0 for y in terms of x in a neigh-



borhood of (g, yo) with F(zg,yo) = 0 provided the operator DsF'(x¢,yo) has
a (bounded) inverse. It is well known that this theorem remains valid when
x and y range over a general Banach spaces (see e.g.[Die69]) which makes
the implicit function theorem one of the basic tools of nonlinear functional

analysis.

Hard implicit function theorems cover cases where the assumption of
boundedness for the inverse of DoF'(z,yo) is weakened. In these settings,
one usually considers functionals that map between Banach spaces in which
one can separate out one parameter families of Banach subspaces at various
“scales” (for example one might have a functional acting on the space of C?
functions which has, for o > =y, the Banach subspaces C%). In this setting one
usually assumes that while Dy F'(x0, 39) may not have a bounded inverse when
viewed under the “scales” which make Dy F'(xq,30) a bounded operator, it does
have a bounded inverse when taking one “scale” into a bigger space at another
“scale” (by analogy with the C7 spaces, smaller scale parameter correspond
to larger spaces). The manner in which the inverse of DyF(xg,yo) becomes
bounded by changing “scale” must also satisfy certain quantitative estimates
(tameness). Several versions of hard implicit function theorems have been
developed to serve various problems, see [Ham82|, [Hor76], [Hor85], [H6r90] ,
[Sch60], [Ser72] or [Ser73]. The closest to our point of view is [Zeh75].

One important motivation for the development of such hard implicit
function theorems has been the study of persistence of quasi-periodic solu-

tions in Hamiltonian systems. A class of problems related to the persistence



of tori are conjugacy problems (see e.g. Example 4.3.1). Such problems are
studied by KAM theory, named in honor of Kolmogorov, Arnold and Moser
who originated and developed the theory in the late 50’s and early 60’s. The
connection of these problems with hard implicit functions theorems appears
because, when one writes down the equation for invariance, the resulting func-
tional equations involve small divisors (see (4.25) in Example 4.3.1). To obtain
boundedness of the inverse of DyF'(xg, o) for such functionals, the small divi-
sors require one to “change scales” in order to obtain estimates (this “change
of scales” is often referred to as a loss of smoothness/regularity or, when
thinking of analytic functions, as a loss of domain). Furthermore, to obtain
boundedness not only must one “change scales,” but certain number theoretic
(Diophantine) properties of the quasi-periodic frequency are also necessary to
obtain quantitative estimates (tameness). See Section 8.5 and Definition 8.5.1

for more details on this matter.

When considering problems of the above type, it is very natural to
consider the dependence of the results on the frequency, that is, to view the
frequency as a parameter. Since the set of vectors satisfying Diophantine con-
ditions has empty interior, the appropriate concept for regularity is Whitney
regularity (see Definition 3.1.1). The study of the dependence of solutions
on frequency parameters is interesting on several grounds. For example, the
dependence of the frequency leads immediately to geometric properties of the
set of tori which are observed. The abundance and geometry of the set of tori

plays an important role in applications and is a subject of current theoretical



and experimental interest (see [TLRF02, Las93]).

Perhaps more importantly, as we will show in Chapter 9, study of the
dependence on the frequency allows one to obtain, rather quickly, results for
systems whose map are very degenerate ([Riis90], [CS94], [RiisO1]). See also
[BHS96b], [BHS96a], [Sev99], [Sev96]. Such degenerate systems appear often
in practice due in part to the abundance of symmetry (around certain points)
in applied problems. In particular, we note that the most famous problem in
mechanics, the planetary system, is degenerate because the Kepler solutions
present only one frequency (they are periodic) while one would expect three
independent frequencies in a system with three degrees of freedom. Other
examples with extreme degeneracy occur in chemical systems where degen-
eracy occurs due to the fact that all the particles of the same species have
the same mass and other mechanical properties. The weakest assumptions
on non-degeneracy that presently allow for the proof of KAM theory are the
so called Riissmann non-degeneracy conditions (see [Ps01], [Riis01]). These
conditions can be obtained as a corollary of our methods. Our method of “bor-
rowing of parameters” also can be applied to examples which do not satisfy

the conditions of Riissmann (see Chapter 9).

The key to the development of our results are constructive implicit
function theorems (Theorem 6.1.1 and Theorem 7.1.1). Informally, these con-
structive theorems state that given an object which approximately satisfies the
functional equation, there exists a true solution which is close (in appropriate

norm) to the approximate object. Such constructive theorems are useful in



numerical analysis, where they go under the name of a posteriori estimates.
A numerical algorithm, if correctly implemented, produces objects which ap-
proximately satisfy the desired equation to a very high accuracy. If one has
such constructive theorems or a posteriori estimates then the computed ap-
proximate solutions have true solutions nearby. These constructive theorems
can also be used to validate approximate solutions obtained from other meth-
ods, e.g. through formal expansions. With a constructive implicit function
theorem we do not need to analyze or justify the procedure used to obtain our
approximate solutions. To obtain the existence of similar (i.e. nearby) true
solutions we only need to verify that our approximate solutions satisfies the

equation approximately.

The constructive hard implicit function theorems we present (Theo-
rem 6.1.1 and Theorem 7.1.1) are patterned after that of [Zeh75] but we have
paid attention to some quantitative issues and incorporated the more mod-
ern Brjuno-Riissmann small divisor condition. Using these constructive hard
implicit function theorems, we establish Whitney regularity with respect to
parameters in two different settings (see Theorem 6.2.1 and Theorem 7.2.1

and Theorem 6.2.3 and Theorem 7.2.2)

Our first approach to obtaining Whitney regularity is to apply our con-
structive hard implicit function theorem (Theorem 6.1.1 or Theorem 7.1.1) in
the context of Banach spaces of Whitney differentiable functions (a similar
approach to obtaining differentiability on parameters was used in [dILO99]

for functions depending on parameters on manifolds). This approach has the



advantage that implicit solutions of the functional need not be unique. This
non-uniqueness occurs, for example, in the isometric embedding problem. On
the other hand, we need to assume there is a consistent way to obtain an
approximate right inverse which depends smoothly on parameters. Such ap-
proximate right inverse can be obtained if the functional has some type of

group structure, as described in [ZehT75].

Our second approach to obtaining Whitney regularity requires unique-
ness for solutions to the functional equation. If this is the case, we can use
the formal expansions of the implicit function to directly verify the Whitney
regularity of the implicit function. The terms of this expansion play the role
of the Whitney derivatives. These formal expansions are a natural abstraction
of the Lindstedt expansions of solutions in terms of their frequencies. Note
that this approach provides some validation for the formal expansions which

appear in the study of KAM problems of mechanics.

The layout of our exposition is as follows:

e Chapter 2 presents some basic results about polynomials, asymptotic
polynomials and formal power series. Of particular interest is the be-
havior of polynomials and asymptotic polynomials under composition.
The coefficients that arise from the composition of polynomials are iden-
tical to derivatives of the composition. This will be used in the following
chapter when we consider the composition of Whitney differentiable func-

tions. In particular, we will use it to determine the Whitney derivatives



of such a composition.

Chapter 3 introduces notion of Whitney Regularity. The definition and
some basic consequences are presented in Section 3.1. Of particular inter-
est is Theorem 3.1.8 which proves that the composition of two Whitney
differentiable functions produces a function which is again Whitney dif-
ferentiable. Section 3.2 explores the issues of the uniqueness of Whitney
derivatives. The Whitney Extension theorems, which makes Whitney

Regularity a very useful concept, appear in Section 3.3.

In Chapter 4 we present the abstract setting in which we work. Section
4.1 describes the one parameter families of Banach spaces X, along with
the corresponding accumulation spaces X{ and C* smoothing. Section
4.2 presents the Brjuno-Riissmann condition which is exactly the quan-
titative estimates (tameness) needed to obtain our results. A list of
the various sets of hypotheses we use to obtain results in these various
settings appears in Section 4.3 (broken down into: hypotheses for poly-
nomial approximate solutions in Section 4.3.1, hypotheses for solutions
in the analytic spaces X, in Section 4.3.2 and hypotheses for solutions

in the smooth spaces X{ in Section 4.3.3).

Chapter 5 begins the development our results by establish the existence
of polynomial approximate solutions akin to the Lindstedt expansions in

mechanics.



Chapter 6 presents the development of solutions in the analytic spaces
X, with Section 6.1 containing the “constructive” implicit function the-
orem (Theorem 6.1.1), Section 6.2 establishing the Whitney regularity

and Section 6.3 presenting one approach to establishing uniqueness.

Chapter 7 mirrors the development of Chapter 6 but with results in

the smooth spaces X{.

In Chapter 8 we study maps of the torus. This develops the framework

for the following chapter.

Chapter 9 presents an application of our Nash-Moser implicit func-
tion with Whitney regularity. Here we establish a degenerate version of
KAM theory which applies to a families of torus maps that arise in the
study of wave propagation in a domain with a quasi-periodically moving

boundary.



Chapter 2

Polynomial Preliminaries

It is useful to begin by developing some notation and results about
polynomials. For us, a polynomial is a finite sum of symmetric multi-linear
operators (see Definition 2.1.1 below). The notation we define in this chap-
ter for expressing polynomials will be used extensively in Chapter 3 and will
appear throughout the rest of the dissertation (using the one parameter fam-
ilies of Banach spaces defined in Section 4.1). A detailed study of polynomial

algebras, etc. can be found in [Gla58].

2.1 Polynomials

Let X,Y be Banach spaces and let Sym, (X,Y) denote the space of
continuous symmetric n-linear forms from X™ to Y (for ease of notation we

take Symy(X,Y) =Y). For a € Sym,(X,Y’) define the operator norm
lallsym,(xv) = supfllafor, - villly s € X, flujlly < 1,1 <5 <}

Definition 2.1.1. Given a; € Sym,(X,Y), 0 < i < k, for n,¢ > 0 with

n+ ¢ < k we define the polynomials a=*: X — Sym, (X,Y) by

V4
G = 3 Sannl A%, () (2.1)



Here A € X and [—] is used as a placeholder for terms from X used which are
inserted when applying this an element of Sym, (X,Y). For the polynomials
asF(A), e (2.1) forn = 0 and £ = k, we write a(A) or, to emphasize the

degree, a<F(A).
Let PL[X; Y] denote the set of all a=* and define
= kH]p = maX{Haz“sym xy) 0= < /f} (2.2)

Definition 2.1.1, in particular (2.1), is motivated by the computation of

derivatives. See Remark 2.1.5.

Remark 2.1.2. For n < m, given a € P,[X;Y] by taking a; = 0 for n <
i <m one can view a € P, [X;Y]. This gives a natural inclusion of P,[X;Y]
into P, [X; Y] Conversely, for n < m, given a € P,[X;Y] the truncation
as" € P,[X;Y]. This gives a natural projection of P,,[X;Y] onto P,[X;Y].

There are several useful variations of P;[X ;Y| which we now define.

Definition 2.1.3. Define P,[X; Y] to be the subset of Pi[X:Y] of polynomials

as* with ag = 0.  Furthermore, for a=% € Py[X;Y], given n,{ > 0 with

n+ ¢ <k, we define
1
d?t - = Z ﬁan-&-z [A®?, [=]%"] (2.3)
=1
so that a=“(A) = a, + a=*(A).

10



As with the polynomials a3™(A), we use 4(A) or, to emphasize the degree,

a=k(A) to express a5 (A), i.e. (2.3) forn =0 and £ = k. [

Next, we define polynomials whose coefficients a; depend on a variable

p e M.

Definition 2.1.4. Given functions g; : M — Sym,(X,Y) for 0 < i < k, for

n,{ >0 with n + ¢ < k, we define the variable coefficient polynomials

9=t M x X — Sym,(X,Y)

¢

g5 (0 A) [ = = gnra(p)[A%, [-]°"] (2.4)
Here p € M and again we take A € X and [—| represents a placeholder for
elements of X. Let Py[M, X ;Y] be the set of all variable coefficient polynomials

<k

9o -

As in the constant coefficient case, we use g(p; A) or, to emphasize the
degree, g=*(p; A) to express gog(p; A), i.e. (2.4) forn=0 and £ = k. We also
define Pr[M, X;Y] to be the subset Py[M, X;Y] with go(p) = 0. Given g5 €
Pe[M, X;Y] andn, € > 0 with n+( < k define §=* € B[M, X; Sym, (X,Y)] by
955 (i A) = ga(p)+35 (p; A) and use §(p; A) or G=*(p; A) to express 5" (p; A).
[

Remark 2.1.5. Note that with the factorial normalization in the coefficients

of a=*(A) and g=*(p; A), for all m < ¢ we have

DR[a; ()] = ani"(A) and  DR[g (0 A)] = gt (3 A)

n+m m

11



This is one of the motivations behind our choice of notation. Also observe that

a=*(0) = a, and g=*(p;0) = g,(p) while a=*(0) = 0 and §=*(p; 0) = 0.

n

Remark 2.1.6. An element g € Pi[M, X;Y| can be viewed both as a mapping
g: M x X —Y and as a mapping g : M — Py[X;Y].

If M is a Banach space and the variable coefficients are themselves
polynomials with g; € P_;[M; Sym,;(X,Y)] then the mapping g=F : M x X —
Y is a constant coefficient polynomial, i.e. there is a=F € Py [M x X;Y] with
a=*((p,x)) = g=*(p; x). Conversely, any polynomial a=* € P,[M x X;Y] can be
thought of as a polynomial in'Y with variable coefficient depending on M, i.e.
there is g=F € Py [M, X; Y| with variable coefficients g; € Py_s[M; Sym,(X,Y)]
such that a=*((p,z)) = g=F(p;x). Going between these two viewpoints is is
useful when we consider the composition of polynomials. In particular, see

Lemma 2.1.12, Lemma 2.1.13 and Theorem 2.1.14.

Proposition 2.1.7. Under the norm |||y, , Pu[X; Y], Pa[M, X; Y], By[X; Y],
and Py[M, X:Y] are all Banach spaces.

If Y is a Banach Algebra, |J Pe[X;Y], U Pe[X;Y], U Pu[M, X;Y]

0<k 0<k 0<k

and |J ]fbk[M,X; Y] are normed algebras, however they are not complete.
0<k

Finally, the natural inclusions and projections described in Remark

2.1.2 are bounded linear operators with operator norms of 1.

Proof. Straightforward. O

12



Proposition 2.1.8. (Polynomial Composition)
Let X, Y and Z be Banach spaces. If a € P,[Y;Z] and b € P,,[X;Y] we
denote by a o b the polynomial in P,,,[X; Z] defined by a o b(A) = a(b(A)).

Letting ¢ = a o b, with ¢ = ¢="™ as in (2.1) of Definition 2.1.1, we have
co = a5"(by) = Pylaq, ..., an; bo) (2.5)
and, using the convention a; =0 for j >n and b; =0 for j > m, fori >0
¢ = Pi(ay,...,an;bo,...,0b;) (2.6)

where P; is a polynomial in b; with coefficients a;. The expression of polyno-

mials P; is independent of the spaces X, Y and Z (see Remark 2.1.10).

Furthermore, there exists a constants M, , > 1 such that given any

a€P,Y;Z] and b € P, [ X; Y] we have
lacdllp,,, < Mnmllallp, (1 + [b]g,) (2.7)
and for any a € P,[Y;Z] and e, f € P, [X; Y]
lace —acfllg,,, < Cle, flallp,lle = fllg,, (2.8)
where Ce, f) = My (1 +max(|lellp,,. [|f]lp, )" ") and

< D(e, fllally, lle — £z (2.9)

|ace — aof — (a7 "o f)[e — f]Hpnmz

where D(e, f) = My (1 + max(|le]lp,. 1 f]lp,)"™?)-

13



Proof. Equation (2.6) follows from the definitions.

To establish (2.7) note that the norm defined in (2.2) is equivalent to

the following norm

|a=*||., = max {||[a=*(A)]|, : Al <1} (2.10)

sup

i.e. there exists a constant C}, > 1 such that

(1/C)|a=* [l < [la=*lp, < Cilla=*|

sup — sup

For A > 1, we have the scaling property

la=*o (M), < X*[[a=*[];,

sup

and thus for A € R

[a=Fo(NId)|[,, < 1+ MM [|la="]|,,

sup
From this it is clear
lacd]ly, < llallp, (1 +118ll5p)
By the equivalence of norms, (2.7) follows.
Note that (2.8) follows from (2.9). To establish (2.9), note that for
fixed v,w € Y with ||v]y, |w]ly < R we have
la(v) = a(w) = af" M (w)[v — w]|| , < Ma(L+ R [lallg, v — wlf,

Replacing v, w with e, f we get

Haoe —aof — (af"flOf)[e - f]”sup < D(e, f)lle - szup

14



with D(e, f) = My m(1+max(|le][p || f|l, )™ ). By the equivalence of norms,
(2.8) follows. O

Remark 2.1.9. Note (2.8) in Proposition 2.1.8 establishes the continuity of
the map ay : Pp,[X; Y] — P [ X Z] defined by a.(b) = aob while (2.9) proves
that it is differentiable with derivative Da.(b)[Ab] = a’tob[Ab].

Remark 2.1.10. The polynomials P; defined in (2.6) (and Q; defined in (4)
of Proposition 2.1.11) have the same form independent of the choice of X, Y,
Z, and m. Furthermore, their dependence in n can be understood by taking
Up = ... = an_y = 0. Writing P, for coefficients that arise when composing
polynomials of degree k with degree m and P; for the coefficients which arise

when composing polynomials of degree k with degree m, we clearly have

B(al,...,an,k;bo,...,bi) :B<a1,...,an;b0,...,bi)

Writing a;p;j(bo, . ..,b;) for P;(0,...,0,a;,0...,0;b,...,b;), by the linearity
of P; described in (2) of Proposition 2.1.11 we have

n

B(al,...,an;bo,...,bi) = ZCLij(bo,...,bj)

j=1
Using the notion of formal power series we can think of P; as being independent

of n (see Remark 2.5.2).

Finally, note that when X =Y = Z = R, the fact that a;b; = bja;,
allows one to simplify the formulas for P;. In this setting, the Fad di Bruno’s

formula (see [ARG67]) gives an explicit formula for the derivative in (1) of

15



Proposition 2.1.11 and thus P; (the Fad di Bruno’s formula actually can be
expressed in this arbitrary setting but care must be taken since one does not

have commutativity).

Proposition 2.1.11. The polynomials P; defined in (2.6) have the following

useful properties:
1. (Computing via differentiation)
3 <nm i <n/1.<m
Pi(ay, .. an;bo, -, b)) = D [ (A)] oy = Da [a5" (b5™(A))]
2. (Linearity)

Pi(aay + Bby, ..., aa, + Bby;co, ... ¢) =

=aPi(ay,...,an;co,...,¢) + BPi(by, ... bp;co, ..., ¢)
3. (Ezplicit a;yq, . .., a, independence)
Pi(ay,...,a,;0,b1,...,b;) = Pi(ay,...,a;0,b1,...,0;)
4. (Ezplicit b; dependence)
(!N P(ay,...,an;bo,...,0;) = a1[bi] + Qi(ay,...,an;bo, ..., bi_1)
for Q; a polynomial with coefficients aq, . .., a, depending on by, ..., b;_1.

Proof. Straightforward. O

16



Lemma 2.1.12. Given a € P,[Y;Z] let f € P,[Y,Y;Z] with coefficients
fi € Py [Y;Sym, (Y, Z)], defined by fo(x) = a(z) and, for 0 <i <mn,

filz) = Pi(ay,...,a,;2,0,...,0) (2.11)

Then
flz;A) = a(x + A) (2.12)
Conversely, given a € P,[Y;Z] and f € P,[Y,Y;Z] satisfying (2.12) the

coefficients of f must satisfy (2.11).

Proof. Apply Proposition 2.1.11. O

Lemma 2.1.13. Ifa € P,[Y;Z], b € P,[X Y] and f € P,[Y,Y; Z] with
coefficients f; € P,_;[Y;Sym;(Y, Z)| defined by fo(x) = a(x) and, for 0 <i <
n,

filz) = Pi(ay,...,a,;2,0,...,0)

then
Pfi(ala « ey Op, bOv <o 7b2) = R(fl(b())’ s 7fz(bO)7Oa b17 s 7bZ)

Proof. Note by definition of f; we from Lemma 2.1.12 that (2.12) holds. Note

that one has

a(b(A)) = albo +b(A)) = f(bo; b(A))

Applying Proposition 2.1.8 and 3 from Proposition 2.1.11 the result follows.
O

17



We now present a fundamental and very useful relationship among the
polynomials P;. This relationship arises and is easy to establish when we
consider the derivatives of the composition of polynomials. However, it also
arises when we consider the composition of asymptotic polynomials in Section
2.2 and again when we consider the composition of Whitney differentiable

functions (Theorem 3.1.8) in Section 3.1.

Theorem 2.1.14. Given polynomials a € P,,[Y; Z] and b € P,,[X; Y], let f €
P.IY,Y; Z], g € P,[X, X;Y] and h € P,,,,[X, X; Z] be variable coefficient poly-
nomials with coefficients f; € P,_;[Y;Sym,;(Y, Z)], ¢g; € Pp—i[X; Sym,(X,Y)]
and h; € Ppp,—i[X; Sym, (X, Z)] defined by

fz(y) :Pi(ala"'aan;yaoa"'ao)

gi(z) = Pi(by,...,bp;x,0,...,0)
ho(x) = ag" (05" () = f5" (95" (x)) (2.13)

and
hi(z) = Fi(fi(g0(2)), - ... fi(90(2)); 0, g1 (), ..., gi(x)) (2.14)

Then one has the property
h(z; A) = a(b(x + A)) (2.15)
and, for 0 <i < nm, the coefficients h; € Pppm—i[X; Sym,; (X, Z)| satisfy

hit1(x) = Dyhi(z) (2.16)
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Proof. By Lemma 2.1.13, note
fly;A)=aly+A) and g(z;A) =b(z + A)
Hence
a(b(z + A)) = a(g(z; A)) = f(go(2); g(x; A))
and applying Proposition 2.1.8 gives (2.15) with coefficients (2.13) and (2.14).

To prove (2.16), we use induction on i. Note that the case i = 0 can
be established by differentiating (2.15) with respect to A and evaluating at
A = 0. Assume (2.16) holds for i < k and note that differentiating (2.15) k+1

times with respect to A and evaluate at A = 0 we have
hi1(2) = D [ho(x + A)Jazo = Dy ho(x) = Dyhy(x)

which completes the induction. O

2.2 Asymptotic polynomials

Definition 2.2.1. Let XY be Banach spaces, v > 1 a real number, k <
v < k+1 withk € Z", and A an arbitrary subset of X with 0 € A. Define
“big-O notation” as follows. The symbol O(z") is used to denote any function

f: A=Y with the property
If(@)lly < Mllz[} VreA

To emphasize the constant M, we write Op(z7). [ |
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Proposition 2.2.2. Given k, v and A C X bounded (i.e. A C B(0,R) for
some R > 1), there exists a constant C, g > 1 such that for any a € Pi[X;Y]

and any g : A — X with g(A) = Oy, (A7)
o= (A +g(A)) = a="(A) + O, (A7)
with Na S C’Y,k,RHaHIPkN

Proof. Fix x and let f € Px[X, X;Y] with f; € P,_;[X; Sym,(X,Y)] defined
by fo(A) =a(A) and, for 0 <i <k

fi(A) = P(aq,...,a5; A,0,...,0)
so that
a=F(A+ g(x)) = (A g(@) = a=F(A) + FF(A; g(2)) (2.17)

Note

Furthermore using the linearity of P; in a; (see (2) in Proposition 2.1.11) we

& @sg@)|| <Z—||fz My lg(@)ly (2.18)

can factor out |[a||p, leaving P; with coefficients of operator norm < 1 and
since [|[Allx < R we get [[fi(A)lly < [lallp, Nir for constants N; r depending

only on P; and R. Substituting into (2.18), we get

|

k

y 1 .

FH@g)| < (2 S Nin R 1>> lalle, Ny 2%
=1

Cy kR

Taking A = z and combining with (2.17) the result follows. O
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We now extend the polynomial spaces defined in the previous section
(P,[X;Y], P,[X;Y], P,[M,X;Y] and P,[M, X;Y]) by adding O(z7) terms.

We will refer to these objects as asymptotic polynomials.

Definition 2.2.3. Let X,Y be Banach spaces, A an arbitrary subset of X
with 0 € A C X and v with k <y < k+ 1. Define

P[A;Y] = {a™ + a7 1 a®F € Py[X;Y], a™: A=Y, ™ (A) =O(A)}
and
lally, = sup { M ¢ ol < M 02}y < MIAIR} (219

The spaces PY[M, A; Y], IF”[A;Y] and IFW[M, A; Y] are defined analogously.
[

Proposition 2.2.4. Under the norm ||—||p,, PY[A; Y], PY[M, A; Y], P7[A;Y]
and PY[M, A; Y] are all Banach spaces.

If Y is a Banach algebra then PY[A;Y], PY[M, A;Y], PV[A;Y] and

9

PY[M, A;Y] are also Banach algebras.

Proof. Straightforward. O

Proposition 2.2.5. Let X, Y and Z be Banach spaces and k <~y < k41 be
given. If a = 4=k +a27 € P7[A; Y] and b = b=F +b>7 € PV[B; Z] then, defining

C = Bna *(A), the composition aob: C — Z lies in IFW[C; Z|. Denoting
aob=c=7cF 4
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one has, for 0 <i <k,
C; = Pi(al,...,a,-,O, bl,...,bz‘) (220)

with P; defined in (2.6) of Proposition 2.1.8.

Furthermore, there ewists a constant M., > 1 such that the following

inequalities hold:
(i) For any a € P'[A; Z] and b € P?[B;Y]

lachllp, < M;lallp, (1 +[[bl[z) (2.21)

(ii) For any a € IFW[A; Z) with a=7 satisfying
|a=7(v) = a="(w)|| , < M, |lallp, [lv — wlly (2.22)
for all v,w € A, then for anye, f € IFW[B; Y]
lace — aof|lp, < Cle, fllallp: b — dllp (2.23)
with C(e, f) = M, (1 + max([le]lp,, || fllz-)"*")

(iii) For any a € PV[A;Z] with o> having the property that there exists
Da=": A — L(X,Y) such that

la(v) = a(w) = Da(w)[v — wl||; < M,|lallp, [[o — w|fy, (2.24)
for allv,w € A, then for any e, f € P7[B;Y]
lace — aof — (Daof)le = flllg+ < D(e, /)llallp-Ib—dllg,  (2.25)

with D(e, f) = M, (1 + max(|le]l,, [ fllz,)"*?)
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Proof. Note that for any fixed z, applying Proposition 2.1.8 we get
A OHA) +07(2)) = b5 (1:4)
with
hi(x) = Pi(ag, ..., a,; b7 (x), by, ..., b;)
Using Proposition 2.2.2 we have

. 7

Pi(ag,...,a,;0,b1,...,b;) +hi27(m)

with h77(z) = O(z?). Setting A = z, (2.20) follows with
1 i 1
27 § : Qi

k
= (x) = a="ob + Z
i=0 i=k+1

To obtain (2.21), (2.23) and (2.25) note that by the definition of the

norm in (2.19) it suffices to establish (2.21), (2.23) and (2.25) for each co-

efficient of the composition and then for the remaining O(z7) term of the

composition. Furthermore, estimates (2.21), (2.23) and (2.25) on ¢=* follow

directly from (2.7), (2.8) and (2.9) in Proposition 2.1.8. Thus, we need to

consider is the ¢ terms of the composition.

To obtain (2.21), note that Proposition 2.2.2 gives us b7 (x) = Oy, (27)

with N; < C,; gllallp, [[]|p,- Estimating the remaining terms of ¢=7 = Oxr(2?)

we get M < M,y gllallp, (1 + [|b]|3,) Which establishes (2.21).

To obtain (2.23), note that by (2.22), we have

[(a=7oe — a=Yof) ()| , < Cle, f)lallp:lle(x) — f()lly
< (Cle; Hllallplle = fllp-) 1=l
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Estimating the remaining terms of ¢=7, (2.23) follows.

Similarly, to obtain (2.25), note that by (2.24), we have

|(a*70e — a*7o f(Dace)[e — w]) ()| , < D(e, f)llallp le(x) — f(2)y

< (D(e, f)l|allplle = £IIz) =%

Estimating the remaining terms of ¢=7, (2.25) follows. O

Using polynomials to approximate functions, as in Taylor Theorem

(Theorem 3, p.7 in [Nel69]), Proposition 2.2.5 gives us the following:

Corollary 2.2.6. Let X, Y and Z be Banach spaces with U C X and V CY
open. Given functions f -V — Z and g : U — V which are C7, k <~ < k+1,
the composition fog: U — Z is again C7. Denoting the Frechet derivatives of

fy) at g(xo) by fi(g(xo)) and of g(x) at xo by gi(xo), the derivatives of fog
at xo have the form of (2.6) with by =0 and a; = fi(g(zo)) and b; = g;(x) for

0<i<k.

Proof. Use Taylor Theorem on f and g and apply Proposition 2.2.5. O

Corollary 2.2.7. Let X, Y and Z be Banach spaces with U C X and V CY

open. Given:

(a) F:UxV — Z and g:U — V both C7 with k <~ <k + 1.

(b) (xo,y0) € U X V with g(xo) = yo
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define G : B(0,e) - U x V by

xo+ A
Gla) = (g(:cooi A))
The composition FoG is Frechet differentiable to order k and, denoting the
Frechet derivatives of F at (xo,v0) by Fi(xo,v0) (or F; when space is tight) and
the Frechet derivatives of g at xo by gi(x0), the deriatives Dy [F(G(A))] Ao
(or D' [FoG] when space is tight) have the form of (2.6) with by = 0 and

a; = Fi(xo,y) and b; = G;, for 0 < i < k, where G; = ( ld ) and
91(o)

G, = (g & )) for 1 <1 < k. In particular, for 0 <1 < k we have
i(To
Di [FOG} = D2F(£L’0,y0)[gl<.’lf0)] + Qi(Fh R Ea 07 Gh SR Gifl) (226)
Proof. Follows from Corollary 2.2.6 and (4) of Proposition 2.1.11. O

Proposition 2.2.8. Using (2.26) from Corollary 2.2.7, define the polynomials

QIF(ZC(], Yo; bl, Ce ,bz;l) so that
Qi (20,403 91, - gi-1) = Qi(F1, ..., F;;0,Gy,...,Gi1) (2.27)
Note Fj, for 0 < j <1, are the coefficients of QF and we have

= DiDyF[b,] + D3F[by, by (2.28)

+ D,QF + D,QF b)) + VuQE - (by, ..., by)

Proof. Using g=* = b=F and differentiating (2.26) the result follows. O
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2.3 Formal power series

To round out our discussion of polynomials we give the following:

Definition 2.3.1. A Formal Power Series (FPS) is a collection
{a; € Sym (X, Y)}=,

which 1s formally written as
<oo — 4. A
a=*(A) = EO i!aZA (2.29)

Let P, [X; Y] denote the set of all a=> and define

HGSOOHIP’OO = sup {||ai||symi(x’y) 0<i< oo}
|

Remark 2.3.2. Because no assertion is made as to the convergence of this
power series, one must treat (2.29) as a formal object. Since we can only
“evaluate” yi°(A) for A = 0 the ly type norm HaSOOHPOO no longer corresponds
to a supremum norms as with P<,[X;Y] and P'[X;Y]. Also, even on the
formal level the composition of formal power series results in infinite sums for

finite order coefficients and thus cannot be defined.

However, formal power series provide a useful formalism to describe
sequences of polynomials of the form p,(A) = Y"1 y;A®". Ezamples include
P;, defined in (2.6), Q;, defined in (4) of Proposition 2.1.11, QF, defined
Proposition 2.2.8, and h;, defined in (2.14), (all viewed as a formal power

series in n, not i, see Remark 2.1.10).
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Chapter 3

Whitney Regularity

Informally, a function f : A C X — Y is C7 Whitney differentiable,
k <~ < k+1, if one can find suitable substitutes { f;}¥_, for the derivatives of
f so that the estimates of the classical C'" Taylor’s theorem, which make sense
on arbitrary domains, are satisfied. One can think of this substitute {f;}¥_,

for the derivatives as prescribing the k-jet of f.

While many of the classical notions of differentiability continue to hold
for Whitney differentiable functions, e.g. the product rule and chain rule,
when moving to arbitrary domains such simple results as the uniqueness of

the derivatives or the k-jet of f need not hold.

While classically, the ¢-th derivatives of a function automatically satisfy
the estimates of the classical C7~¢ Taylor’s theorem, for Whitney differentia-
bility, this condition must be imposed as additional conditions on the k-jet
of f. To establish the Whitney regularity of a function, it is often relatively
casy to obtain the C7 Taylor estimates on the function while the C7~* Taylor
estimates for the Whitney derivatives are often more difficult to establish. To
this end, we present two “Whitney Verification Lemmas” which establish the

C7~% Taylor estimates on the derivatives from the C7 estimate of the function
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provided one have either certain additional relationships among the {f;}¥,

(Lemma 3.1.10) or additional conditions on the set A (Lemma 3.2.6).

Section 3.1 presents the definition of Cy},,,(A,Y), the set of C7 Whit-
ney differentiable functions. Here we explore some of the basic consequences
of this definition. In particular, restricting this definition to the interior of
A one recovers the classical notion of C7 regularity for functions defined on
open sets (see Proposition 3.1.5). We also establish that the composition of
two C7 Whitney differentiable functions is again C7 Whitney (see Theorem
3.1.8). In Section 3.2 under some reasonable conditions on A we can ensure
the uniqueness of Whitney derivatives can be established (see Proposition 3.2.3
and Remark 3.2.4). Finally, Section 3.3 presents the Whitney Extension the-
orem, which extends C7 Whitney regular functions in finite dimensions (i.e.

R™) to classically C7 regular functions.

3.1 The definition and some consequences

The following definition generalizes the spaces Lip(y, A) as defined on
p. 176 in [Ste70] to functions with domain and range in arbitrary (infinite
dimensional) Banach spaces. (Of course, theorems using the standard notion
of Whitney regularity, e.g. the Whitney Extension theorem discuss in Section

3.3, will apply if we restrict A to be a closed finite dimensional subset.)

Definition 3.1.1. Let X,Y be Banach spaces, A C X arbitrary, and v > 1
with k < v < k+1 for k > 1 a positive integer. Define Cjy,,,(A,Y) to be

the collection of functions f : A — Y with the property that for some choice
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of functions f; - A — Sym,;(X,Y) for 0 < i < k with f = fo there exists a

positive constant M such that for every 0 <i < k

and for every 0 <1 < k and every x,x + A € A

. _ p<k—ig . < =i )
fle+8) = [ @A) < MIAJ (3.2

Define
HfHCJvm =inf{M : (3.1) and (3.2) hold}

Gwen f € CY, (AY) we say f is C7 Whitney in A with Whitney derivatives

{fiYk . We also refer to the collection {fi}¥_, as the k-jet of f.

Define
I(/)Voht(A’ Y) = m C{/yt/ht(A’ Y)

>0

Given f € Cy (A, Y) we say the function f is C* Whitney in A with Whitney
derivatives {fi}32,. We refer to the collection {fi}¥_, as the co-jet of f. N

Remark 3.1.2. (Whitney’s formulation) The original definition given by
Whitney in [Whi84] for “functions of class C™ in A” took m = v € Z+*U{o0},
X =R", Y =R and A closed. Furthermore, conditions (3.1) and (3.2) were
replaced by the condition that for any ' € X and € > 0 there exists a 6 > 0

such that for any v,o + A € AN B(2',§) one has
Hfl(x + A) - figm_i<w; A)HSymi(X,Y) < 6HAH;?_z (33)
for all i < m.
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Note that with m < § < m+ 1, all the functions in Lip(d, A) as defined
by Stein are of “class C™ in A7 by Whitney’s definition. Similarly, if A is
compact then any function which is of “class C™ in A” a la Whitney is also

Lip(n, A) for alln < m.

Remark 3.1.3. (Big-O notation) Whitney and Stein both write

filz +A) = fgkfi(a:; A) 4+ Ri(z,x + A) (3.4)

(2

and use R;(z,x + A) to express (3.2) or (3.3). Using “big-O” notation (see
Definition 2.2.1) developed in Chapter 2 we could write (3.4) as

file +8) = [ (23 A) + Ou (A1) (3.5)

thus expressing condition (3.2). In a similar manner one can use a modified

“little-0” notation to express Whitney’s original notion of C™ in A.

Remark 3.1.4. (A arbitrary and infinite) Note in Definition 3.1.1 the
set A need not be closed. Furthermore, the linear spaces X and Y need not
be finite dimensional. Only when we consider the Whitney extension theorem
(Theorem 3.3.1) in Section 3.3 will we require A to be closed and X to be finite

dimensional.

In applications, working with Whitney reqularity in infinite dimensions
on arbitrary sets is useful since one can establish the Whitney reqularity of the
implicit function in this setting and then restrict to a finite dimensional closed
set of parameters and use the Whitney extension theorem (Theorem 3.3.1) to

obtain measure estimates.
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We now present some of the basis consequences that follow from our

definition of C,,(A,Y).

Proposition 3.1.5. Let int(A) denote the interior of the set A. For any
[ € Cl(AY) we have the following:

1. If v € Z, the function flia) is C7 in the classical sense.

2. If v = k+ 1 then fliga) is C* with Lipschitz continuous derivatives
(often denoted C**).

Furthermore, on int(A) the estimates (3.2) for 0 < i <k follow from (3.2) for
1= 0.

Proof. Apply the converse Taylor theorem (see e.g. p. 6 [AR67]). O

Proposition 3.1.6. The set C},,,(A,Y) with H_HC%M is a Banach space. If
Y is a Banach Algebra then so is Cjy;,(A,Y).

Proof. Straightforward (see, e.g. p. 176 in [Ste70]). O

Proposition 3.1.7. If f is C},,,,(A,Y) with Whitney derivatives { f;}¥_, then
its Whitney deriwatives f, are Cy, (A, Sym, (X,Y)) with Whitney derivatives
{foritizg

The converse is not true. Namely, there exists [ € Cjy, (A Y) whose
k-jets { f;}r_; are C55,, (A, Sym,, (X, Y)) but f is not Cy,, (A, Y) for anyn > 7.

(See Proposition 3.1.11 for conditions under which the converse does hold.)
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Proof. The first assertion follows from the definitions. For an example of the

second, see [Whi34]. O

Theorem 3.1.8. (Whitney Composition)
Given k <~v<k+1, X,Y, Z be linear spaces, A C X and B CY let

g:A—=Y and f:B—Z
and define C = Ang Y(B) C X and
h=fog:C—2Z2

If g € CYp (A Y) with Whitney derivatives g; and f € Cyy,,, (B, Z) with Whit-
ney derivatives f; then h € C,,,,(C, Z) with Whitney derivatives {h;}¥_, given
by ho(z) = fo(go(z)) and, for 0 <i <k,

hi(x) = Pi(filg(2)), ..., fi(9(2)); 0, 91(2), . .., gi(x)) (3.6)
with P; as defined in (2.5) and (2.6) in Proposition 2.1.8.

Furthermore, there exists a constant M., > 1 such that the following

inequalities hold:
(i) For any f € CY,,(B; Z) and g € CYyp,[A; Y]
IFogles, < Myllfllcy, 1+ lglly ) (37)
(ii) For any f € Cyhi[B; Z), 91,92 € Cyp[ A5 Y
I fog = fogalle, < Clee Dfleginllon —gelles,. (39

with (g1, g2) = M, (1 + max(ga e, llgeller, )7)

W ht
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(iii) For any f € Cylu[B; Z) with y g1, 92 € Cjyppy[A; Y]

Ifogi = fogs — WD fog)lgr — alllen, < Cle, NlIflpallgr — aallgs,

(3.9)
with C(e, f) as above.

Remark 3.1.9. See [dILO99] for a more detailed discussion of the reqularity

of the composition functional (although not done for Whitney differentiability).

If we work in with closed sets in finite dimensions, the extension the-
orems presented in Section 3.3 would allow us to trivially conclude that the
composition of two Cjj,,, functions is again C},,,. However, as mentioned in
Remark 3.1.4, we can use the definition of Cj,,(A,Y") to establish this in a
more general setting. In the proof of the general case of Theorem 3.1.8, we

use the following:

Lemma 3.1.10. (Whitney Verification Lemma I)
Letn<n<n+1, ACX,UCY andgiEC’{,’V_&(AXU,Y)fOTO<i§n be
given with

g AxU—=U

Given [ : A — U, define fo(x) = f(x) and fi(x) = gi(z, f(z)). If, for all
(x,y) = (x, f(x)), one has

gir1(x,y) = WD, (gi(z,y)) + WD,(gi(z,y))[—, 91(z,y)] (3.10)

and

[ folw +A) = f5" (: A)[], < MIA[% (3.11)
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for all z,x + A € A, then f € Cy},,,(AY) with Whitney derivatives f;(z) =

This lemma is useful independent of Theorem 3.1.8. It is used in Section
6.2 and Section 7.2 to establish the Whitney regularity of the implicit function.
Also, note that this lemma establishes conditions under which the converse for

Proposition 3.1.7 is true, i.e.:

Proposition 3.1.11. Givenn < n < n+1 and a collection of functions { fi}1-,
with fi € O (A, Sym,(X,Y)) for 0 < i < n provided fiy(z) = WD, fi(x)
for 0 <i<mn, and (3.11) holds, then f € C}},,,(A,Y).

Proof. 1f take g;(z,y) = fi(z) and apply Lemma 3.1.10. O

The proofs of Lemma 3.1.10 and Theorem 3.1.8 are related in the fol-
lowing sense. To prove Theorem 3.1.8 for some k < v < k+ 1 we use Lemma
3.1.10 for n = k. Likewise to prove Lemma 3.1.10 for n < n < n + 1 we use
Theorem 3.1.8 for v = n — 1. Thus, we give the proofs of Theorem 3.1.8 and

Lemma 3.1.10 simultaneously.

Proof of Theorem 3.1.8 and Lemma 3.1.10

We establish both results by induction. In the base cases £ = 0 in

Theorem 3.1.8 and n = 0 in Lemma 3.1.10 both results are immediate.

Assume that Theorem 3.1.8 and Lemma 3.1.10 hold for n,k < N. We
will first establish Lemma 3.1.10 for N +1 <n < N + 2 and then use this to
establish Theorem 3.1.8 for N +1 <~v < N + 2.
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Establishing Lemma 3.1.10 for N +1 <n < N + 2

Let f: A — Uandg € Cl(AxUY), 0 < i< N+ 1 be given as in
Lemma 3.1.10 for N +1 < n < N + 2. Note that the nature of the hypothesis
in Lemma 3.1.10 allow us to use it to conclude that f € Cyi'(A,Y) with
Whitney derivatives f;(z) = g;(x, f(x)) for 0 < i < N. For 0 < i < N + 1,
since g; € C’gv_,ft and n—1 < N+2—1< N+1, by Theorem 3.1.8, we have
that fi(z) = gi(z, f(x)) is C), for all 0 < i < N + 1. Furthermore, for
0 < i < N +1 note the first Whitney derivative of f;(x) = g;(x, f(z)) will have

the form
WD, fi(x) = WD,gi(x, f(x)) + WDygi(x, () [WD. f(x)]
Since WD, f(z) = g1(z, f(x)), applying (3.10) we get, for 0 <i < N +1

By assumption we have (3.2) for i = 0 For 0 <i < N + 1 since f;(z) =
gi(z, f(x)) is CI) with (3.12) the estimates (3.2) for f; € O}/, are exactly
the estimates for fy we need to establish (3.2) for 0 < i < N + 1. Finally, the
fact that fyi1(x) = gniai(z, f(x)) is C’g[;}ftNH) is sufficient to establish (3.2)

for i = N + 1. This establishes Lemma 3.1.10 for N +1 <n < N + 2. (|

Establishing Theorem 3.1.8 for N +1 <~y < N +2:
As in Theorem 3.1.8 with N+1 <y < N+2,let g € C}y,,, (A, Y) with (N+1)-
jet {gi} A and f € C}y, (B, Z) with (N + 1)-jet {f;}X+! be given. For fixed
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x, applying Proposition 2.2.5 we have fog = h = hogk + h=7 € P[C; Z]
with (2.20) giving us h;(x) as in (3.6). Estimates (3.7), (3.8) and (3.9) follow
directly from (2.21), (2.23) and (2.25). Since h=7(z) = O(z7), we also have

(3.2) for i = 0. Furthermore, since
fi € Clr(B,Sym,(Y, Z)) and  g; € CJpppy(C, Sym, (X, Y))

by Theorem 3.1.8 we, for 0 < i < N, the functions h; defined in (3.6) have
h; € C775(C, Symy(X, Z)). To compute WD, h; € CJ,5 1 (C, Sym, ., (X, Z))
for 0 < i < N, note that the Whitney derivatives computed by Theorem 3.1.8
will have the same form as in Theorem 2.1.14, and thus WD, h;(x) = h;y1(x).
Applying Lemma 3.1.10 with N+ 1 <n =~ < N+ 2, we conclude h = fog €
Cim(C,2)). O

This establishes Lemma 3.1.10 for N +1 < n < N + 2 and Theorem

3.1.8 for N+ 1 < v < N + 2. Hence by induction we have Lemma 3.1.10 for

every n < n <n+ 1 and Theorem 3.1.8 for every k < v < k + 1. O

3.2 Conditions for uniqueness of Whitney derivatives

Remark 3.2.1. Note that the Whitney derivatives, { f;}¥_,, need not be unique
(for example, if f : A= {(z,0)} C R?* — R then the Whitney partial derivative
in the y direction, f,, is completely arbitrary). To avoid ambiguity, when
speaking of f € CJ (A, Y) we will usually consider a specific k-jet {fi}F_q.

In this context, we use WD f(x) to refer to fi(z).
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Remark 3.2.2. In some sense, Proposition 3.1.5 and the example given in
Remark 3.2.1 represent the extremes of density a about a point x in A. Propo-
sition 3.1.5 illustrates that given any x € A, with enough points in A close to
x the f; are unique. Furthermore, in this case one can obtain estimates (3.2)
for 0 <i <k from (3.2) with i = 0. For intermediate cases of density a about
a point x in A one can still obtain uniqueness (e.g. Proposition 3.2.3) as well

as estimates (3.2) for 0 <1 <k from (3.2) withi =0 (e.g. Lemma 3.2.6).

Proposition 3.2.3. Given f € C},,,(A,Y), for any point x € A and v € X,

if for some o(t) with o(t)/t — 0 ast — 0 the set
{t:x+tv+w(t) e A fwd)xy <o)}

has 0 as an accumulation point then fi(x)[v] are unique.

Proof. If f; and f; are possible Whitney derivatives of f, note using (3.2) with

1 = 0 we have

3 f x)|w — fi(x)|w v+ w ﬁin(lfy—l)
A@)P] = fi(@)] = fi(@)[w(t)] — fi(z)] (t)]:O(Ht +w(t)|| )

For small values of ¢ the RHS is arbitrarily small. Since the LHS does not

depend on t we have fi(x)[v] = fi(x)[v]. O

Remark 3.2.4. Around a given point x € A one can formulate “higher order”
density conditions on the set A, similar to those given in Proposition 3.2.3,
which ensure additional uniqueness of fi;(x). These “higher order” density
conditions are related to the conditions for obtaining (3.2) for 0 < i <k from

(3.2) fori =0 (see Definition 3.2.5 and Lemma 3.2.6).
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Definition 3.2.5. We say that a point x € A has the ~ density property,
k<~ <k+1ifxisalimit point of A and there exists positive constants €, M
and My, ..., A\ distinct such that for any ||A|ly < e withx+ A € A and any z
with ||z x = [|Allx one can find w; € X, i =1,... k, with |Jw;||, < M|A|%

such that t + A+ Nz +w; € A (orx+ A — Nz+w; € A).

We say the set A has the v density property if each x € A has the ~y

density property for the same choice of M and A, ..., . |

Lemma 3.2.6. (Whitney Verification Lemma IT)
Let k < v < k+1, and assume A C X has the v density property (see
Definition 3.2.5 in Section 2.2). Let f: A —Y and

fi: A—Sym,(X,Y) for 0<i<k
with f = fo and a positive constant M such that for 0 < <k
||fi(x)||Symi(X,Y) <M
If, for every x,x + A € A, one has
[ ol +2) = @ )| < MlAIL
then in fact one has (3.2) for 0 <i < k and hence f is C7 Whitney in A with

Whitney derivatives {fi}¥ o, i.e. f € Clyp,(AY).

Proof of Lemma 3.2.6

Following Converse Taylor Theorem (Theorem 3, p.7 in [Nel69]), we

proceed by induction on i. The base case of (3.2) for ¢ = 0 is assumed.
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Assume that we have established (3.2) for i < m — 1 < k. To establish
(3.2) for i = m, note that since A has the v density property for any z, A and
z with z,z + A € A and ||z]| = ||A|| we can find w; with ||w;||, < M|A[%
such that z + A+ Nz +w; € Afori=1,....k (or z +A — Nz + w; € A for
¢t =1,...,k, which can be though of as as a special case of the first with —z

in place of z). Using that (3.2) holds for m — 1, note
Frea (4 A Nz ) = [t @+ A iz) + O(| A
and

froi (@ + A+ Xz +w) = FET (@ A+ Nz) + O(| A ™)

hence after subtracting the two expressions and collecting the coefficients of

z, we have
Gm1 (D) 4 -+ Mg (A = o(l|a (3.13)
with |
filx+A) = 59 A)
gi(A) = = T (3.14)
Putting together (3.13) with the various \; we have
1 N /\% o )\]f_m“ Gm—1(A) O(HAHmeH)
Lo A A gm(A)[7] oA+
1 S : : B :
D Mo o M) \a@yiEee ) \oglap
This matrix is a Vandermonde matrix and since the Ay, Ao, ..., \r_,, are dis-

tinct, it can be inverted this matrix. Furthermore, since \; are fixed, the norm
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of the inverse matrix is bounded. From this, we obtain
—m+1
gm(A)[2] = O(|A[™™")
and since this hold for every z with ||z|| = ||A||y we get

o+ A) =[5 (2 8) = O(|A™™)

m

This holds for any any =, 2+ A € A, hence we have established (3.2) for i = m.

This completes the induction and establishes (3.2) for 0 <i < k. O

3.3 Extension theorems

Proposition 3.1.5 illustrates that, restricted to the interior of A, the
notion of Whitney regularity coincides with the classical notions of regularity.
If A is finite dimensional, this correspondence with the classical notions of
regularity extends to a neighborhood of A. In particular, we have the following

powerful and important result:

Theorem 3.3.1. (Whitney Extension Theorem)
Let k € Zt, k < v < k+1 and A a closed subset of R™. Then there is a

continuous linear mapping
E: (A Y) = Oy (X.Y) = CUX,Y) = A (X,Y)
such that:
(1) [Exf](z) = f(z) for allz € A.
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(ii) D'Ef](z) = fi(x) fori <k andx € A

(111) The operator norm of & is independent of the set A.

Alternatively, using the extension described by Whitney in [Whi34], we
have the following. Given f € CJy, (A,Y) (or f of class C* in A, see Remark
3.1.2; here k = oo is also permissible) we can find a function F(zx) of class C*

m R™ such that:

(I) F(x) = f(x) for all x € A.
(II) D;F(x) = fi(x) for alli <k and x € A.

(111) F(x) is analytic for v € R" — A.

Proof. For the case Y = R see Theorem 4 on p. 177 of [Ste70] (note (7i) follows
from 2.3.2 a’ on p. 187) and Theorem I in [Whi34]. Given Y any other Banach

space, these same constructions and estimates can be followed. O

Remark 3.3.2. The key ingredient of the proof of the extension theorems in
[Ste70] and [Whi34] is to obtain a decomposition of X — A into cubes whose
size is comparable with the distance to the boundary of A. This is accomplished
in finite dimensions using a Calderon-Zygmund decomposition. However, in
an infinite dimensional Banach space it is not clear when such a good decompo-
sition exists (see Chapter V of [KM97] for a discussion of Whitney Extension

Theorems in more general settings).
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Chapter 4

Abstract Setup

In this chapter, we describe the general setup in which we will work. As
in [Zeh75], we consider two types of one parameter families of Banach spaces,
X,, which are abstractions of spaces of analytic functions, and X§, which are
abstractions of the usual spaces of C" functions for ¢ = r & Z. In this abstract
setting, the “smooth” X{ spaces are obtained as subsets of X, described by
their approximation properties in X, (see Definition 4.1.4). Smoothing opera-
tors (see Definition 4.1.9 and 4.1.13) which can be sued to explicitly construct
approximations in X, also play an important role. The complete presentation
of the one-parameter families of Banach spaces, the construction of these “ap-
proximation spaces” and the definition of the “smoothing operators” can be

found in Section 4.1.

Using these one parameter families of Banach spaces, as in [Zeh75] we
consider functionals F = F(x,y) of two variables, x (which we think of as
the independent variable) and y (which we think of as the dependent vari-
able). To solve the implicit equation F(z, g(x)) = 0 locally near some (¢, yo)
with F(zo,y0) = 0, we require the functional F satisfy several hypothesis.

Informally, we will assume:
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1. F is continuous in x and y and differentiable with respect to y (see

conditions (F.A0) and (F.A1l) in Section 4.3).

2. On some set C x V' the differential of F with respect to y has an approx-
imate right inverse (see condition (F.A2) in Section 4.3). As in [Zeh75],
this approximate right inverse, while not bounded when viewed as a map-
ping between spaces at the same scale, becomes bounded when viewed as
a mapping between spaces at different scale (see Remark 4.0.3). These
bounds must satisfy certain quantitative estimates (namely the Brjuno-

Riissmann condition discuss in Section 4.2).

Under these hypothesis (which are described in detail in Section 4.3),
the local existence of a solution g to the implicit equation F(z,g(z)) = 0
follows for & € C near any (xg,yo) with F(zo,y0) = 0 (see Corollary 6.1.2
and Corollary 7.1.3). Under some additional hypothesis on F and R (see
(F.W1), (F.W2) in Section 4.3) we can further establish the Whitney regularity
with respect to parameters of the implicit function g (see Remark 4.0.3 for
the terminology “regularity with respect to parameters,”; for the results see

Theorems 6.2.1, 6.2.3, 7.2.1 and 7.2.2).

The main differences between the hypotheses used in this work and

those found in [Zeh75] are:

1. We only require an approximate right inverse when the x variable ranges

over a not-necessarily-open-set (see (F.A2) in Section 4.3).
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2. We require weaker quantitative estimates on the bounds for the quadratic
remainder and approximate right inverse (in applications, this in turn
allows us to consider weaker “Diophantine” conditions). Specifically, we
require €, (2 and €4, satisfy the Brjuno-Riissmann condition discuss

in Section 4.2 (see (F.A1) and (F.A2) in Section 4.3).

3. In the smooth setting (i.e. X§ x Yy, see Definition 4.1.4) we eliminate the
requirement that approximate solutions are analytic (i.e. they lie in X, x
Y,). Instead, we require an additional compatibility condition between
the functional and the smoothing operators (see (F.S4) in Section 4.3

and Theorem 7.1.1).

Remark 4.0.3. Some remarks about terminology are in order.

In the applications we consider, the one parameter families X, and X{
are often spaces of functions with the scale parameters o and q measuring their
reqularity (for analytic functions the o measures the domain of analyticity).
Furthermore, in these applications various linear operators (such as differen-
tials of the functional and the corresponding approximate inverses) have the
property that they are bounded when mapping a space at one scale into a space
at a different scale. That is, if L is the linear operator under consideration,
we would have L : X, — Y, bounded only for 0 < o’ < o < 1. Due to this
association of the scale parameter with reqularity, this phenomena is referred
to as a “loss of regularity/smoothness” or, in the analytic case, as “loss of

domain.”
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While thinking of o as a regularity parameter is natural, it can become
very confusing since we also consider the reqularity of functionals acting be-
tween these spaces of functions. To illustrate, consider f : X, — Y, for some
fired o and 7. We can think of o and T as measuring the regularity of the
functions © € X, and f(zx) € Y;, bult we also want to consider the regularity

of the functional f as a map between the Banach spaces X, and Y.

When referring to a particular Banach space in the one parameter fam-
ily X, or X{, i.e. fiting o or q, we will avoid referring to o or q in terms of
reqularity and speak of the space at a given “scale.” Whenever referring to reg-
ularity of a functional acting between one parameter family of Banach spaces,
such as the reqularity of the functional f as a map between the Banach spaces

X, and Y, above, we will speak of “regularity with respect to parameters.”

Remark 4.0.4. When working in one parameter families of Banach spaces, we
often are able to gain desirable properties, such as continuity, differentiability
or inverses (see (FA.0), (F.A1), (F.A2) in section 4.3) by sacrificing some
arbitrary amount of scale. In addition to the semantic issues described in
Remark 4.0.3, this arbitrary loss of scale can cause a fair amount of difficulty

with overly burdensome notation.

For example, in Chapter 5, we use an iterative definition to obtain the
coefficients of a polynomial approximate solution. Fach step in the iteration
uses an (unbounded) inverse (see (F.P2) in section 4.3) and thus at each step
we have to loose an arbitrary amount of scale. The overall domain loss can still

be arbitrary. Provided the iterative process was only repeated a finite number
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of times, when we compute estimates we can simply assume the loss at each
step was (o — o')/n with (o — ¢') being the overall loss. However, when we
have an infinite number of steps (such as in the modified Newton method used
in the proof of Theorem 6.1.1) significantly more care must be taken with the

domain loss and estimates at each stage.

4.1 Scales of spaces, the X{ spaces and C* smoothing

Following [Zeh75], let X,, Y, and Z, be three one parameter families
of Banach spaces indexed by ¢ with 0 < ¢ < 1, such that for 0 < ¢’ <o <1
one has

XO 2 Xo" 2 XO’ 2 Xl (41)

and the inclusion of X, into X,  is a bounded linear operator with operator

norm < 1, i.e.
lellx, <, (4.2)

for all z € X, (analogously for Y, and Z,).

Remark 4.1.1. Note that re-parameterizing the scale parameter o, i.e. taking
¢ to be an increasing function with ¢(0) = 0 and ¢(1) = 1, the one parameter
family of Banach spaces X, = Xy also satisfies (4.1) and (4.2). (To keep
the approzimation spaces X, described in Definition 4.1.4, from (drastically)
changing, we will require the re-parameterization ¢ to be sufficiently “tame,”
e.g. there exists € > 0 so that es < ¢(s) < s/e for s sufficiently small. See

Remark 4.1.6.)
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Given any interval [a,b] re-parameterizing o in the same manner, i.e.
¢ increasing with ¢(a) = 0 and ¢(b) = 1, the one parameter family of Banach
spaces Xy = Xy(o) again satisfies (4.1) and (4.2). We consider [0,1] simply

to keep our notation from becoming overly complicated.

Remarks 4.1.6, 4.1.11, 4.2.3, and 4.3.11 discuss re-parameterizing the

scale parameter. In particular, affine re-parameterizations have little effect.

Remark 4.1.2. The interested reader is invited to compare this setup with the
“tame Frechet space” of [Ham82]. In particular, how does the completion of
the tame semi-norms of Hamilton differ from the one parameter families X,
or the approzimation space X{ discuss in Definition 4.1.4 (see Question 1 in

Appendiz A)?

Example 4.1.3. In Section 8.2, we define the one parameter family, X, =
A(ro,C™), of real holomorphic functions on complex neighborhoods of T".
This is an important examples of a one parameter Banach space satisfying

(4.1) and (4.2) and they play a key role in the study of torus diffeomorphisms.

While the Banach spaces X, for ¢ > 0 often consist of analytic func-
tions, X, may consist of functions with finite differentiability (e.g. C™). The
transition from analytic functions to finitely differentiable functions overlooks
a large continuum of intermediate scales (e.g. spaces of functions with higher
(finite) regularity). Some of the intermediate scales can be recovered by con-
structing an intermediate one parameter family of Banach spaces, which we

will denoted by X{ for ¢ > 0, that lies between X and X,.
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Definition 4.1.4. Define the approximation space X§ for ¢ > 0 as follows:

x € Xo lies in X{ if there exists a sequence x; € Xo-i with xo = 0,

()] = sup{2¥||z; — 2511y, |} < o0
J

and xv; — x in Xo. Taking

Jellg = nt { (o)

.CC]' € ngj,l'o = 0
and x; — x in X

gives one a norm on X{ which makes X{ into a Banach space (for proof see

Lemma 1.1 in [Zeh75]). [

Remark 4.1.5. As with X,, the norms H||Xg satisfy Hx||Xg/ < ||xHXg for

0<q¢ <qg< oo sowith0 <o <1 onehas

Xo 2 X§ DX{ DX = (ﬂX5> > X, 2 X,
s>0
[An interesting question is if one has an abstract version of the Arzela-Ascoli
in X{, i.e. is the embedding of XI™™ into X is compact? See 2 in Appendiz

A

Remark 4.1.6. Note that if ¢, an increasing function with ¢(0) = 0 and
¢(1) = 1, is used to re-parameterize X, = Xy4(o) as described in Remark 4.1.1,
then given some “tameness” conditions on ¢, e.g. there exists ¢ > 0 so that

es < ¢(s) < s/e for s sufficiently small, we have X = X{.

Remark 4.1.7. If the Banach spaces X, are all Banach algebras under multi-
plication, so that ||ab|| < |lallx [|bllx,, then X§ will also be a Banach algebra

under multiplication.
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Example 4.1.8. For X, = A(ro,C™) as in Example 4.1.3 the spaces X{
can be explicitly computed. In particular X = C? for q € Z while X{ = Ca
for ¢ & 7 where C are the usual spaces of Hélder functions and C? (also
denoted A,) are functions satisfying a Zygmund condition. See Section 8.2 for

definitions of C, C1, A(ro,C™) and other details.

The spaces X are defined as subspaces of X through approximation
properties and thus it is natural to define an operator which allows one to

approximate any element of X{ by elements in X,,.

Definition 4.1.9. Let X,, 0 <o <1, and X{, 0 < g, be two one parameter

families of Banach spaces such that:
1. For 0 <o’ <o <1 one has Xor 2 X, with ||z|y < ||y,
2. For0<q <q one has X{ 2 X¢ with ]| o < ||£L’||Xg
0

An analytic smoothing in the family X, with respect to X{ is a family {S:}+>0
of linear operators Sy : Xo — X together with constants k(q) > 0 for every

0 < g < oo satisfying the following three conditions:

tlirglo (St = Dv]llx, =0 forv e X, (4.3)
IS:olllx, -, < k(@)l[v]l xg forveXg,t=1 (4.4)
1(5- = S)llllx _, <t k(@llvllxg — forveXgr=t>1  (45)

|
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Remark 4.1.10. In Definition 4.1.9, the one parameter family X{ does not
need to be the approzimation spaces of X, as described in Definition 4.1.4. This
said, throughout the rest of this paper, unless explicitly stated, X{ will always
represent the approximation spaces of X, as described in Definition 4.1.4.
But note that even when X is an approzimation space of X, as described
in Definition 4.1.4, analytic smoothing in X, with respect to X{ is not

guaranteed. One must explicitly exhibit such smoothing.

Remark 4.1.11. Note given ¢ increasing with ¢(a) =0 and ¢(b) =1 is used
to re-parameterize the scale parameter o, if ¢ is sufficiently “tame,” e.g. there
exists € > 0 so that es < ¢(s) < s/e for s sufficiently small, then analytic

smoothing in X, carries over to analytic smoothing in X, = Xy(s).

Example 4.1.12. For X, = A(ro,C™) as in Ezample 4.1.3 and X{ = C? or
C4 as in Example 4.1.8 there exists an analytic smoothing Sy in X, with respect
to X{. The smoothing operator S; is a convolution operator with Syu = s; * u,

si(z) = ts(tz) and s(-) an entire real holomorphic function. See Section 8.6

for details.

The smoothing given in Definition 4.1.9 intertwines two one parameter
family of Banach spaces. There are simpler types of smoothing operators, e.g.
C*° smoothing described below, which are defined for a single one parameter

family of Banach spaces.

Definition 4.1.13. Let X{ be a one parameter family of Banach spaces with
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0 < g < oo such that for 0 < ¢ < g < oo one has
Xo=Xo 2 X{ 2X{ 22X =X}
s>0
with ||| v < [|2]lxa for all z € X{. A C*-smoothing in the family X{ is
0
a family {S;}i>0 of linear operators Sy : Xo — X§° together with constants

C(g,m) > 0 for every 0 < q,m < oo satisfying the following three conditions:

i [[(S; = D[l , =0 forv e Xo (4.6)

1S [0] [l g <t 0C (g, m) 0]l g forve X§,0<qg<m,t>1 (47)
(St = D)l xa <" 0C(g,m) o]l e forv e X5 0 < g <m,t>1

(4.8)

|

Example 4.1.14. The analytic smoothing S; in X, = A(ro, C™) with respect
to X§ = C? or C discuss in Example 4.1.12 s also C'*° smoothing when
restricted to X = C? or C4. This concrete smoothing also satisfies a number

of other useful estimates, see Sections 8.6 and 8.7 in Chapter 8.

Remark 4.1.15. The interested reader is invited to consider question 3 in
Appendiz A which asks if it is true in the abstract setting if the restriction of

analytic smoothing to the family X{ always gives a C* smoothing.

Remark 4.1.16. Analytic smoothing and C'* smoothing have several useful

consequences.

1. Conditions (4.3) and (4.6) imply X, and X§° are dense in X.
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. The following interpolation inequalities hold: for 0 <r <t and 0 < u <

1, with s = pr+ (1 — p)t, there exists a positive constant M, s, such that

(1—p)
X§

s < Mool o]
for every x € X§.

. In the case of analytic smoothing, the interpolation inequalities corre-

spond to the “three line theorem.”

. For certain one parameter families of Banach spaces it is know that
interpolation estimates do not exists and as a result these one parameter
families of Banach spaces do not have C* smoothing (see [dILO99] for

a further discussion).

. See [Zeh75], [Had98] and [Kol}9] for these and other results.

It is also useful to consider how the smoothing operator S; acts on

certain subsets Cy C Xj.

Definition 4.1.17. Given analytic smoothing Sy in X, with respect to X{ and

a subset Co C Xy we say that S; is Co-invariant if for every & € Cy there exists

positive constants v and Ty such that for all v € Cy with ||z — |y, < r and

all t > Ty one has Si[z] € C; = Co N X;. [ |

Example 4.1.18. The motivating example for Definition 4.1.17 is when the

set Cy has the form ANB where A is invariant under S, i.e. S;A C A, and B is
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an open set. In this case, given T € Cy there is an § > 0 so that By(z,d) C B.

Given §* < § and taking r < 6*/k(0), for all x with ||z — Z||x, < r one has
15z = 7]l x, < KO)llz = 2[5, <07
Also, since Si[z] — Z in Xq there is a Ty such that for all t > Ty,
15:[7] = 2]l x, < (6 =67
and thus
[Se[2] — Z||y, < 6"+ (6 —36") =0

so Si|x] € By(Z,0) C B and since Si[z*] € A, we have Si[x] € AN B = Cy for
all t Z T().

4.2 The Brjuno-Riussmann condition

In this section we define the Brjuno-Riissmann condition and explore
some of its consequences. Informally, the Brjuno-Riissmann condition is, in
some sense, the optimal condition for obtaining convergence of the modified
Newton iteration scheme introduced in Section 6.1. Motivated by [Riis75]
and especially [Riis80] (and related to conditions obtained by different meth-
ods with different motivation in [Brj71] and [Brj72]) we define the Brjuno-

Riissmann growth condition as follows:

Definition 4.2.1. Let  : (0,1] — [1,00) be a decreasing function. The

function € satisfies the Brjuno-Rissmann condition provided there exists a
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sequence {8, }5% of positive numbers less than 1 with Y .-, 6; < 0o so that

i 2~ 10g(Q(5;)) < oo (4.9)

Several observations are in order.

Proposition 4.2.2. Given a finite collection of functions each satisfying the
Brjuno-Rissmann condition, without loss of generality one can use the same

sequence {9,152, for condition (4.9).

Proof. Note that if 2, and Q4 satisfy condition (4.9) on the sequences {(d4 )}

and {(0g),} respectively, then they also satisfy condition (4.9) on the sequence

{00} = {max((da)n, (9p)n)}- m

Remark 4.2.3. Note given ¢ a re-parameterization as described in Remarks
4.1.1, 4.1.6, 4.1.11 and 4.2.5, if ¢ has the property that Y > 0, < oo if and
only if Y2, 0(0,) < 00, e.g. there exists € > 0 so that es < ¢(s) < s/e for
s sufficiently small, then the Brjuno-Rissmann condition is invariant under
this re-parameterization, i.e. () satisfies the Brjuno-Rissmann condition if and

only if Qo¢ satisfies the Brjuno-Rissmann condition.

The terms d,, in the sequence {6,}2°, arising in Definition 4.2.1 are
related to the loss of smoothness/domain at each step of the modified Newton
method introduced in Section 6.1 and thus the sum > ;° 0, is related to the

total loss of smoothness/domain.
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Proposition 4.2.4. Given any ¢ > 0 one can assume that the value of the

sum Yy .2, 0; arising in Definition 4.2.1 is less than €.

Proof. Discarding the first & terms from the sequence {9,,}5°, and re-indexing
ensures Y oo §; < € while > 27+ 10g(Q(6;)) will increase by a factor of

2% but remain finite. O

In Section 7.1, we use approximation to obtain smooth (i.e. XJ x Y
existence. The interplay between the sum .~ d; (i.e. the domain loss) and

the sum in (4.9) plays a key role. Motivated by this we make the following:

Definition 4.2.5. Given € : (0,1] — [1,00) a decreasing function satisfying

the Brjuno-Rissmann condition define Wq(€) to be any function such that

min {f: 27D 1og(Q(4,))

1=0

i&» < 6} < log(Tq(e)) (4.10)

1=0

Note that Proposition 4.2.4 guarantees one can choose Wq(e) < oo.

We now give two important examples of functions which satisfy the

Brjuno-Riissmann condition given in Definition 4.2.1 above.

Definition 4.2.6. Let Y : (1,00) — (1,00) be an increasing function. If T

satisfies

i) ~log Y (n) is decreasing (or log Y (n) is convez)
i) Yoo Hlog T(n) < oo
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W) > 5w log T(27) < oo

we say that Y is a Riilssmann Modulus. |

Note that given i), conditions ii) and ii’) are equivalent (by the Cauchy con-

densation theorem).

Example 4.2.7. Note that for ¢ > 0, v > 0 the function Y(r) = cr” is a

Rissmann Modulus.

Example 4.2.8. Given T a Rissmann Modulus, define

Qr(s) =Y _ Y(n)e ™ (4.11)

and
o = o~ log(27(2"))
Note that
0225n<oo (4.12)
and

> 270 W log(Qr (6)) < o0 (4.13)
=0

so the function Qy satisfies the Brjuno-Riussmann given in Definition 4.2.1.
For proof of (4.12) and (4.13) see Lemma 1 in [Ris80]. Also see Remark
4.2.10.

When considering the small divisor problems (see Section 8.5) that

arises when constructing the approximate right inverse R, we can impose a

56



Diophantine type condition in which the usual power law is replaced with
a Riissmann Modulus T. The resulting operator norm of the small divisor
operator as the form of 2y as defined in Example 4.2.8. If T has the same

form as Example 4.2.7, then (v has the following simple form:

Example 4.2.9. Let A, a and o be positive constants with A > 1 and 0 <
o < 1. The function Q(s) = As™* satisfies the Brjuno-Rissmann condition

on 0, = 27". Furthermore, there exists a positive constant C' such that Ug(e)

as defined in (4.10) satisfies W () < Ce™?.
Remark 4.2.10. A key property of Example 4.2.9 above is the fact that:
There exists a > 0 such that Wq(s) < Cs™. (4.14)

This plays a key role in obtaining existence in the smooth case (i.e. X x Y1)
in Section 7.1. Question 4 in Appendix A asks what reasonable hypothesis can

be placed on Y to gquarantee (4.14) for Vo, as defined in Example 4.2.8.

In the proof of Theorem 6.1.1 in Section 6.1 we obtain estimates of the

form

€np1 < C(n)é (4.15)

where C'(n) > 1 is built of from Qg, Qg and Q4 (see 6.14). Iterating (4.15)
one obtains

€np1 < C(n)C(n—1)2%---C0)* e (4.16)

as the sharp upper bound for sequences {¢, } satisfying (4.15). The motivation

for the definition of the Brjuno-Riissmann condition is to ensure that the
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growth of the corresponding C(n) is slow enough so that (4.15) can be used

to grantee ¢, — 0 as n — oco. To this end, consider the following property:

(C1) Assume C(n) is a sequence of positive numbers with C'(n) > 1 such that
> 27 og(C (i) < log(Me) < o0
i=0
for some constant Mo > 1

Lemma 4.2.11. Let C(n) be a sequence satisfying property (C1). Given {e,}

a sequence of positive numbers satisfying (4.15), on has the estimate
en < (oMe)*" (4.17)

Proof. Tterating (4.15) repeatedly, one gets (4.16). Taking the logarithm of
both sides of (4.16), one has

log €, < 2" <log(eo) + Z 9~ (i+1) log(C’(i)))
=0
< 2" (log(eg) + log(M¢))

< 2" log(egM¢)
Exponentiating the above gives estimate (4.17). O

Corollary 4.2.12. Given > 2~ 1og(C(i)) < log(D(n + 1)) for some

sequence D(n) then e, < (gD (n))*".

The following two propositions are consequences of property (C1):
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Proposition 4.2.13. Given two sequences C1(n) and Cy(n), both satisfying
property (C1), the sequences defined by C3(n) = Ci(n) + Co(n), Cy(n) =
C1(n)Ca(n) and Cs(n) = C1(n + ng) also satisfy property (C1).

Proof. Straightforward. 0

Proposition 4.2.14. Given any sequence C(n) satisfying property (C1), there

exists a constant Rc > 1 such that

C(n) < (Re)” ¥Yn>1 (4.18)

Proof. Since the terms 2~ ("1 1og(C(n)) are summable they tend to 0 as n —
oo and hence are bounded for all n by some constant, log(R¢), and hence
~# D Jog(C(i)) < log(R¢). (If one only considers (4.18) for n large then Rg

can be made arbitrarily small.) Exponentiating we get (4.18). O

Remark 4.2.15. Proposition 4.2.1} .

Related to the functions in Example 4.2.9 we have the following impor-

tant class of sequences which satisfy (C1):

Example 4.2.16. Let A and B be positive constants and let C(n) be any
sequence with C(n) < AB™. Note the sequence C(n) satisfies condition (C1).

In fact, one has

n

D 270 og(C(4)) < log(A (Zz ZH)—i—log )(Zw(m)) (4.19)
=0

=0

-~

=1 (1) 1 (n2)(4) Y

g <A<1_( )("‘H))B(1-(n+2)(%>(n+1)>)

D=
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so applying Corollary 4.2.12 with

D(n) = AC-(3)) - (3)) = AB (4.20)
(ALY 72
one has
(EoAB)Qn

Remark 4.2.17. Proposition 4.2.13 and Lemma 4.2.11 guarantee that if the
sequences o (0n), Qr(d,) and Q4(26,,) all satisfy property (C1) then, provided
€o 18 sufficiently small, super-exponential estimates can be made on the decay
of €,. Note Qq(0,), Qr(0,) and Q4(26,) all have the form of Q : (0,1] —
[1,00) evaluated on the points of a summable sequence {0,}0 . This is the
motivation behind the Brjuno-Rissmann condition (Definition 4.2.1), i.e. a
function Q satisfies the Brjuno-Rissmann condition provided there exists a

summable sequence 0, such that the sequence defined by C(n) = Q(6,,) satisfies

property (C1).

4.3 Hypothesis for the functional F

We consider functionals acting between one parameter families of Ba-

nach spaces as follows:

(FO) Let X,, Y, and Z, be one parameter families of Banach spaces with

0 <o <1 as discussed in Section 4.1 (at this point X,, Y, and Z, are

60



not assumed to have analytic smoothing). Assume the functional
F . U() X ‘/0 — Z()
is given with Uy C Xy and V) C Yy. Let U, = UyN X, and V, = VyNY,.
In the following sections, we present additional hypotheses for the func-
tional F defined in (FO0) that are sufficient to allow us, around various (x¢, yo)
with F(zo,90) = 0, to establish the existence, regularity and uniqueness of
an implicit function g which solves F(z, g(z)) = 0. Before discussing these

additional hypotheses, we describe an example which will motivate much of

our development.

Example 4.3.1. Given a family Fy of torus maps F\ = Id + f : T¢ — T¢
(see Chapter 8) and a vector w € R we want to find vectors a € R and torus

maps H =1d + h : T — T? so that
(Fy+a)oH(0) —H(H +w) =0 (4.22)
With the variables x = (f\,w) and y = (h,a), using the functional
F(z,y) = (Id+ fr+a)o(Id + h)(0) — (Id + h)(0 + w) (4.23)

equation (4.22) can be expressed as F(x,y) = 0. Taking xy = (wo,wo) and
yo = (0,0), it is easy to check F(xg,yo) = 0. Also, note that — at least formally

— we have
DF(z,y)[Ah, Aal(0) = Ah(0) — Ah(0+wo)+Aa+ Da fr(H(0))[AR(0)] (4.24)
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wn particular
DF(xo,y0)[Ah, Aa](0) = Ah(0) — AR(0 + wo) + Aa (4.25)

(see Lemma 6 in [Mey75] for a proof of this calculation). In Fourier space
(4.25) s diagonal and can formally be inverted provided w -k # 0 for all
ke zi\ {0}.

To ensure the the formal inverse is “meaningful,” one needs to restrict
w so that the “small divisors” 1/(e*™“*—1) do not grow to rapidly with k. This
leads to the fact that the inverse (or approximate inverse) for the derivative
1s only defined in a set of w which is totally disconnected. It is precisely to
deal with problems of this kind that we introduce the Whitney regqularity of the

dependence.

Additional details for to this example can be found in Chapter 9.

With this example in mind, we now describe the additional hypotheses we use

in the following settings:

e In Section 4.3.1 we describe the hypotheses used to obtain polynomial

approximate solutions in Chapter 5.

e In Section 4.3.2 we describe the hypotheses used to obtain analytic so-

lutions in Chapter 6.

e In Section 4.3.3 we describe the hypotheses used to obtain smooth solu-

tions in Chapter 7.
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4.3.1 Hypothesis for polynomial approximate solutions

Provided F is C7 for some k < v < k + 1, given a (z9,yo) with

F(zo,y0) = 0, motivated by Lindstedt series in mechanics, we consider the

problem of find polynomials g=* (¢, y0; A) which act as approximate solutions

to F(x,g(z)) = 0 around (z¢, yo), i-e. F(zo+A, g=F (0, go; A)) = O(A”). This

can be done provided one:

(F.P1)

(F.P2)

Assume F as in (F0). Let v > 1 with £ < v < k+ 1 and assume for

every 0 < ¢’ < o <1 the map
f:Ua'XVo'_)Zg-’

is C7 in x and y (in particular assume that U, and V, are open) and let

Qp :(0,1] — [1,00) be a decreasing function such that

HFHCW(XUXY(,,ZJ,) < Qp(o—0o') (4.26)

For i,5 > 0 with ¢ + j < k, denote the Frechet derivatives of F at

(z,y) € Uy x V, by DD} F(z,y) where
DDJF - U, x V, — Sym, ;(Xo, Yo Zor)

Here Sym, ;(X,, Y5; Z,r) denotes continuous (i + j)-linear operators with
¢ symmetric terms in X, and j symmetric terms in Y,, equivalently

denoted Sym,(X,, Sym,(Y,, Z,/)) or Sym; (Y, Sym;(X,, Z,)).

Let (xo,y0) € U, x V, with F(xo,y0) = 0 be given. Assume there

exists an (unbounded) right inverse R(zo, o) such that, for all ¢’ with
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0<o' <o<1, R(xo,yo) € L(Yy, Zy) and let Qg : (0,1] — [1,00) be a

decreasing function such that
1R (z0, yo) [v]lly,, < Qrlo —o)vll, (4.27)
In addition, assume that
Id — DyF(z,y)R(z,y)|[v] =0 (4.28)

where here Id actually represents the inclusion of some Y, into Y.

For any (x¢,yo) with F(zo,y%0) = 0, Hypotheses (F.P1) and (F.P2)
are sufficient to obtain a polynomials ¢g=*(z, y0; A) which are approximate

solution to the functional equation in the sense that F(zo + A, g=*(A)) =
O(A").

(F.PU) Given (xg,y0) € Uy x V, with F(z9,y0) = 0, assume there exists an
(unbounded) left inverse R(zo,yo) such that, for all ¢’ with 0 < o’ <

o <1, L(xg,yo) € L(Ys, Zy) and

Id — Do F (2, y) R(z, y)][v] = 0 (4.29)

4.3.2 Hypothesis for analytic solutions

To obtain analytic results (i.e. results in X, x Y,) in, e.g. Theorem 6.1.1

and Theorem 6.2.1, we require:

(F.A0) Assume F defined in (FO0) has the property that for every 0 < ¢’ < o <1

f:UO'XVUHZU’
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(F.A1)

(F.A2)

is continuous. Here U, = Uy N X, and V, = VyNY,.
Assume F defined in (F0) has the property that for every 0 < ¢’ <o <1
F Uy X Vo — Zy

is differentiable with respect to its second argument (in particular assume
U, and V, are open). Denote its Frechet derivative at (z,y) € U, x V,
by DyF(z,y) with

DyF Uy, x Vy, — L(Y,, Zy)
For any x € U, and y,ys € V,, define the quadratic remainder
Q3 y1,y2) = F(w,y1) — F(@,92) — DaF (2, 42)[y1 — 42l (4.30)
and assume that

1Q(:y1, )7, < Qalo =)l —wally, (4.31)

with Qg : (0,1] — [1, 00) satisfying the Brjuno-Riissmann growth con-

dition (see Definition 4.2.1 in Section 4.2).

Assume there exists a subset Cy C U (with C, = Cy N X,,) such that
for all (z,y) € C, x V, there exists an (unbounded) approximate right

inverse R(x,y) such that for all 0,0’ with 0 <o’ <o <1
R:Cy %V, — L(Z,,Y,)

satisfies

1R(z, y)[v]lly, < Qr(o =)ol (4.32)
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and
| Id — Do F (2, y) R(z, y)Il0] |5, < Qalo =) F(2,9)l5, vl (4.33)

with Qg, Q4 : (0,1] — [1,00) satisfying the Brjuno-Riissmann growth

condition (see Definition 4.2.1 in Section 4.2)).

Remark 4.3.2. Note (F.A2) generalizes the unbounded inverse R defined in
(F.P2) to (x,y) with F(z,y) # 0.

Remark 4.3.3. Note that in (4.33) to compute
| L = DoF(z,y) Rz, y)][v] || 5, (4.34)

given v € Z,, one must choose o" with ¢’ < ¢” < o and first compute
R(x,y)[v] € Yor and then DyF (z,y)R(x,y)[v] € Z,. One of the consequences
of condition (4.33) is that this choice of intermediate scale 0" does not affect

(4.34).

Using the notion of C7 Whitney regularity presented in Chapter 3, the

following hypotheses can be used to establish the Whitney differentiable of g:

(F.W1) Let v > 1 with & < v < k4 1 and assume that F satisfies (F.P1).
In addition assume Qp : (0,1] — [1,00) satisfies the Brjuno-Riissmann

growth condition (see Definition 4.2.1 in Section 4.2).

(F.W2) Let v > 1 with k <y < k+ 1 and let R be given as in (F.A2). Assume

for all o, 0’ with 0 < ¢’ < o <1, we have

R E C%/ht(ca X VoaL(ZOWYOJ))
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(F.W3)

(F.W4)

with
IRller < Qr(o—0o) (4.35)
with Qg(s), as in (F.A2), satisfying the Brjuno-Riissmann growth con-

dition (see Definition 4.2.1 in Section 4.2)).

Let R be given as in (F.W2). In addition, for 0 < ¢” < ¢’ < 0 < 1,

assuime

I d = Do (= ) B(= w)][o(=)] lleay coiz,m)

< Qo — NF Dl coznlvlles ez, (4:36)

with Q4(s), as in (F.A2), satisfying the Brjuno-Riissmann growth con-
dition (see Definition 4.2.1 in Section 4.2)).

Let R be given as in (F.W2). In addition, assume that the Whitney
derivatives of R, which we denote by WD, R(x,y) and WD, R(z,y), sat-
isfy
WD, R(z,y)[v,w] = —R(z,y)[D1 D2 F (z, y)[R(z, y)[v], w]]
WD, R(x,y)[v, w] = —R(x,y)[D3F (z,y)[R(z, y)[v], w]

for all (z,y) with F(x,y) = 0.

Remark 4.3.4. Provided v > 2, Hypothesis (F.A1) follows from Hypothesis

Remark 4.3.5. Note, taking F(x,y) = 0, Hypothesis (F.W3) implies Hypoth-
esis (F.W4).
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Remark 4.3.6. Informally, we can understand (F.W/) (and F.W3)) by not-
ing that to even establish the existence of g we need Hypothesis (F.A2) which
requires the approximate right inverse R to be a right inverse up to zeroth order
in || F(z,y)|, i-e. evaluating (4.33) when F(x,y) = 0 implies

I — DyF(z,y)R(z,y) =0 (4.37)

Condition (F.W2) simply requires that the approximate right inverse R be a
right inverse up to first order. That s, the approximate right inverse R is
Whitney Differentiable and the Whitney partial derivatives of R satisfy the

equations we get by implicitly differentiating (4.37), namely
D1D2]:(I7 y)[R(x, y)[UL UJ] + D2]:(x7 y)[Wle(I7 y)[U, U)H =0
ng:(x? y)[R(l’, y) [U]7 U}] + Dgf(l’, y) [WD2R<*T7 y)[v7 ’UJH =0

To obtain local uniqueness for the zeros of implicit function in X, x Y,

the following hypothesis is sufficient (see Section 6.3):

(F.AU) Assume that for all x € C, C U, there is an approximate left inverse
L(z,y) such that for all 0,0’ with 0 <o’ <o <1

L:CyxVy,— L(Zy,Yy)
satisfies
LGz, ) []lly,, < Qulo—o)]vly, (4.38)
with Qp, : (0,1] — [1, 00) satisfying the Brjuno-Riissmann growth con-

dition (see Definition 4.2.1 in Section 4.2) and

L(z,y)DyF(z,y) =1d  when F(z,y)=0 (4.39)
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Remark 4.3.7. There are several possible variations one can make in the
above hypothesis and obtain the same or similar results. We list here a few

such “tmprovements”

(F.V1) In place of (4.31), it suffices that the quadratic remainder Q) defined in
(4.30) satisfy

1Q(;y1,10) 7, < ol = o)llyn — walls" (4.40)

for some a > 0 with Qg : (0,1] — [1,00) again satisfying the Brjuno-

Riissmann growth condition.

(F.V2) To model the method of Arnold, we can replace the single approzimate
right inverse R satisfying (4.33) (4.32) with a sequence of operators R;
satisfying

IR (z, )]y, < C”Qr(o —)|[vll,, (4.41)

and

I = Do, y) Ry (2, y)l[v] I,

< C¥Qu(o = V(I F(@,)ll,, + C ) ol (442)

for some constant C' > 1 with Qgr, Q4 : (0,1] — [1,00) again satisfying

the Brjuno-Rissmann growth condition.

The key property that we maintain, even with the above modifications, is that
the iteration of the modified Newton method still have super-exponential con-

vergence.
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4.3.3 Hypothesis for smooth solutions

To obtain smooth results (i.e. results in X{ x Y{/) in, e.g. Theorem 7.1.1

and Theorem 7.2.1 we will use analytic smoothing on approximate solutions.

(XYZ.S1) Assume X,, Y, and Z, have analytic smoothing with respect to X , Y/
and Z{ (see Definitions 4.1.4 and 4.1.9).

(XYZ.52) Assume that analytic smoothing in X, is both U, and Cy-invariant and

the analytic smoothing in Y, is Vp-invariant (see Definition 4.1.17).

The hypotheses on F are essentially the same as in the analytic setting
with the terms satisfying the Brjuno-Riissmann growth condition further re-
stricted to have the same form as Example 4.2.9 (actually, we only need the
corresponding Vg, as described in Definition 4.2.5 satisfy WUq(s) < Cs™* for

some «, see Question 4 in Appendix A).

(F.S0) Same as Hypothesis (F.A0)

(F.S1) Same as Hypothesis (F.A1) with Qg(s) < Cos™® (as noted above we

only need the corresponding Vg satisfy Wq(s) < Cs™* for some «).

(F.S2) Same as Hypothesis (F.A2) with Qg(s) < Crs™? and Q4(s) < Cxs77 (as
noted above we only need the corresponding Vg, satisfy Wg(s) < Cs™®

for some «).
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(F.S3) Assume that there is a constant M3 > 0 so that, for every 0 < o’ <
o<1, F:U, xV, — Z, is uniformly Lipschitz with respect to its first

argument, i.e.

1F(z1,y) = Flo2,y)ll5, < Msllay — 22, (4.43)

In addition, to control the process of smoothing an approximate solution, we

assume F interacts with smoothing in a natural way. Specifically:

(F.S4) Assume that for ¢ sufficiently large there exists positive constants gx
and My(q) > 0 such that for any (x,y) € Uj x V{ there exists a to > 0
such that for all ¢ > ty one has (Syx, S;y) € U; x Vi and the functional

F U, x V, — Z, satisfies the estimate
17 (Sew, Sey) = SeF (@, y)ll 5, < Malg)t™ """ (4.44)

Remark 4.3.8. Note that we take the approzimate solutions to be in X§ x Yy
(as compared to Zehnder [Zeh75] and Poschel [Pis82] who require an approz-
imate solution in X, X Y, ). Hypothesis (F.S4) allows us to obtain analytic
approximate solutions by applying analytic smoothing to smooth approximate
solutions. In particular, given (z,y) € U x V! combining Hypothesis (F.S4)

with the standard smoothing estimates we get

|F (S, S, < I1F(Sia, Sey) = SiF @yl + IS F @yl

< My(q)t™""" + k(q) | F (2, y)l| 29
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Remark 4.3.9. The exponent —q+qx in (4.44) and the exponent 5 of Qgr(s) <
Crs™? in (F.S2) combine to give us the resulting loss in the smooth case, e.g.
given (z,y) € U x VI with F(z,y) sufficiently small we get yo, € VI )

with F(z,Ys) = 0.

Example 4.3.10. For the space of analytic torus diffeomorphisms, the compo-
sition functional F(f,g) = fog, which appears often in KAM theory, satisfies
property (F.S4). See Section 8.7, Lemma 8.7.2.

Remark 4.3.11. Note given ¢ increasing with ¢(a) =0 and ¢(b) =1 is used
to re-parameterize the scale parameter o, if ¢ is sufficiently “tame,” e.q. there
exists € > 0 so that es < ¢(s) < s/e for s sufficiently small, then as discuss in

Remarks 4.1.11 condition (F.S4) will be invariant under the change of scales,
i.e. (F.54) will hold in X, = Xy(s).

To obtain Whitney regularity in the smooth setting we have the follow

hypotheses:

(F.SW1) Same as (F.AW1) with the additional assumption that Qp(s) < Crs® (as
noted above we only need the corresponding Wg, satisfy Wq(s) < Cs™@

for some «).

(F.SW2) Same as (F.W2) and (F.W3) with the additional assumption that as in
(F.S2), we have Qp(s) < Crs™® and Q4(s) < Cxs7 (as noted above we

only need the corresponding W, satisfy Wq(s) < C's~* for some «).
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Finally, to obtain local uniqueness for the zeros of implicit function in

X{ x Yy the following hypothesis is sufficient (see Section 7.3):

(F.SU) Same as (F.AU) with the additional assumption that Qp(s) < Cps7*, (as
noted above we only need the corresponding g satisfy Wq(s) < Cs™@

for some «).

73



Chapter 5

Polynomial Approximate Solutions

In this chapter, we consider a functional F satisfying the various hy-
potheses described in Section 4.3.1. For (xg,y0) € U, x V,, with F(z¢,yo) = 0,
we develop a polynomial g=*(zg,yo; A) (i.e. the coefficients of A depend on
7o, yo) such that F(zg + A, g=*(xg,y0; A)) vanish at A = 0 to order 7, i.e.
F(zo + A, g=F (w0, y0; A)) = O(AF) (see Chapter 2 for notation and defini-
tions, also for the time being we suppress the specifics of the various scales at

which terms occur).

These polynomials are not “exact” solutions to F(x,g(z)) = 0. We
think of them as “approximate” solutions with ||f(x+ A,gk(xo,yo;A))HZ
measuring the “error” of ¢*(zo,1o;A). Their construction is, in some sense,
easier then obtaining an exact solution g to F(z, g(z)) = 0 for z € C around
a given (xo,yo) with F(xo,y0) = 0 (in Chapters 6 and 7 we will obtain such
exact solutions, see Corollaries 6.1.2 and 7.1.3). Also, since the coefficients of
g*(z0, yo; A), which we denote by g;(z0,90), are independent of k we can think
of g (g, yo; A) as the truncations of a formal power series (see Remark 2.3.2).
This formal power series is related to, and motivated by, the Lindstedt series

in mechanics.
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Polynomial approximate solutions are very useful for computational
problems. They are related to asymptotic expansions and given local unique-
ness to F(z,y) = 0, the coefficients of the polynomial approximate solutions
uniquely determine the Whitney derivative of the implicit function solutions
obtained in Corollary 6.1.2 or Corollary 6.1.2. Finally, unlike the exact so-
lution g to F(x,g(x)) = 0 we obtain in Chapters 6 and 7 which can only
be evaluated for z € C, polynomial approximate solutions g*(zg,y0;A) can

evaluated at any point x € Uy, i.e. F(x, g*(xo, yo; x — 70)).

Theorem 5.0.12. (Existence of polynomial approximate solutions)

Let F be as defined in (F0) and assume that F satisfies Hypothesis (F.P1) for

some k <~y <k+1. Choose 0 <o" <o <o <1.

Let (xo,y0) € Uy x V, with F(xo,y0) = 0 and assume (F.P2) holds.

Choosing intermediate scales as in Remark 5.0.13 inductively define
9i(0, o) € Sym;(Xo,Yyr) for 1<i<k (5.1)
by the recurrence
9i(0, y0)[—1%" = —R(x0, 40)1Q7 (0, Yo; 91, - - - gi-1)] (5.2)

Here the Q7 are the polynomials described in Proposition 2.2.8 and g; are

used to denote g;(xo,yo) for 1 <j<i—1.

Taking € > 0 sufficiently small one has g=F : B,(0,¢) — V,. and
viewing F : Uy X Vi — Zyn one has F(zo + A, g=*(z0,y0; A)) = O(A?), i.e.
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there exists M > 0 so that
| (o + A, 9= (w0, 503 M) 5, < MIIAIY, (5.3)
with
v
M = M,8e((r = 0)/(20) (1+ (9l(o — o/(20)) )

If, DID}F @ Ul x Vi — > (X < Y§ Z57) (alternatively, as in
(F.SW1) we can take Qp(s) < Crps™®) and Qr(s) < Crs™? then, provided
q > (a+ B)k, we can use (5.2) to define

gi(wo, yo) € Sym, (X, Yy~ @)
so that
Hj:(xo + A, g% (w0, yo; A))Hzg < MHAHZ(g/ (5.4)
with ¢ < q— (a+ 0).

Finally, if we have R (or an appropriate generalization, e.g. (F.A2)),
defined on a larger set of (x,y), including (x,y) for which F(x,y) # 0, provided
we still have (4.28) whenever (xo,yo) s such that F(xg,yo) = 0, (5.2) can still

be used to define polynomials g=F(x,y; A) with (5.3) holding for every (xo, yo)
is such that F(xo,y0) = 0.

Remark 5.0.13. To determine (5.1) using the recurrence formulas in (5.2)
we need to incur some loss of scale when applying R. Furthermore, we need
to do this without going below o’. To this end, choose intermediate scales o;

and T; with

00 <o, <Tp<0Op_ 1< - <Tp<op<m<o<l
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by taking o, — opy1 = (0 — 0')/k and 1,41 = (Ops1 + 0n)/2. Given the form

of the QF, we can view it as follows
QF 1 (Xo X Yy) X Yy, X - XYy | — Z,
Taking R : Z,, — Y,, we can thus apply (5.2) and obtain
9i(o, yo) € Sym, (X, Ys,)
for 1 <i <k. Once the g;(xg,yo) are defined, using the inclusion of Y,, into

Y, gives us (5.1).

Proof of Theorem 5.0.12

Applying Corollary 2.2.7 note that the composition
D2f<x07 ?JO)[R(%; yO)] $ Ly — Ly

is the identity (or rather the inclusion of Z, into Z,/). Using D'[FoG| to

represent D' [F(a:o + A, =% (20, yo; A))} for 0 < i < k we have,

A=0’
D' [FoG] = DyF (0, 90)[gi (0, y0)] + Q7 (0, Y05 91, - - - gi—1) =0

Applying Taylor’s Theorem with integral remainder (see e.g. Theorem 6 in
[Nel69]) we obtains (5.3). The form of M follows from the form of the integral

remainder and Proposition 2.2.5.

The generalizations to XJ x Yy and to arbitrary sets of (z,y) are

straightforward. 0
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In Section 6.2 and 7.2 we will use the polynomial approximate solutions
obtained in Theorem 5.0.12 with either of the Whitney Verification Lemmas
(Lemma 3.1.10 or Lemma 3.2.6) to establish the Whitney differentiability of
the implicit function. Anticipating applying Lemma 3.1.10 later, we now es-

tablish the following:

Proposition 5.0.14. If R satisfies Hypothesis (F.W2) and (F.W}), then
gi(z,y) satisfies (3.10) in the Whitney Verification Lemma I (Lemma 3.1.10),
i.€.

gir1(2,y) = WD, (gi(z,y)) + WD, (g:(x, y))[g1(z, y)]

Proof. To prove g;(x,y) satisfy (3.10), we proceed by induction on 7. Although
(3.10) is only taken 0 < ¢ < k, with go(x,y) = y note that WD, (go(x,y)) = 0
and WD, (go(x,y)) = Id so in fact (3.10) also holds for i = 0 and we use this

as the base case for our induction.

Inductively assume that (3.10) holds for all i < n —1 < k. Using

Hypotheses (F.W2), (F.W4) and Proposition 2.2.8, note that for (z,y) with
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F(z,y) = 0, suppressing (z,y) for compactness of notation, we have

WD,.(gn) + WDy(9n)[g91] = —WD.(R[Q}]) — WD, (R[Q;,])[91]
= —(WD,R)[Q}] - WD,R)Q5 . 1] — RIWD,Q;, + WD, Q; [g1]
=-R { D1DyFlgn] + D3F g1, gnl+

WD,QF +V,QF - WD,g1,..., WD.gn 1)+

WD, Q% [g1] + ViQF - WDyg1, ..., WD, g,-1)[01] }
- R [ D\DyFlga] + DiFlar, gu)+

WD.QL + WD, Q% g1 + ViQE - (92, .., 9n) }

= _R[Qfﬂ] = Gn+1
This completes the induction. O

Theorem 5.0.15. (Uniqueness of polynomial approximate solutions)
Let F as in (F0) satisfying Hypotheses (F.A0) and (F.P1) for some v > 1 with
kE<~y<k+1. Choose 0 <o" <o <o <1. Given any (xo,yo) satisfying

(F.PU) with F(zo,y0) = 0 and
9i(zo,yo) € Sym,(X,,Y,) for 1<i<k
such that for all A € B,(0,¢) one has (5.3) then the g; must satisfy
9i(20, y0) + Lo, %0)[Q7 (0, y0; 91, - - -, gi-1)] = 0 (5.5)

where the Q7 are polynomial as described in Proposition 2.2.8 and g; are used

to denote gj(xo,yo) for 1 <j<i—1.
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Furthermore, if F also satisfies (F.P2) then the g;(zo,vo) are unique
and hence have the same form as described in (5.2) of Theorem 5.0.12.

Finally, as in Theorem 5.0.12, if DiD}F : U§ x Vi — >, (X{ x
Y Z8%) (or Qp(s) < Crs™®) and Qp(s) < Cps™P* then, provided q > (o +
Bx)k, (5.5) also holds in X{ x Y.

Proof. Equation (5.5), along with the X{xY{ case, follows directly by applying
L to (2.26).

To demonstrate that (5.5) implies (5.2), note that up to loss of scale,
if R[v] = w then v = AyF[R[v]] = AyF[w]. Hence L{v] = L[AyFlw]] = w, i.e.
R[v] = L[v], so (5.5) and (5.2) are equivalent. O

Remark 5.0.16. (Formal Power Series “Solutions”)

To obtain a formal power series solution around (xo,yo) in the analytic setting,
it is sufficient to have condition (F.P1) for all v > 0. Then, for an infinite
choice of decreasing scales, (5.2) can be used to define the coefficients of a

formal power series g=*° (see Definition 2.3.1) which formally solves
Flx+ A, g=®(A) =0 (5.6)

i.e. for any k < v < k+1 the truncated power series (i.e. polynomial) gS=F(A)

solve (5.6) to order .

Obtaining a FPS in X{ x Yy is generally not possible due to the fact

that each use of (5.2) requires a loose of fized amount in the q scale.
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Finally, one generally cannot establish anything about the convergence
of the FPS (especially since determining the coefficients of g=* requires an

infinite choice of decreasing scales).
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Chapter 6

Solutions in Analytic Spaces

We now turn from the development of (polynomial, formal power se-
ries) approximate solutions to F(z, g(x)) = 0 around F(z¢,yo) = 0 to estab-
lishing exact solutions. To show the existence of such an implicit function
g defined for x € C near xy, we establish (in Theorem 6.1.1) that for any y
with F(z,y) sufficiently small (in appropriate norm) there existence y., sat-
isfying F(x,yo) = 0. Theorem 6.1.1 is our “constructive” theorem and, in
some sense, it is the key to everything. The basic idea is to balance the rapid
convergence of our Newton like iteration scheme against the domain loss at
each stage of the iteration in such a way to maintain control throughout this
process and obtain convergence. Using this theorem in conjunction with the
continuity of F it is a simple matter to build the implicit function ¢ from

individual solutions y. (see Corollary 6.1.2).

In Chapter 7 we use the analytic smoothing discussed in Section 4.1 to

extend the results of this chapter to the smooth case (i.e. X{ x Y{).
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6.1 Existence in analytic space via a modified Newton
method

Theorem 6.1.1. Given F as in (F0) satisfying Hypothesis (F.A0),(F.A1) and
(F.A2), there exists positive constants 6 and N, depending only on Qq, Qg,

Q4 and T, such that for any 0 <7 <7 <1 and (z,y) € Cr» X Vo with
[F (2, 9)llz, < 0min(L, dist(y, V7)) (6.1)
there exists a Yoo = Yoo(T,Yy) € Vy /2 with

F@ye) =0 and |y —yxlly, ,, < NIF(z,9)ll4, (6.2)

Moreover:

(A) Writing Qg(s) = Co¥q(s), Qr(s) = CrYg(s) and Qa(s) = Ca¥a(s),
where Cq,Cr,Ca are constants and Vg, Vg, U, : (0,1] — [1,00) are
functions which “carry the shape” of Qq, g, Qa, the constants § and

N can be chosen as follows

1
o= M, )
*Crmax(CoC2, Cy) (63)
N = MNCR IIlaX(CQC%, CA) (64)

where Ms and My are constants which depend only on Vo, Vi and
V4 and 7. Furthermore, choosing Ms sufficiently small, one can make

MsMy = NO arbitrarily small.
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(B) If Qq(s) < Cos™, Qr(s) < Crs™ and Qa(s) < Cus™, as in (F.S1)
and (F.S2), then the constants § and N can be chosen as follows

Tmax(a+2ﬂ,’y)
Ms 5
max(CoC%, Ca)
N = MyCgrr ™" (6.6)

5= (6.5)

where My and My are constants which depend only on o, (B and 7.

Furthermore, for anyn > 0, Ms can be chosen so that N§ < nTo+?.

A useful application of this point-wise existence is the following:

Corollary 6.1.2. Given F as in (F0) satisfying Hypothesis (F.A0),(F.A1)
and (F.A2), for any (Z,y) € Crr x Vo with F(Z,y) = 0, there exists a positive

constant € and a function
g:CoNBy(Z,e) = Vipo

with

F(z,g(x)) =0 (6.7)

Proof. Note for y = y fixed, the RHS of (6.1) is a constant. By continuity of
F:UpxVy — Z for0 <7 <7 <1,since F(z,y) = 0 there exists a constant
e > 0 so that, for x € B./(Z,¢) condition (6.1) is satisfied. Applying Theorem
6.1.1 to the approximate solution (z,y) with « € C, we get a yo € Y; /o with
F(2,Yso(x,7)) = 0. Define g(x) = yoo. O
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Remark 6.1.3. In the proof of Theorem 6.1.1, the convergence of sequence y,
obtained from the modified Newton method is uniform in ||F(x,y)||,. Further-
more, all the estimates that appear in the proof of Theorem 6.1.1 are uniform

in x and only require x € C in order that the right inverse R to exist.

Remark 6.1.3 gives us the following corollary:

Corollary 6.1.4. If, for any 0 < o < o’ <1, the functions F : Uy X Vy — Z,
and R : Cpr X Vo — L(Zy,Y,) are uniformly continuous then the implicit
function

g:CoNBy(Z,e) = Vypo

obtained in Corollary 6.1.2 is uniformly continuous.

Proof. If F and R are uniformly continuous then the Newton map defined by

N(f)(x) = f(z) = Rz, f(2))[F(z, f(z))]

maps any uniformly continuous function f : CNB.(Z,€) — V. to a uniformly
continuous function N(f) : C N By (z,e) = Vyfor 0 <o <o’ <7/ <1. In
light of Remark 6.1.3, since || F(z,y)||, < € viewing the sequence y, as a
sequence of functions g,(z) with go(x) = ¢ we have a uniformly convergent
sequence of uniformly continuous functions and thus the limit g(x) = go(2)

will be uniformly continuous. ]

Remark 6.1.5. The choice of the T/2 scale is arbitrary. It is done primarily

to keep motation clean (it also is convenient for generating approrimations in
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the smooth case). By rescaling, or choosing different scales in the proof of
Theorem 6.1.1, one can obtain Yoo € Yin for any 0 < 7" <7 < 7 < 1. The

trade-off for choosing ™" > 7/2 is the corresponding § is smaller.

Remark 6.1.6. Extension (A) of Theorem 6.1.1 is useful for KAM theory for
computing the measure of the KAM tori. Informally, the functions Qg and
Q4 and the set C C X are related to the choice of Diophantine conditions used
for the frequency vectors (see for example (8.10) in Section 8.5). One wants
to understand how scaling the Diophantine conditions to increase the size of C
(which in turn increases Qg and Q4) effects N and, in particular, 6 — which
corresponds to the size of the perturbations considered. In [P6s82], while using
very different methods, Poschel employs this idea of trading the size of the
perturbation for the size of the Cantor set and obtains sharp estimates on the

measure of KAM tori. Also see [Nei81]

Remark 6.1.7. Extension (B) of Theorem 6.1.1 reflects the growth conditions
originally in [Zeh75]. As in [Zeh15], to establish the smooth (i.e. X{ x Y{)
existences in Theorem 7.1.1 we repeatedly apply Theorem 6.1.1 to generate a
sequence y, € V;, with 7, = (2"T)~ . The comparison of Yns1 to y, uses
(6.2), so at each step extension (B) gives us 6,N, < n2"+% In Theorem
6.1.1, this is combined with a certain smoothing of x € X{ to guarantee (using

Definition 4.1.4) the sequence y, converges to some Yoo in Yoq_(q*Jrﬂ),

It is possible to establish smooth (i.e. X{ x Yy ) existence results under

what could be slightly more general conditions by tracking the Vq(€) functions
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(see Definition 4.2.5) arising in Qq, Qg and Q4 and requiring a certain combi-
nation not exceed Ce=* for some a. Howewver, this condition is overly awkward

and is left to Question 4 in Appendiz A.

Remark 6.1.8. Section 6.3 addresses the question of uniqueness of Yo (€S-

pecially uniqueness for different y ).

Proof of Theorem 6.1.1

Let F as in (F0) satisfying Hypothesis (F.A0),(F.A1) and (F.A2) be
given. The solution Yso = Yoo (,y) to F(, yso) = 0 is constructed by establish-
ing the convergence of a “modified” Newton sequence {y, }, defined inductively

using the recurrence

Yn+1 = Yn — B, yn)[F (2, yn)] (6.8)

First, we develop “a priori” estimates for sequences satisfying (6.8). As
discussed in Section 4.2 (see Remark 4.2.17) the definition of the Brjuno-
Riissmann condition is motivated primarily by these estimates. The sec-
ond step of our proof is to use these “a priori” estimates and show that,
provided | F(z,y)|, is sufficiently small, taking yo = y € V; and using
(6.8), the sequence {y,}>, not only remains in V4 (in fact |y, — y||YT/2 <
N||F(z,y)||l, ) but in fact converges to some yo, in V5 with F(z,9s) = 0

(and [|yoe = ylly, , < NIF(@,9)ll,)-
Given y,, and y,,1 satisfying (6.8), we have that F : U, x V, — Z,

and R : C, x V, — L(Z,,Yy) for 0 < o' <o <1, ify, € V, then one must
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consider R(z,y,)[F(x,y,)], and thus y,,1, in Y, for 0 < o,41 <o, < 1.

Ont1

By Proposition 4.2.2, we can use the same sequence {4, }52, for con-
dition (4.9) in the definition for the Brjuno-Riissmann conditions for g, Qg
and Q4. Furthermore, by Proposition 4.2.4 one can assume » - 0, < (7/4).

Define o, by

Op =T — 2 (Zn: 57;_1> (69)

Let 7,, = 0,, — 0,, and note
(T/2) < <Op1 <Tp<0op <+ <0g=T
With these scales, we will consider
Un €Yy, Flx,yn) € Z,,, and R(x,y,)[F(x,yn)] € Y,, 25,

To establish a priori bounds on y,,, we establish estimates of ||y,+1 — ynll. -
On+1

Since
Yn+1 — Yn = —R(I, yn)[‘/f(l" yn)]

using (4.32) it suffices to estimate || F (2, y,)| y. . Note that one has the iden-

tity

.’F(I, yn+1> :f(:ll, yn+1) - '7:<x7yn> - D2f(x> yn)[ynJrl - yn] (6'10)

-~

(@)
+ f(l‘, yn) + D2F<x7 yn)[yn—‘rl - yn]

. J
v~

(i2)
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We note (i) has the form of the quadratic remainder ) defined in (4.30) and

since Yn11 — Yn = —R(x,yn)|[F(z,yn)], applying (4.31) and (4.32) we get

H (2) HZTn+1 = HQ(ma Yn+1, yn)HZUn+1*5n+1 (611)
< Qo(Gur) IRz, ya) [F (2, ya)llly,,
< Qo(Gnt1) (QR(0:) 1F (2, ya) 3.,
Similarly, since yn41 — yn = —R(z, yn)[F (2, y,)] using (4.33) we get
i)l = 7 y) — DaF () (R y) ), L, (6.12)

< Qa8+ 60s) | F (w2

Combining (6.11) and (6.12) yields

||7:(9C>?Jn+1)||z < (QQ((SH-H) (QR(én))z + QA((Sn + 5n+1)) ||]:($, yn)HzZTn

™m+1 N J

=C(n)

(6.13)

Defining
C(n) = ((6ns1) ()" + Qa(0n + Gny)) (6.14)
and
en = [ F (2, yn)llz,,
estimate (6.13) has the same form as (4.15) in Section 4.2 and, as noted in

Remark 4.2.17, using Proposition 4.2.13 the Brjuno-Riissmann conditions for

Qg, Qi and Q4 guarantee that C(n) as defined in (6.14) will satisfy property
(C1).
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We are now ready to apply our “a priori” estimates to establish that
yn defined inductively by (6.8) not only remains in V;, but in fact converges
in V72 to some ¥, satisfying the desired properties. We begin by determining

N and, more importantly, §.

As noted above, the sequence C'(n) defined in (6.14) satisfies property

(C1), i.e. there is a constant Mo > 1 with
22’("“) log(C(1)) < log(Mc) < oo (6.15)
=0

Since Qg satisfies the Brjuno-Riissmann condition on {4, }, by Remark 4.2.17
the sequence Qr(0,,) will also satisfy (C1). Hence, by Proposition 4.2.14, there

is a constant Rq > 1 so that
Qn(6,) < (Ra)®" (6.16)

Using Mz > 1 and Rq > 1 choose positive constants ¢ and N satisfying
1

5 < 6.17

= 3RoMc (6.17)
3R M,

N = ‘; < (6.18)

Given (z,y) € C, x V, satisfying (6.1), i.e.
1F (2, 9)ll 2, < dmin(1, dist(y, V)

define yo = y € V,,. Provided y,, € V,,, use (6.8) to inductively define y,, 41
in terms of y,. One can apply the a priori estimate (6.13) and Lemma 4.2.11,

with €, = || F (2, yn)| 5., to get

Hf(xvyn)”Zm = €p, S <€OMC)2n (619)
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Applying (4.32) t0 ynt+1—Yn = —R(z,y,)[F(x, y,)], and combining with (6.19)
and (6.16) one has

Hyn-i-l - ynHYC’n-H S (GORQMC)Zn (620)

Note, since ¢gRoMc < 1/3, we have

n n 2t—1
Z(ﬁoRQMC)T < eoRoMc (Z (%) ) < &N

i=0 Ni=0 )
<8/2
and combining this with (6.20) we get
Z [Yit1 — yi”ygi+1 < eV (6.21)
i=0
Using a telescoping series, (6.21) gives us
[Yyni1 = wolly, < NIF 9z, (6.22)

On+1

Also, since € < ddist(y, V), from (6.21) we get

L : c
91 = ol < 5 minL dist(y, V) (6:23)

SO Yn+1 € V,, ., and therefore y, can be defined inductively for all n.

n+1
To establish the convergence of {y,} in Y{;/2), using the inclusion of

Y, .. = Y(r/2), inequality (6.21) gives

o0
Z Y11 = willy,, ,, < €N
i=0

so the sequence y, is Cauchy in Y{;/2) and hence converges to some y,. Using

the inclusion and taking n — oo in (6.22) and (6.23) we get
Yoo = lly,, ., < NIF (@, 9)ll,
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SO Yoo satisfies inequality (6.2), and

I . c
Hyoo - yHY(T/2> < §m1n<17d18t<y7 V;-/Q))

SO Yoo € V2. Finally, by Hypothesis (F.A0), F : U,/ X V; /2 — Zj is continu-

ous and hence
17l = im [F ol < Im e, =0 (6:24)
and thus F(x,ys) = 0, which is the other half of (6.2).
To establish extension (A), writing
Qq(s) = CoWq(s)
Qr(s) = CrVg(s)

and

QA(S) = CA\IJA<8)

the functions Vg, Wi and ¥, will satisfy the Brjuno-Riissmann condition so

on some {6, }2°, the sequence
C*(n) = (PQ(bni1) (r(6n))" + Wa(dn + 0011)) (6.25)
will satisfy property (C1), i.e. there is a constant M¢, > 1 such that
i 2D 1og(C* (1)) < log(Me,) < 0o (6.26)
=0
Note that C(n) < max(CqC%,C4)C*(n) so the constant

MC = max(C’QC’é, CA)MC* (627)
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will satisfy (6.15).

We also note that since ¥y satisfies the Brjuno-Riissmann condition on

{0,}5%,, there is a constant Ry > 1 with
Up(0,) < (Re)* (6.28)
and, since Cr > 1, we have Qg(d,) < (CrRy)*" so the constant
Rq = CrRy (6.29)

will satisfy (6.16). Substituting (6.27), (6.29) into (6.17), (6.18) and taking

M; < 3R\p1]\/[C*
(A).

and M; = %, we get (6.3), (6.4). This proves extension

To establish extension (B), we will use the power growth estimates of
Qg, Qg, Q4 to improve estimates (6.19), (6.20) and (6.21). Note that with
Qo(s) < Cos™, Qg(s) < Crs™ and Qu(s) < Cus™7, taking 6, = 27"(7/4)

we can estimate C'(n), as defined in (6.14), by

C(n) < 2°CoC%(7/4)~209met20) L ¢ (1/4)772™ (6.30)
A maX(CQ C}zg, CA) Qmax(oc—l—?ﬂﬁ)
= rmax(a+28,y) —
N -~ :B
=A

for some constant A* > 1 which does not depend on Cg, Cg, C4 or 7 but

only on «, 3, 7. Using A and B, let § and N satisfying

5 1 1 Tmax(oa—i—Zﬁ,'y) 631
< — = .

~ 3AB <3A*B> max(CoC%, Cy) (6:31)
N = (?) Crr™’ (6.32)
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be given. Note that taking My < and My = 3"“% then § and N defined

TAE
in (6.5) and (6.6) will satisfy (6.31) and (6.32). Choosing Mj sufficiently small

so that MsMpy < 7, since

~max(a-+26.,7)

C —B <« ot
max(CoC%, Cx) RTO=T

one has 0N < nroth.

Using (6.30) and applying Corollary 4.2.12 as in (4.21) from Example
4.2.16 one has

. (0AB)

H‘F(x>yn)HZTn = €n S (60D(n))2 - AB(n+1)

(6.33)

This improves (6.19). Combining the estimate (which is significantly better

—n -0
Qn(6,) < Cn (2 4T>

than (6.16))

(which is significantly better than (6.16)) with (6.33) we can improve estimate
(6.20) and get

[Ynt1 = tnlly, < (zﬁ RA ) (§> (e0AB)* (6.34)

—_——— —
<1 <1

Similarly, we can improve (6.21) to

> Myt = willy,,,, < «BCrr” <Z(60AB)2”> (6.35)
1=0

1=0

-~

<3/2
and using ¢y < ddist(y, Vf/Q), with ¢ as in (6.31), we again get (6.23) so

Yn+1 € Vo, and the inductive definition of the sequence {y,} can be carried
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out for all n. Using the inclusion of Y,,,, — Y,/ in (6.35) we again have that

i+1

y; is Cauchy in Y7/, and its limit y., satisfies

3B _
o= el < (5 ) Car 1@, (6.30

=N

From (6.23) we again have so y., € V;2 and using the continuity of F(z,-)
we have (6.24) so F(z,ys) = 0. This establishes extension (B) and completes
the proof of Theorem 6.1.1. (|

Remark 6.1.9. In Section 7.1 these results (Theorem 6.1.1) are extended to
the smooth case (i.e. X{ x Yy ) using the analytic smoothing discuss in Section

4.1 (see Theorem 7.1.1).

6.2 Whitney Regularity in analytic spaces

We now establish implicit solutions with Whitney regularity.

Theorem 6.2.1. Let F satisfying Hypothesis (F.W1), (F.W2) and (F.W3).
For any (z,y) € U, x V, with F(z,y) = 0, there ezists

€>0 and g€ Cyp,(C-NB(Z,€),Y:)2)
with g : C- N B, (z,€) — V3 such that F(z,g(x)) = 0.

Proof. As in Corollary 6.1.2, the proof is simply an application of Theorem
6.1.1. However, we twist around the role played by x € X,. Specifically,

using the notation CY,,,(A,Y") described in Definition 3.1.1, for fixed v > 1,
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k <~y <k+1,given any (z,y) € C, x V; satisfying F(z,y) = 0, fix € > 0 and

define the one parameter families of Banach spaces
X, ={0}, Y,= C{/yVht<C N Bx,(7,€),Y;), Z,= CI’/YVht<C N Bx, (7€), Z,)

for 0 < o < 7 < 1. Note that in our definitions of X,, Y, and Z,, we have

made X, trivial and placed the x € C, N X, dependence as part of Y, and Z,.

Let x =0 € X, y € Y, with y(x) = ¢=F(z,5;2 — T) and define the
subsets

UO = {0} - X07 VO = BYO(S’7€) - Y0

For 0 < ¢’ <o < 7, define z(z) = F(z,y(x)) and note that by Theorem

3.1.8 for y € V,, using (F.W1) we get z € Z,,. Furthermore, (3.8) gives us
F:U, xV, = Zy

is continuous for every 0 < ¢’ < o < 7, i.e. F satisfies Hypothesis (F.A0).

Furthermore, note that by (3.9) F is differentiable in Y with
DoF(x, y)[VI(x) = Do (2, y (x))[v(2)]

and with

16 y1,¥2)llz,, < Qalo —o)llyr = yels,

for Q(X; yi, Y2) = ]F(Xa Y1) - ]F(X7 Y2) - DQF(Xa YQ)[Yl - Y2] and QQ = MQp.
Thus, F satisfies (F.A1).
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In a similar manner, for 0 < ¢’ < o < 7, giveny € V, and v € Z,,
using (F.W2) we can define R(x;y)[z](z) = R(z,y(x))[z(z)] and by Theorem
3.1.8 we get

R:U, xV, = L(Z,,Y,)

Note that using (4.35) we get
IR, y)Vlly,, < Qrlo =)Vl
with Qr = MQg. Furthermore, from (4.36) we get
I [Id = DoF(x, y)R(x, y)][V] [z, < Qalo = )F¥)llz, [V,

with Q, = M4 and thus R satisfies (F.A2).

In order to apply Theorem 6.1.1, all that remains is to show
IF(0,9)lz, < ddist(y, V7))

Take § = ddist(y, V¢ /2) for a fixed € for and note as € decreases so does

ddist(y, V¢ ), hence it is sufficient if we can establish
IF(0,9)]l, <0 (6.37)

for € sufficiently small.

Note that, for 0 < i < k, WD:F(0,y)(z) = 0 and thus, with € suffi-
ciently small we can ensure [WD:F(0,¥)(x)| < 6 for all z € C.N By, (z,€) and
thus (6.37) holds.
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Applying of Theorem 6.1.1, we obtain y., with F(X,y.) = 0. Unrolling
this, we have F(X,yx)(2) = F(2,y(z)) = 0 for all z € C. N Bx,(Z,€) and

hence g = yo is our desired CY,,, implicit function.

0

Remark 6.2.2. Note that if one replaces § with g=*(Z,; x — &) in Corollary
6.1.2 and restricts € to the (possibly smaller) €, the iterations of Theorem
6.1.1 to obtain in Corollary 6.1.2 actually coincide with the iterations y, of
Theorem 6.1.1 used to obtain Theorem 6.2.1. Hence, the function y obtained

in Theorem 6.2.1 and g from Corollary 6.1.2 coincide.

Given that the zeros of F are isolated (that is F has some local unique-
ness in y for solutions F(x,y) = 0) we have the following alternative ap-
proach to establish the Whitney regularity of any function g which solves
F(z,g(x)) = 0 by explicitly verify the estimates for the Whitney Regularity

of g:

Theorem 6.2.3. Let F be given as in (F0) satisfying the additional Hypothe-
ses (F.A0),(F.A1) and (F.A2).

Assume F has local uniqueness in y for solutions F(x,y) = 0. If F
also satisfies (F.W1) and (F.W2) for some v > 1, k <y <k+ 1, and either:

(a) C has the v density property described in Definition 3.2.5, or

(b) R satisfies (F.W4)
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then given any function
g:Cr N BT/(ZE, E) — Vi

with F(x,g(z)) = 0 is C},,, with the k-jet of g having the same form as
the coefficients g;(xq, g(x0)) of the polynomial approzimate solutions defined in

(5.2) of Theorem 5.0.12.

Proof. Fix x and using (Z,y) = (x,¢(z)) apply Theorem 5.0.12 to construct
g=F(x, g(x);6). For A sufficiently small, taking o < 7/2 by Theorem 5.0.12

[F(@+ A, 9= (@)(2, g(2); D)) 5, < MIAIY_, (6.38)

Provided z + A € C, (6.38) allows us to apply Theorem 6.1.1 and obtain y.
with F(z + A, ys) = 0 and

Hyoo —gogk(x,g(fv);A)‘

L SaNMIATL, (6.39)

With local uniqueness (for example Corollary 6.3.2) since
Flx+Ag(z+A)=0

we have yo, = g(z + A). Substituting this into (6.39) we have

Jote+2) = 6" gt 80,

< nNMJA|, (6.40)
2

If we are in case (a) of the theorem, combining (6.40) with the Whitney
Verification Lemma II (Lemma 3.2.6) gives us that g € C},,,. On the other
hand, given case (b) we can combine (6.40) with the Whitney Verification

Lemma I (Lemma 3.1.10) and again obtain that g € C},,. O
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6.3 Uniqueness in analytic spaces

Now we consider the question of uniqueness for solutions in the analytic

spaces.

Theorem 6.3.1. Let F as in (F0) satisfying all Hypothesis (F.A0), (F.A1)
and (F.AU). There exists constant € > 0 (depending only on 7, Qg and Q)

such that for any y1,y2 € Yz with F(x,y;) = 0, if [[y1 — va2lly, < € then y1 = yo.

Moreover, paralleling (A) and (B) in Theorem 6.1.1 we have:

(A) Writing Qo(s) = Co¥q(s) and Qp(s) = CL¥(s) where Cg,C, are
constants and ¥, ¥y, : (0,1] — [1,00) are functions which “carry the

shape” of Qg, 1y, the constant € can be chosen as follows
1
CoCy,
where M. depends only on Yq and Vi, and 7.

e = M, (6.41)

(B) IfQq(s) < Cos™ and Qp(s) < Crs™? then the constant € can be chosen

as follows
ot

=M,
CoClL
where M, depends only on o and [3*.

€

(6.42)

Proof of Theorem 6.3.1

By Propositions 4.2.2 and 4.2.4 we can assume the Qg and €1, satisfy

the Brjuno-Riissmann condition on {d,} with >~ 6; < 7/3. Set
ohn=T-—3 (Z 51»_1)
i=1
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and note by Remark 4.2.13 the sequence
O(n) = Q1(6,)20(5)
has property (C1) so that one has

> 276 og(C(4)) < log(Mc) < oo
=1

for some Mg > 1. Set

€ = € MC

For any y1,y, € Y: with F(z,y;) = 0 and [[y1 — 2]ly, < e. Using the

left inverse L, note

1 — ?JQHY%+1 < |NL(w, y2) [F (2, 91) — F(2,y2) — DoF (2, 92)[y1 — y2”“yqﬂ7262
< Q)| F (2, 91) — F(@,92) — DaF (2, 2) [y — welll 5,

< Q1(62)(6n) I — vlly,,.

Letting €, = |ly1 — #2lly, note that, applying Lemma 4.2.11, one gets €, <

(e0Mc)*" — 0. Thus [jy1 — 2lly, = 0, ie. y1 = ps.

The proofs of the (A) and (B) are straight forward and left to the

reader. OJ

The following corollary establishes uniqueness for the modified Newton

method used in the proof of Theorem 6.1.1.

Corollary 6.3.2. Let F satisfying the Hypothesis of Theorem 6.1.1 and 6.5.1

be given with N and 0 the constants which arise in Theorem 6.1.1 at the T scale
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and € the constant which arises in Theorem 6.5.1 at the T/2 scale. Provided §

1s taken small enough that

SN < €/3 (6.43)

given any
(z,11), (z,92) € Cr X Vo
satisfying (6.1) with
[ yzHYT, <€/3

then, the solutions y! = ys(z,y1), y> = ys(x,y2) are equal, i.e. the function

ys = (x,y) is locally constant in y.

Proof of Corollary 6.3.2

Let y! = ys(x,y1) and y? = y,(z,y2) be the solutions which arise by

applying Theorem 6.1.1. Note

lys = willy,, < llve —wlly,, + 19 = velly,, + 1 =y, , <e

Y‘r/2
so applying Theorem 6.3.1 we get y! = y2. O
Remark 6.3.3. Note that writing Qg, Qr, Q4 and Qp, as in extension (B) of

Theorem 6.1.1 and Theorem 6.3.1, if 3 > 3* and Mg from Theorem 6.1.1 is

chosen so that

M(; S M€ max(CQCIQ%, CA)
3MyCrCoCy,

then condition (6.43) is satisfied at all scales 0 < 1 < 1.

(6.44)
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Chapter 7

Solutions in Smooth Spaces

We now demonstrate how the quantitative estimates in extension (B)
of Theorem 6.1.1 can be combined with the analytic smoothing discussed in
Section 4.1 to form an iteration scheme which establishes the existence of
solutions in the spaces X{ x Y. Such smoothing was used in [Mos66b, Mos66a]
and [ZehT75] to establish the existence of smooth solutions. The main difference
in our approach is that, rather than developing an implicit function solution
around an analytic solution, we develop our implicit function solution around
any smooth solution, i.e. rather than (z,y) € U, x V, with F(Z,y) = 0 we only
need (z,7) € Uj x Vil with F(z,y) = 0.

7.1 Existence in smooth spaces via analytic smoothing

Combining analytic smoothing with the quantitative estimates in ex-
tension (B) of Theorem 6.1.1, we can apply Theorem 6.1.1 in an iteration

scheme and establish the following;:

Theorem 7.1.1. Given F and X,, Y,, Z, satisfying (F0), (XYZ.51) and
(XYZ.582), assume in addition that F also satisfies Hypotheses (F.S0)-(F.S4).

Then, for any q > max(a+20,7)+q¢*x and (z,7) € Cd x Vil there exists
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positive constants v, 6 and Ty, depending on q, qx, o, B, v and (Z,y), such

that for any (x,y) € (Cd N Bi(z,r)) x Bd(y,r), with
[F (@, y)ll 7 <0 (7.1)

there exists a family Yoo = Yoolz,y,T) € Vbq_ﬁ for Ty, < T < T, with
F(x,Ys) = 0 (here T represents the smoothing taken before applying Theo-
rem 0.1.1 and generating a sequence v, — VYoo IN Yoq_ﬁ). If F(z,y) # 0 we

have

0
P [ —
: (uf(x,wnzg

while if F(x,y) = 0 we have T, = 00, i.e. the family yoo(x,y,T) € Voqfﬁ

1/ max(a+20,7)
) 72

exists for all Ty <'T < 0.

If ¢ > max(a + 28,7) + B + ¢* there exists a positive constant N,
depending on q, q*, o, 3, v and (Z,y), such that, by optimizing the choice of

T, we have Yoo = Yoo (T, y) with

1y = Yoo llya-s < NIIF (2, 9)llya (7.3)

Remark 7.1.2. In Section 7.3 we address the question of uniqueness of Yoo
(especially uniqueness for different y and T').

As with Theorem 6.1.1 and Corollary 6.1.2, we can use Theorem 7.1.1

to obtain the following useful:

Corollary 7.1.3. Given F as in Theorem 7.1.1, for any q > max(« + 23,7)
and (z,7y) € C§ x Vi with F(z,y) = 0, there exists a positive constant € and a

function g : C{ N B(Z,€) — Vbq_(q*Jrﬁ) with F(z, g(x)) = 0.
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Proof. Identical to the proof of Corollary 6.1.2, using Theorem 7.1.1 in place
of Theorem 6.1.1. O

Proof of Theorem 7.1.1

First, we construct suitable choices for r, 6 and Ty. Informally, the
idea is to choose r and ¢ sufficiently small so that for a given (x,y), one can
apply the smoothing S to (z,y) with the smoothing parameter 7" satisfying
1 <Ty <T < Ty and use (zg,y9) = (Srlz], Sr[y]) as the starting point of a
sequence (Z,, y,) which will converge to (x, Yy~ ). We need T', which represents
the initial smoothing, to be sufficiently large so that the U, and V| invariance
gives us (xg,y0) € Up X Vo. In fact, we take T' large enough to ensure that
Yo = Srly] is a bounded distance away from the boundary of Vj, see (7.6).
We also want T' to be large enough so that, as in Remark 4.3.8 we can ensure
that My(q)T 977 is sufficiently small, see (7.9) and (7.10). Finally, T, as
defined in (7.2), is an upper bound on 7" which ensures that one can estimate
(z0,%) € Uy X V, for an analytic o bounded away from 0, in particular o >

T

Choosing r, 0 and Ty: To begin, choose r sufficiently small and T, > 1
sufficiently large to obtain Cy invariance around Z as described in Definition

4.1.17. Without loss of generality, assume

r<d"'/k(q)
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where k(q) is the constant which arises in the analytic smoothing (see Defini-

tion 4.1.9) and d* is any positive constant with
d* < d=min(1,dist(z, US),dist(y, Vy))

Similarly, without loss of generality, assume Tj is sufficiently large so that for

t>T,

I3 -, < (5 ) (7.4

Note that for any y with ||y — ||y, <7 one has

1Sely = 9llly._, < E@lly = Gllya < &

and thus
_ _ . d+d*
1051 - 3l < Il =l + 150 -l < (S55)  (9)
so we have
d—d* . c . c
(U575 ) = die(S0. V) < a5l V) (76)

Hence, with this choice of r and T, given any x with [z — Z[|y, < r and y
with [y — glly, <, for any t > T, both Si[z] and S;[y] remain in Cp and Vj

and S;[y] will remain at least a distance of (d — d*)/2 from the boundary.

To choose ¢ let Mz and My denote the constants in the bounds on o
and N in (6.5) and (6.6) of extension (B) in Theorem 6.1.1 and for o = ¢!
let 07(t) and Nr(t) denote the RHS of (6.5) and (6.6), i.e.

1) =M 7 mexte TR d N = MxCrt? 7.7
t) = t) = t .
T( ) o lllaX(CQCIQ%, CA) an T( ) N-R ( )
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Without loss of generality, assume Mj is sufficiently small so that the n which

arises in extension (B) satisfies

(1— 2—(a+ﬁ))

and hence
- —(i—1)\« d—d
D (i)t < (—4 ) (7.8)
i=1

Again without loss of generality, assume Ty > 1 is sufficiently large that in

addition the Cy invariance and (7.4) above, for ¢t > T}, one has

Mst= 77 < 54 (t) (d ;d*) (7.9)

where

Ms = max (Myk(a)(|2]] g + dist(z, (U§)%)), Ma(q))

Note that combining the smoothing estimate in Hypothesis (F.S4) with (7.9),

for t > T, we have

7SS~ SF @l , <00 (“55) (0

With this Ty we choose

5:@uw<i&§) (7.11)

Construction of y.,: With r, § and Tj chosen as above, we are ready

to begin. Given

(z,y) € (Cg N By(x,7)) x By(y,7)
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satisfying (7.1) choose T' with Ty < T < T, and note from (7.2) we have

) max(a-+24,7)

T,
17l <0 (7

= (7.12)

Define the sequences:
o, = (2"T)"' and z, = Sonr|7]

Note, for T' > T} the invariance property described in Definition 4.1.17 ensures
z, € C,,. Furthermore, by Definition 4.1.4 we have x,, — x in X,. We will
use z, to inductively define a sequence y, € V, with y, — Y in Y, and

We begin the inductive definition of y,, € V,, with yo = Sr[y] € V,,.

Note that (7.11), (7.12) and the smoothing estimate (4.4) give us

||ST}"(:Jc,y)||Zg0 < k(Q)||f($>y)||Zg < or(T) (d_4d*>

Hence, combining with (7.10) and (7.6), we get

|F(Sra, Sy, < IF(Ste, Sry) = SF (.9l + I1SrF @y,

(7.13)
< 6r(T) (d;d*)

< 0p(T) min(1, dist(Sr[y], Vi5))

Y o1

Applying extension (B) of Theorem 6.1.1 to (xo, y0) = (S, STY) € Coy X Vi,

we obtain y; = Yeo(Z0,Y0) € Vi, with F(xg,y1) = 0 and

lys = wolly, < Nr(T)|F (o g0)ll, <n(T)* (7.14)
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Combining this with (7.8) and (7.5) we have:

lyr = Flly, < llyo = Flly, + v = wolly,, (7.15)
d-+ d* d— d* d—d*
< — A _
<(555) - (5) - (%)
and hence
d—d* . :
< dist(yy, Vi) < dist(y, V) (7.16)

The inductive step: Inductively, assume that y, € Y, has been

defined for n < m with F(z,_1,y,) = 0 and, as in (7.14),

19n = vn-ally,, < No@"D)[F (201, Yn-1) (7.17)

n(g(nfl)T)f(aW)

Iy,

IN

As in (7.15) above, we can take a telescoping sequence and combine (7.17)

and (7.8), and since T > 1, we obtain

19 =Gy, < llyo = Flly, + D llyi — wially,, (7.18)
i=1

d+d* = —(1— e
(#20) S
i=1

<(%57)+(57) = (57

and thus, as in (7.16), we have

d—d*

< dist(Yim, V) < dist(ym, VS ) (7.19)

T(m+1)
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Furthermore, using (4.43), (4.5) and (7.9), we have

1F @ )l 7, = 1 F (@ Ym) — F (@1, Ym)l 5, (7.20)

< Ms||am — Im—IHXUm
< Msk(q)(2"T) ™| xo

< (Mak() (7] g + dist(z, (U$)%)) ) (2°T) "

N J/
-

<Ms

< (27T (d —4d*)

< op(2MT)dist (Y, ViE )

Om+1

Applying Theorem 6.1.1 to (2, Ym) € Co,, X V. we get ymi1 € Vi, with

(m+1)

F(Tm, Ym+1) = 0 and

||ym+1 - ymHY S MN(Q(m+1)T)B||f(mmv ym)HZ

T (m+1) am

IN

n(ng)—(a-h@)

This completes the verification of the inductive hypothesis, so y,, is defined for

all n.

Convergence of y,: Note that

”yn - ynfluyo S Hyn - ynleygn (721)

< Nr@ T F@n 1),

S NT(QHT)Mg".Tn,l — .%n,QHXU(n_l)

< (MyCRT” My(g) ]y ) 274"
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from which one can conclude that ¥, — Yo in Yy. Note that from (7.18), we

can conclude that y,, € Vj and using continuity of F one has that

f(x>yoo) = lim f‘(mmynJrl) =0

n—oo

Finally, note that from (7.21) we in fact have yo, € Y@,

Establishing (7.3): Assume that ¢ > max(a+203,7)+ 5. Note that if
| F(z,9)l ze = 0, rather than constructing ys, as above we can simply choose
Yoo = y and trivially satisfy (7.3). On the other hand, if || F(z,y)| ;2 # 0, we

can (optimally) choose T' = T,. Note from (7.2) we obtain

HF(J;? y)”zg

—q —(q-8) —max(a+28yy) — 1+ 7774
T < T < T T 5T5nax(a+257"/)

(7.22)

Note that using the first half of (7.20) in the first half of (7.17) and simplifying

we get

o — yn—lHYUn < T‘(q‘ﬁ)(MNC’RM52‘1)2‘(‘1‘5)” (7.23)

combining this with (7.22) and substituting into (7.23) we get

1yoo = Yllya-s < llyo = yllyas + D llys = viilly,,
i=1

< T~k(@)yllys + (Z (MyCrMs27)2” w”’) T

< NIIF (1)l

with |
N F@)yllys + 5, (MyCpM;29)2- (=0
= 5T(;nax(a+2,8,'y)
which establishes (7.3) and completes the proof of Theorem 7.1.1. 0
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7.2 Whitney regularity in smooth spaces

As in Section 6.2, we have two approaches to obtain the Whitney reg-

ularity of the implicit function.

Theorem 7.2.1. Giwven F and X,, Y,, Z, satisfying (F0), (XYZ.S1) and
(XYZ.52), assume in addition that F also satisfies Hypotheses (F.S0)-(F.S4).

If F also satisfies (F.SW1) and (F.SW2) then, for any q > max(a +
206,7) + g% and (Z,y) € C§ x Vi with F(z,y) = 0, there exists
e>0 and g€ C(CAN B, &), Vi)
with g : C¢N BY(z,€) — V™" such that F(z,g(x)) = 0.
Proof. As in Theorem 6.2.1, given any (z,y) € Cd x Vi satistying F(z,7) = 0,
for fixed v > 1, k <y < k+1, and € > 0, we twist around the role played by

xr € X{. Letting
A, =CN Bx,(z,6) N X,

we define the one parameter families of Banach spaces
Xcr - {0}7 YO’ - OI’/YVht<Aa7 YO’/2>7 Zcr - C{j{/ht(Aaa ZO'/2>

for 0 < o < 1. Using the analytic smoothing S; in X, Y, and Z, and the C,
invariance of smoothing in X, with r and Tj the corresponding constants for
invariance around x € Cy, provided € < r we can define analytic smoothing Y,

and Z, via:
(Selg)) (@) = Sily(Senw)]  and  (Si[2]) () = Si[2(Spamy@)]
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Note that since X = {0}, it trivially has analytic smoothing. With this
smoothing we can apply Theorem 7.1.1 and, as in Theorem 6.2.1, provided

€ is sufficiently small the result follows. O

As in Theorem 6.2.3, provided the zeros of F are isolated we have the
following alternative approach is to establish the Whitney regularity of any
function ¢ which solves F(z,g(x)) = 0 by explicitly verify the estimates for

the Whitney Regularity of g:

Theorem 7.2.2. Given F and X,, Y,, Z, satisfying (F0), (XYZ.51) and
(XYZ.582), assume in addition that F also satisfies Hypotheses (F.S0)-(F.S4).

Assume F has local uniqueness in y for solutions F(x,y) = 0 (for

example, if F satisfies (F.SU)). If F also satisfies (F.SW1) and (F.SW2) for

somey >1, k<v<k+1, and either:
(a) C has the v density property described in Definition 3.2.5, or
(b) R satisfies (F.SW4)
then given any function
g:CiNB(z,e) = Vi’

with F(x,g(z)) = 0 is C,p,, with with F(z,g(x)) = 0 is C},,, with the k-jet
of g having the same form as the coefficients g;(xo, (o)) of the polynomial

approzimate solutions defined in (5.2) of Theorem 5.0.12.
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Proof. The bounds on Qp, Qg and Q4 from (F.SW1) and (F.SW2) allow one
to apply Theorem 5.0.12 in X{ x Y{!. Follow the proof of Theorem 6.2.3 using

X{ x Yy in place of X, x Y, the result follows. O

7.3 Uniqueness in smooth spaces

Now we consider the question of uniqueness for solutions in the smooth

spaces.

Theorem 7.3.1. Let F satisfying all the Hypothesis for Theorem 7.1.1 be

given and assume that F satisfies Hypothesis (F2**) with Qp(s) < Cps™".

For any q > max(a + 20,7), (Z,7) € CI x V! there exists positive

constants r (as in Theorem 7.1.1) and € such that given
(@, 91), (2,92) € (Cg N By(z,7)) x By(y,7)

with «7:(%%) =0, if H?Jl - yz”yoq < € then y; = y.

To prove Theorem 7.3.1, given (x,y) € Uf x V§ with F(z,y) = 0,
we analytically approximate (x,y) by a sequence (zn,y,) € Uy, x V, with
F(zn,yn) = 0. This is done by utilizing the sequences z,, v, generated in
Theorem 7.1.1. Note that with these sequences one has F(x,, yn+1) = 0 with
T, — x and Yy, — Yoo. Furthermore, using Lemma 7.3.2 the uniqueness of
Theorem 6.3.1 establishes that y,, = y. Thus, by re-index the sequence y,,, we

get (T, yn) € Uy, XV, with z, — x in X{, y, — y in Yy and F(x,,y,) = 0.

It is worthwhile to note that if one were to simply apply analytic

smoothing to both z and y, one can easily produce sequences (z,,y,) €
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U,, XV, with z, — x in X{, y, — vy in Y. However, with this approach one

no longer necessarily has that F(z,,y,) = 0.

Lemma 7.3.2. Let F satisfy all the Hypotheses for Theorem 7.1.1 as well as
(F.SU).

For any ¢ > max(a+20,7) +qx and (x,y) € C§ x V! with F(x,y) =0
there exists positive constant T* such that for all T > T* > Ty, the sequence
Yn € V,, generated in the inductive argument of the proof of Theorem 7.1.1

converges to y in Yy, i.e. Yp — Yoo(x,y, T) =y in Yp.

Thus, re-indexing y,,, we can approzimate F(x,y) = 0 via F(x,, y,) = 0

with , — x i Xy and y, — y in Y.

Proof. Given (x,y) with F(z,y) = 0, let 7, § and Ty > 1 be as in Theorem
7.1.1 where we take = x and y = y. Without loss of generality, assume
that the constant M; in the definition of dr(t) given in (7.7) satisfies (6.44) in

Remark 6.3.3.

Let 2 and y!" denote the sequences constructed in Theorem 7.1.1 start-
ing at 27 = Sr[z] and y&' = Srly] and converging to z and Yo, = Yoo(z,y,T)

in Xy and Yj respectively. Note that
zl = Sonp[]

and set

yg = Sonp [y]
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Define
M.t~ (@57
CoCrL

as in extension (B) of Theorem 6.3.1 and take T > Tj such that for all ¢t > T**

er(t) =

d—d*
and
k@)t lyllye < er(2t)/6 (7.25)
Note that for T > T* by (7.25)
-T -T n+1
Hyn+1 —Yn Hy(2n+1T)71 S €T<2 T)/6 (726)
We will iteratively establish
T T T T n+1
om —vally, <1on —va Hymﬂw1 < ep(271T) /3 (7.27)

Note for n = 0 we have yl = g1 and thus (7.27) is trivially true.

Inductively assume that (7.27) holds for all m < n. Using (4.44) and
(7.9) note

d—d*
|8, -, < 0r ) (S50

so applying Theorem 6.1.1 we obtain a solution which, in light of Corollary
6.3.2 and (7.27), is unique and hence equal to y,,+1. By (6.2) and (7.24) we

get

o2l S er@ D)0
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and combining this with (7.26) we have

Hgg;ﬂ - yrjrﬂz+1Hy(2m+lT)71 < ng;z-i-l - gz;LHy(2m+lT)71 + H?Jﬁ - yg@"‘lHY@mHT)A

< er(2mTT)/3

which inductively establishes (7.27) for m + 1 and hence (7.27) holds for all

n > 0. Since yI' — Yoo in Yy and 3 — y in Yy, using (7.27) we get Yoo = 3. [

Proof of Theorem 7.3.1

Let , 6 and Ty > 1 be as in Theorem 7.1.1 and assume that § is
sufficiently small so that the constant M;s in Extension (B) of Theorem 6.1.1
appearing in the induction argument in the proof of Theorem 7.1.1 satisfies
(6.44) and thus Remark 6.3.3 applies. Let 7™ to be the maximum 7™ arising
in Lemma 7.3.2 for y; and y; and € be the epsilon which appears in Corollary

6.3.2 for 7/ = 1/27*. Taking € = €/(3k(q)) note

STy — ST?J2||Y( < E(@)llyr = vallye < €/3

T)—1 —

so with ¥} = 9.0 (S, Sry1) and y? = Yoo (S, STY2) denoting the solutions
which arise in at the first iteration of the induction in the proof of Theorem
7.1.1 (that is y{ and y? are the first solutions obtained in the proof of Theorem
7.1.1 by the application of Theorem 6.1.1) applying Corollary 6.3.2 we get
yl = y}. Thus, all the following terms in the induction of Theorem 7.1.1 for
y1 and y, are equal and since these converge in Yj to yl, = yoo(z,y1) = 31 and

Y2 = Yoo (T, y2) = yo We have y; = yp as desired. 0
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Chapter 8

Torus maps

In this chapter we develop several results about torus maps which will
used in Chapter 9 to establish that the functional described in Example 4.3.1
satisfies the hypotheses given in Section 4.3. Thus, we will be able to apply the
Nash-Moser implicit function theorems (Theorem 6.2.3 and Theorem 7.2.2) to
prove a KAM theory for degenerate families of torus maps (see Theorem 9.0.4)

which arise in the study of the wave equation in oscillating domains.

8.1 The basics

Note that the universal cover of T" is R™ with the covering map
7:R*"—=T"  7w(z)=2 modl
Given any continuous torus map
F.T"—T" (8.1)

we can lift F' to the universal cover and thus obtain the following commutative

diagram ]
R" — R”

Wl lw (8.2)



Proposition 8.1.1. Given a continuous torus map F as in (8.1), the corre-
sponding lift F as in (8.2) has the form

F(x) = Alx] + f(x) (8.3)

where A € M (n,Z) and f € P" (here M(n,Z) is the set n X n integer valued
matrices and P" is the set of continuous periodic vector valued functions).

Thus the “moduli space” of continuous torus maps has the form

M(n,Z) x P" (8.4)

Given a continuous family of torus map F, the corresponding lift F, has
the form
Fy(z) = Alz] + fi(x)
for some fixred A € M(n,Z) and a continuous family f, € P".

Finally, if F' or Fy have additional reqularity the corresponding periodic

functions f or f; have the same regqularity.

Proof. Straightforward. O

Remark 8.1.2. While we will usually work with the lift F, for the sake of
notation we use F to denote both the torus map F and its lift F. Further-
more, we will usually use capital letters, such as F and H, to denote the torus

maps with the corresponding lower case letters representing the corresponding

elements of P", e.q. F =Id+ f, H=1d+ h.
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Remark 8.1.3. We will work with families of torus maps, and hence families
of periodic functions, possessing some degree or reqularity beyond continuity.
In section 8.2 we define several one parameter families of Banach spaces (as
described in Section 4.1) whose elements are periodic functions with some pre-

seribed regularity. In particular, we distinguish two cases:

1. F is smooth, in which case f is smooth, e.g. [CU" for q & Z or [C’q]” for
q € 7 (see section 8.2 for the definition of C* and C’p)

2. F is analytic, in which case f € [A(ro,C°)]" (see section 8.2 for the
definition of A(ra,C™)).

8.2 The function spaces C!, C?, A(ro,C™)

As in Section 2 of [Zeh75], we make the following:

Definition 8.2.1. Let p > 0 an integer and o € (0,1) and take { = p + «.
Define the Hélder (Banach) spaces C*(T™) (often shortened to C*) to be all
functions u : T" — R with continuous derivatives up to order p for which the

norm

U = su DFu(x)|} + su {
e = sup {|D*u(z)]} + sup { =50

[k|<p |k|=p

18 finite. |

Definition 8.2.2. Let p > 1 an integer. Define the Zygmund (Banach) spaces
CP(T™) (also denoted by A,(T™) and often shortened to C? or A,) to be all
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functions u : T" — R with continuous derivatives up to order p — 1 for which

the norm

Julles = sup {ID*u(a)]} +

|k|<p-—1

sup { | D*u(x) + D*u(y) — 2Dku(%)| } (5.6)

[z — y|

TFY
|k|=p—1

is finite. ]

Definition 8.2.3. Fiz r > 0 and for 0 < o < 1 let U,, denote the complex
strips

U ={x+iy e C": |y;| <ro,1 <j<n}
Let ¢ € RT. Define the Banach spaces A(ro,C™) to be all holomorphic func-
tions u : U,, — C for which
o u(z) =u(T) (i.e. u is real valued on R)
e wu is periodic with period 1 in each variable

o [lullyem < o0

Here
. om = {”“”cmww) ifm ¢ L

lullgm,,) #fmeZ
where by replacing T™ with U,, in the norms (8.5), (8.6) we mean that the

supremums should be taken over the entire complex strip U, . |
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As noted in Example 4.1.8, taking X, = A(ro, C™) we get X{ = C1t™

for g +m ¢ Z and X{ = C9"™ for ¢ + m ¢ Z. For a detailed proof of this see
Proposition 2.1 in [Zeh75].

Throughout the remainder of this chapter, unless specifically defined
otherwise, we take X, = A(c,C°(T")) with X{ = CYT") for ¢ € Z and
X{ = CYT") for q € Z.

8.3 Rotations and other foliation preserving torus maps

Let X, = A(o, C°(T")) with X¢ = C4(T") for ¢ & Z and X = C%(T")
for g € 7.

Given any A € M(n,Z) which has w as an eigen vector, note that any
map of the form FF = A+ wf with f € X, or f € X{ has the property
that it preserves the foliations {tw + zo mod 1|t € R}. We refer to such
maps as w-foliation preserving torus maps. If the leaves of this foliations wind
densely around T", the preservation property in some sense forces any foliation

preserving map to be “essentially” one dimensional.

An important and basic class of w-foliation preserving torus maps, are

the rotations Ty, : T — T™ defined by
Tw(z) =(r+w) mod 1 (8.7)
where w € R™. These maps are clearly invertible and analytic and their

dynamics is easy to understand.
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An important subset of rotations are those for which the so called “small
divisor” problem can be solved. That is, given a rotation 7T, and r € X, find
f € X, such that f— foT,, = r. For this problem to have a solution, we clearly
need [, r dz = 0. Taking the Fourier transform diagonalizes this problem and
provided w - k ¢ Z we can formally determine f. In Section 8.5 we study this
problem in more detail. In particular provided w satisfies certain Diophantine
conditions (see Definition 8.5.1) we can make this formal expression for f
rigorous provided we loose some regularity in f, i.e. given w Diophantine, if
r € X, with anr dr = 0, we can define f € X, for 0 < ¢/ < 0 < 1 with
f—fol,=r.

Before studying the small divisor problem in detail, we define projection
operators which give us a decomposition X, = X, @& R where r € X, have

anr dx = 0.

8.4 Averaging and other projection operators

As we have seen in Section 8.1, the space of sufficiently smooth torus
maps has the form M (n,Z) x P" where we can take P to be the one parameter
Banach spaces P = X, or P = X{. We now describe some subspaces of X,

X4, [X,]™ and [X{]™ which will come into play.

Definition 8.4.1. On X, define the functional avg : X, — R by

avgl[f]= [ f(z) dx

Tn
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Note |avg[f]| < ||fl|x, . Using avg, define the closed Banach subspaces
X, ={f € X, : avg[f] = 0}
Given g € X, \ X,, define
Oy : X, = R I [f] = avg[f]/avg]g]
Myo: Xo = Xo  Hyolf] = f — (ave[f]/avelg))g

Note
g [f]I < ([ flx, /lavglg]]
and

Myilly, < (14 lgllx,/lavelgll) 1 £]lx,

hence we get a continuous splitting

X, =X, ®R with Id=Tl, o+, (8.8)

Analogous definitions in X2 follow for avg, X{, O,y and ;o by

replacing X, with X{ in the above. |

In a manner similar to X, and X{, we define an averaging functional

and corresponding projection operators in [X,]" and [X{]™:

Definition 8.4.2. On [X,]" define the functional avg : [X,|" — R" by

avglf] = [ f(z) dx

"H‘n
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Note |avg[f]| < [|f||x,»- Using avg, define the closed Banach subspaces
[Xo]" = {f € [Xo]" - avelf] = 0}
Given M a matriz with m; ; € X, such that the matriz M € M(n,R) formed
by averaging the coefficients, i.e. m; ; = avg[m, |, is invertible, define
My [Xo]" — R My [f] = M tavg[f]

Mo @ [Xo]" — [Xo]" Maolf] = f — MM 'avg][f]

Note
- [f]] < HM_IHM(,LR)H]CH[XU}"
and
0ol < (1 197 i 1M D)) 1
(By | M| ps x,) we mean the norm of the matriz M where 1, ; = Imill . -

Note that here we uses the fact that X, is a Banach algebra.) Hence, we have

a continuous splitting

[Xo]" = (X" @R" with [d =Ty o+ Ty (8.9)

Analogous definitions in [XI™ follow for avg, [ X", -1 and My

by replacing [X,]™ with [XJ]™ in the above. [

8.5 Small divisor problems

An important subset of rotations are those for which the following so

called “small divisor” problem can be solved.
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(SD) Givenw € R", r € X,, find f € X, with f — foT, =r.

The subspaces )u((, C X, are described in Definition 8.4.1 of the previous

section.

In order to solve this problem, we need w to satisfy certain Diophantine
conditions. We will also need to loose some regularity in f, that is given r € X,

we will be able to define f € )v((,/ for0<o' <o <1.

Definition 8.5.1. Let T be a Riissmann Modulus (see Definition 4.2.6). De-

fine the set of T-Diophantine vectors, Dy, as
Dy ={weR"Z":Vk € Z\{0} Vm € Z, |w-k—m|"' < Y(|k)} (8.10)

Also define

1
Rk’mz{wER” 7" |w-k—ml| < } 8.11

and note

Dy =R"/Z"\ | |J RY"

k#0
meZ

Proposition 8.5.2. Let Y(r) > cr” with v > n (note that for ¢ > 0, v > 0,
the function Y (r) = cr” is a Brjuno modulus). There exists a positive constant

M, depending only on n and v, such that for any v € R™ one has

|B(v,e) N Dy| > |B(v,€)| — Me" /e >0
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Proof. Fix k and m and note R@m is a the region between two hyperplanes

normal to the vector k. The thickness of this region is m and its inter-

27y 1”1

“RICQRD (here m,_1 is the area of the

section with B(v, €) is no larger than
unit n — 1 ball). Note that changing m simply translates these hyperplanes
by 1/|k|, hence RE™ will intersect B(v, €) for at most 2¢|k| values of m and so

the measure of

B(v,€) m ( U 'Rl}m>

A7y _1€™
clk[”

A, _1€™
T(lkl) -

is at most Using Y(r) > er” we see this is no larger than

Finally, letting k vary, we see that the measure of

B(v.e)()| U RE" (8.12)

k#0
mEZL

is at most » 47;’;,;'1”6“ < Me™/c. Since the compliment of (8.12) in B(v,€) is
k0

B(v, €) N Dy, the result follows. O

Provided w € Dy, the small divisor problem (SD) can be solved as

described in the following:

Proposition 8.5.3. (Small Divisors) Given w € Dy with T a Rissmann
Modulus (see Definition 4.2.6 and Definition 8.5.1) and r € X,, for any 0 <

o' <o <1 there exists unique f € X, such that
Sulfl=f—foTu=r (8.13)

Denoting f by S;r], for 0 < o’ < o <1, we obtain a linear operator

v

ST X, — X,

w
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with operator norm

1851k, < Qe —a)lrly, (8.14)
Here Qy is as defined in (4.11) of Example 4.2.8. Finally, viewing
we have S;' € C,,(Dy, L(Xy, Xo)) with

HSJIH(;;VM < [Qx(o =) (8.15)

Proof. Expanding r and the unknown f in a Fourier series, i.e.

r(z) = Zf’ke%ik'z and  f(z) = Z fpe2mika

k40 k£0
note that (8.13) becomes

fe(l = e¥mhey =iy, (8.16)

Formally, dividing (8.16) by (1 — e*"*%) gives the Fourier coefficients of w.

To establish convergence, note that for all k € Z™ with k& # 0
11— ™) > |sin 2k - w| > 2/rmin{|k -w — m| : m € Z}
and since w is irrational we can invert this equation to get
1 — e2mikew|—1 < gmax{|k~w—m|_1 . m € Z} (8.17)

Since w € Dy we have |k-w—m|™* < T(|k|) forallm € Z and k € Z™, k # 0.
Combining with (8.17) (and absorbing the 7/2 into Y), for all k € Z™, k # 0,

we get

11— ™ k@=L < T(|k|) (8.18)
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Cauchy estimate for the Fourier coefficients of r give us

7l < €72l (8.19)

and combining with (8.18) we get

Tk
(1 _ eZm'k-w)

il = \

< T(kDe M r|y, (8.20)

Restricting |[Im (z) | < ¢’ the Fourier series for f(z) converges and using (8.20)

we have

[F(2)] < (Z T(Ikl)e‘g““("“’/)) I7llx,

k£0

N J/
-

=Qy(0—0’)

This establishes (8.14).

To establish S;' € C%,,(Dy, L(X,, X,/)) with (8.15), apply Proposi-
tion 8.5.5 with sp(w) = s and A = Dr. O

1—e2mik-w

Remark 8.5.4. Note that given any k for which estimate (8.18) is sharp,
those k' mear k will satisfy much better estimates. Using this observation one

can obtain estimates which are sharper than (8.14) (see [Ris75], [Riis76b]).

Proposition 8.5.5. Let v and A be given with k < v < k+1 and A an
arbitrary subset of a Banach space. For k € Z" let sy € Cjyyp, (A, R) with and
HSkHC;/YVht < Y(|k|) for Y a Rissmann Modulus (see Definition 4.2.6). Given
[ € X, with f(x) = 4cpn f€™FT define

S@)f@) =Y su(w) fue®™*

keZm
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Then S € Cjyp (A, L( Xy, Xor)) with HSHCJVM < Qy(0—0'). Denoting the k-jet
of sk with {sk;}i_y the k-jet of S has the form {S;}s_, where

S()[f)(w) = ) sk j(w) fre®™**

kezZm

Proof. Straightforward. O
Combining Proposition 8.5.3 with Definition 8.4.1 we get the following:
Definition 8.5.6. Given g € X, \ X, define the operator
Sog: Xg xR — X,  Su,lfid=f— foT, +cg (8.21)
Using (8.8) we can have the following (unbounded) inverse
Syt X, — X xR

defined by
Soglr] = (85 Mg—o[r]], Ty— [r]) (8.22)

w7g

For 0 <o’ <o <1 we have

HS;;[T] % xR < CQy(o — O'/)HTHXU (8.23)
(4 max(lglle,.D)
’lUZthC—(l—Flav—gj). -

Similarly, combining Proposition 8.5.3 with Definition 8.4.2 we get the

following:
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Definition 8.5.7. Given M a matriz with m;; € X, such that the matrix
M € M(n,R) formed by averaging the coefficients, i.e. m;; = avg[m, ], is

invertible, define the operator
Sont [ X" X R = [X, )" Sumlf,v] = f — foTl, + M (8.24)
Using (8.9) we have the following (unbounded) inverse
Skt (X" = (K]t xR
defined by
Solr] = (85 Mar—olr]], Mas—a[r]) (8.25)

Here S;': [)v((,]" — [)v((,/]" is simply applying S, from Lemma 8.5.3 on each

component. Note, for 0 < o' < o <1 we have the estimate
1S54l e < O = )l (8.26)
with C' = (1 + max(|| M|y x, 1)||M*1HM(”7R)>. n

We will use S L, in Chapter 9.

8.6 Analytic smoothing

As noted in Example 4.1.12, there exists analytic smoothing S; in X, =
A(ro, C™(T™)) with respect to the XJ where X{ = C7(T") for ¢+ m ¢ Z
and X{¢ = Ct™(T) for ¢ + m ¢ Z. See Lemma 2.1 of [Zeh75] for a proof.

Throughout the remainder of this section, let X, = A(co, C°(T")) with
X{¢ = 09T for ¢ ¢ Z and X = CUT") for ¢ € Z. In order to establish
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the smoothing estimates for the composition of torus diffeomorphisms in the
next section (Section 8.7), we explicitly construct the smoothing S; in X, with
respect to X as described in Section 2 of [Zeh75].

Choose p : R — [0,1], C*°, even, p = 1 on [—1/(27),1/(27)], non-
increasing on [0, 1], with support in [—(1+€)/(27), (14+€)/(27)]. Let p: R — R
be the Fourier transform of p and note that using the definition of the Fourier

transform, p has an analytic continuation to an entire holomorphic function

on C. Define the functions s : R® — R and s : C* — C by

S(x1, ..oy wn) = p(x1) -+ play)

and
5(217 R Zn) = p('zl) T p(zn)

Note that s is the Fourier transform of s and like p can be extended to an
entire holomorphic function. With the scaling s,(z) = t"s(tz), we define the

analytic smoothing S; € L(X,, X1) by
St[f ] =5 % f
We can also write this as

Silfl(z) = / S(t(y — 2)) F(y)dy (8.27)

or, using the change of variables { = tRe (y — z) = ty — tRe (2),

Sif(z) = /R S(€ — ifTm (2))f(Re (=) + £/1)de (5.28)
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Another useful expression of S;[f] is

Silfl(z) = Y 5(k/t) fre®™*> (8.29)
kezn
Here f; are the Fourier coefficients of f, i.e. f(z) = Y. fre*™**. From (8.27)
kezr

or (8.29) it is clear that S;[f] is an entire function, while from (8.28) or (8.29)

it is clear that S; maps periodic functions to periodic functions.

The proof of estimates (4.3), (4.4) and (4.5), which establish that S;
is indeed an analytic smoothing in X, with respect to X{, can be found in

Lemma 2.1 of [Zeh75]. In addition to these estimates, we have the following:

Lemma 8.6.1. Let S; : Xg — Xy be analytic smoothing as defined above.

e Given constants r,C > 1 there exists a constant M such that for all

g€ Xy, and t > 1 with t71(C +rlog(t)) <1

10— S)glly, , < METgx (8.30)

t—1(C+rlog(t))

e There exists a constant M such that given f € X{ withq=p+ o, p a

positive integer and o € (0,1), and r(1+¢€) +n < gq, for allt > 1

I5:fllx, ., < M||f] x: (8.31)

C+rlog(t))

Corollary 8.6.2. Given q > qx = (2 + €)n there ezists positive constants tg

such that for any f € X{ and t > 1,

11 =SS fllx,, ., < M) fllx (8.32)

Proof. Take r = (¢ —n)/(1+ €) and apply (8.30) and (8.31). O
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Proof of Lemma 8.6.1

First we consider (8.30). To simplify notation, let M be a “generic”
constant that does not depend on ¢ or g but can depend on n, r and C. By
“generic” we mean that if M is multiplied by another constant we continue to
denote the product by M. With g € X;, by shifting the contour of integration

we can estimate the Fourier coefficients of ¢ as follows

6727r\k\t_1(0+r log(t))
t=1(C+r log(1))

98] < llgllx

Using (8.29) for [Im (2) | < Ct~! we have

’(1 _ St)[g](2)| < Z 6727r|k|t—1(0+rlog(t))€27r\k\ct—l HQHX

t=1(C+rlog(t)

t/(2m)<|k|
- T 1 (@rrlog(t)/0)s
_M</t/(27r)8 ‘ 45 ) 1911x, 1 0 osin
1
—r+n 1 _
< Mt Polynomial <1og(t)> ||9||Xt71(c+rlog(t>>
< Mt gl

t=1(Crlog(t))
This establishes (8.30).

Next, we consider (8.31). Again, to simplify notation, let M be a
“generic” constant that does not depend on ¢ or f but can depend on n, ¢,
and C. For f € X{, with ¢ = p+ «, p a positive integer and « € (0, 1), using
integration by parts we can estimate the Fourier coefficients as follows

M
<

= T T

11
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Using (8.29) for [Im (2) | < ¢ }(C + rlog(t)) and provided r(1+¢€) +n < g we

have
e2w\k\t*1(c+rlog(t))
|Silgl(2)| < M > /1] xa
(1 + [k 0
|k[<t(1+€)/(27)
t(1+e)/(2m) . e27rst’1(C+7‘ log(t))
Say e sl
t(1+e)/(2m) .
<M M+/ Sn—q—1627rt rlog(t)s ds ||f||Xg
1
t n—q p(14+€)rlog(t) .
<M|[M —_ TRt d
< (00 (i) [ e Wi
< M (M 050 | £
< M| fllq
Which establishes (8.31) and completes the lemma. O

8.7 Composition of torus diffeomorphisms

Let X, and X{ be as in the previous section. Let A € M(n, Z) be given.

Note for any f, g € [X{]", the composition fo(A+g)(z) = f(Ax+ g(x)) makes

sense and is in fact an element of [X{]". For f,g € [X,]", one needs to ensure

the range of A 4+ g remains in the domain of analyticity for f. Note that

{m (Az +g(2)) | : [Im (2) | < o}

0 . .
< sup{!a—ylm (Alz +iy] + g(x +iy)) | : [y| < o}o

< (Al 2y + 1Dgl1x, )o
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Thus, for any C' > 1, given f € [X]|" and taking cC < o', for any g € X,
with ([[Allys¢,2) + [[1Dgllx,) < C we have fo(A+g) € X,.

Proposition 8.7.1. We have the following basic estimates:

1. For any C > 1, if f € [Xo|" and oC < o, then, for any g € X, with

(”AHM(n,Z) + HDQHXU) <C,
1fo(A+ D, < 1 fllx e (8.33)

2. For any C > 1, if f € [Xy]" and oC < o', then, for any g1,92 € X,

with (| Al + 1 Dgill ) < C,
[fo(A+g1) = fo(A+ go)llix,;n S NDSllx nllor = gollix,pn (8:34)
3. If f e [X{]" and g € [X{]™ with ¢ > 1 then
[foA+9)lixan < Cllfllpxan U+ ([Allarnzy + N9llxan)?) (8.39)

4. If f € [Xg/]” and g1,90 € [X{|™ where ¢ > q > 1 then there exists

positive numbers M, & and p so that, for ||g1 — gz||[Xg]n <0,
I£o(A+ 1) — fo(A+ gl g < Ml lpgyylor — el (8:36)

Proof. Statements (1) and (2) are immediate. See Theorem 4.3 in [dILO99]
for (3) and Theorem 6.2 in [dILO99] for (4). O

The following lemma establishes that composition satisfies Hypothesis

(F.S4) defined in Section 4.3.3.
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Lemma 8.7.2. Given A € M(n,Z) and C > 1, for ¢ > 1 consider the open

sets

Ug ={f e [X]" : [IDflx, < C}

and

Vo' = {9 € [Xg]" - [I1Dgllx,) < C7}

where C* = (C — [|Al|y1(,.2))/ max(k(0), M) with k(0) the constant in (4.4)
and M the constant in (8.31).

With smoothing as defined in Section 8.6, for any f € UJ and g € V!

one has
I(Se[f1)o(A + Silg]) — Selfo(A+g)lllx,_, < Ma(q)t™ "™ (8.37)

Proof. The proof follows by combining the estimates from Lemma 8.6.1 and

Proposition 8.7.1. In order to apply these estimates, we break
E = (S[f])o(A + Si[g]) — Si[fo(A+ g)]

into several terms as follows. First, write

f =5+ (1= Sl
A

and note

—

E = (Si[fa])o(A+ Silg

.

) — Sulfuo(A+g)]

ISR

+ (Silfs))o(A + Silg

.

—

) = Silfo(A + 9)]

54
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We further break down E, as follows

Eq = (Si[fa])o(A + Si[g]) — fao(A + Silg])

\

-~

¥ fuo(A+ 8ilg]) — Silfuo(A+ Slg])]

+ Sl fao(A + Si[g)] — Silfao(A + 9)]

g

Eqs

Note that [|A|l 5,2 + HSt[Dg]H[XFﬂn < C and hence

1Batllix, e = 1L = S fulo(A + SilgDlx, (8.39)
<= S)fullx, 1y
< M@ fll gy

Also, with r as in Corollary 8.6.2, note || Al 2 +[1S:[Dg] ||| <C

Xi=1(14r108(t)]"

and hence

[Eallpx,_pn = (1 = St)[fao(A + SelgDlll x, 1 (8.39)
< Mt fao(A+ Selg)llx

=1 (14 1og(t))"

—r+
S Mt n||fa||[Xct71(1+rlog(t))}n

< MET () f |l xaye)
Next, for ¢’ < ¢, we have
1Baslle o = ISiLfacl(A + Slg]) — faolA+ )l .y (8.40)
< Ml fuo(A+ Silg)) — faolA+ )l g
< M| ol 15116] — 011

S Mt_qufaH[Xg,]anH?(g
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Finally, note [|Aly;¢z) + [15:[Dglllx,_,}» < C and hence

1Bl ix, oo < 19l fe]o(A+ SelgD I, o + ISl fso(A+ 9l x,_yn (8:41)
< [1Selfslllx, e + MUfso(A+ 9)llixgpm
< M| fsllixop + M fsllxopn (L + 1Al oz + 19l x9))

< ME[fll ixan (2 + 1Al s,z + lgllxgpm)
Combining (8.38), (8.39), (8.40) and (8.41) we get (8.37). O
Theorem 8.7.3. Given A € M(n,Z) and C > 1, define Y, = X+, where
C* = (C = [|Ally(nz) )/ max(k(0), M)

with k(0) the constant in (4.4) and M the constant in (8.31). Also, we define
Uo = {f € [X0]" : IDfllix,) < €} Vo = {g € [XG]" - [ Dyllx,) < €} and the
functional

F:UyxVo—Zy F(f,g)=fo(A+g) (8.42)

For 0 <o <1 take Uy, = Uy N X, and V, = Vo NY, (note U, and V, are

open). For 0 <o <1, we have
F: U xV, — Z,

Similarly, for 0 < q < oo take U{ = Uy N X¢ and Vit = Vo N X{ (note that for

q > 1 the sets Uj and Vi are open). For 0 < q < oo, we have
F Ul x Vi — Z]
Finally, we have:
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(CO) The functional F defined in (8.42) satisfies Hypotheses (F0), (F.A0) and
(F.S0) described in Section 4.3.

(C1) The functional F defined in (8.42) satisfies Hypotheses (F.P1), (F.A1),
(F.W1), (F.S1) and (F.SW1) described in Section 4.3.

(C3) The functional F defined in (8.42) satisfies Hypothesis (F.S3) described

in Section 4.3.

(C4) With smoothing as defined in Section 8.6, the functional F defined in
(8.42) satisfies Hypothesis (F.S4) described in Section 4.3.
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Chapter 9

An Application

The main application of Theorem 6.2.3 and Theorem 7.2.2 we now
present is to prove the following KAM theorem for the torus maps discuss in

Example 4.3.1.

Theorem 9.0.4. Fix wy € Dy with Y(s) > ¢s” for v > n (see equation 8.10).

Let F,, = Id + f, with p € Q= B(0,r0) CR? and f, € [X,]" .
Assume:

(i) the map p— f, is C7 for v > 1 withk <y <k+1

(it) fo=wo

(iii) avg[f,] = wo + Ap®™ + O(u") with 1 < m < k, n > m and A €
Sym,, (R%,R™), A % 0.

Then, there exists a Cantor set Cp C B(0,r,) C B(0,ry) such that

(a) For each € Cp, there exists hy, € [X, /" and a, € Dy such that with
H, = Id+ h, we have
F,oH, = H,oT,, (9.1)

Furthermore, h, : Cpr — X532 and a, : Cr — R are Clpe-
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(b) Provided ¢ > 0 is sufficiently large then there exists positive constants M

and r, such that, for all r with 0 <r < r,,

| Bra(0,7) N Cp| > Mr¥™ >0 (9.2)

Finally, if T(s) = cs” the above holds then we can take f, € [X{]" for

q sufficiently large and obtain h,, € [Xg/]” for some ¢’ < q.

Informally, Theorem 9.0.4 states that if f, € Dy and avg|f,] is not very
degenerate then there is a cantor set Cp of large density such that for y € Cp
there exists a change of variables H,, = Id+h, which takes F}, = Id+ f, to the
rotation T,, = Id+a,. The proof of Theorem 9.0.4 will be done by rephrasing
equation (9.1) as a zero of some functional and apply Theorem 6.2.3 (or, if
fu € [X3]" and Y(s) = es”, Theorem 7.2.2). Section 9.1 contains a detailed

sketch of the steps involved in obtaining Theorem 9.0.4.

Note that Theorem 9.0.4 applies in the case we take
fu € weX, C [ X,]" or f,€weXj C[X{]" (9.3)

Note that for such f,, the corresponding torus maps F,, = Id + f, preserve
the foliation whose leaves are given by the lines {z¢ + two|t € R}. Since
wo - k # 0 for all k € Z"\{0}, each leaf is dense in T™ and thus, even when
n > 1, from the dynamical point of view these maps are essentially one-
dimensional. In particular, since f,, are continuous is suffices to know how F},
acts on {twg|t € R}. At this stage we are not making any mathematical claim

on what happened when g lies in the gaps of the cantor set C, but the paper
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[Pet02] contains numerical evidence and conjectures. Also, in Example 2.8 of
the Prologue of [Gar83], a family of this form is studied around f; = 0 as an
example of a map possessing a “weak” type of strange attractor exhibiting

sensitive dependence to initial conditions.

Torus maps of the form (9.3) arise in the study of resonators with
quasi-periodically moving walls. In these maps, some degree of degeneracy is

unavoidable. Specifically, one has

d
@an[fu] =0

In this setting, given p € C, a solution H, to (9.1) implies the energy of the

electric field in the cavity remains uniformly bounded in time. The periodic

case (n = 1) was studied in [dILP99] (see also [DDG98], [DDGI6], [CCI5]).

In Section 9.1 we define a functional F, which we will be used to es-
tablish Theorem 9.0.4. We show that F is differentiable and we construct an
approximate right (and left) inverse R to Do F and apply Theorem 6.2.3. In
Section 9.2 we use the implicit function we obtained in Section 9.1 to construct

Crandh, : Cp — X/, a, : Cp — R both C’JVht, thus establish Theorem 9.0.4.

9.1 Definition of the Functional

Lifting to the universal cover and re-arranging terms, we can express
(9.1) as
F(fush,T,) =0 (9.4)
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where

F(fuh,a) =h — hoT, + fuo(Id +h) —a (9.5)

Here for a given f, € X, (i.e. the independent variable) we want to find
h € X, and a € R" (i.e. dependent variables) so that (9.4) holds. In light of
the small small divisor problem (SD) discuss in Section 8.5, if turns out to be
much easier to consider a as a dependent variable and restrict Dr, i.e. x =
(fu,a) € Xo xDy. Furthermore, since for any given f, there can be at most at
most one a satisfying (9.4), even when a € Dy, in order to have F(z, g(x)) =0
forallx = (f,,w) € C, = X, x Dy, we add an additional dependent parameter
v € R™. We refer to this process of converting a to a dependent variable and
adding v as “borrowing parameters.” We now rigorously define a concrete F'

satisfying the hypotheses in Section 4.3.

Let C' > 1 and define C* = (C' — 1)/ max(k(0), M) with k(0) the constant in
(4.4) and M the constant in (8.31). Also, for ¢ > 1 define

Uo ={f € [X5]" : IDfllix) < €7} Vo ={g € [X0]" - | Dgllx, < €7}
and using C*, U, and V;, define
X, = [Xeo|" X R", Y, = [Xowo)” X R, Z, = [X,]|"
Up=Uy xR", Vog=VyxR"
Co=UyxDy CU,
As in (4.23) of Example 4.3.1, define F : Uy x Vo — Zg by

F(f,a;hyv)=h—hoT,+v+ fo(Id+h) —a (9.6)
NN
oy
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Given 0 < 0/ < 0 < 1 define Do F : U, x V, — L(Y,,Z,) by

Dg}—(@; w) Ah, Av] = Ah — (Ah)oT, + (Dgf)o(Id+ h)[Ah] + Av (9.7)
T Y Ay

and, for 0 < 0’ <o <1, with Az € Z, define R:C, xV, — L(Z,,Y,:) by

R(fws b v)|Az] = ((Td + Doh)|S, H[Mrg—o[A2]]], TTra—1[A2]) (9.8)

Before showing that F satisfies the Hypotheses of Theorem 6.2.3, we

make the following important:

Remark 9.1.1. Note that F(f;h,a) = F(f,a;h,0). In particular, if v = 0
then the functional equation F(f,a;h,0) =0 implies (9.1).

Theorem 9.1.2. Let X, Y,, Z,, Uy, Vo and Cy be defined as above. Then

we have:

(A) The functional F defined in (9.6) has DyF as in (9.7) and salisfies
hypothesis (F0), (F.A0), (F.P1), (F.A1), (F.W1) and (F.A2) described

in Section 4.5.

(B) The approximate right inverse R defined in (9.8) satisfies hypothesis
(F.P2), (F.A2), (F.W2) and (F.W}) described in Section 4.3.

Thus, taking T = (wo,wo) and y = (0,0), since F(z,y) = 0 we can can apply
Corollary 6.1.2 and Theorem 6.2.3 (or Corollary 7.1.3 and Theorem 7.2.2)
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and obtain g : C N By(Z,€) — Vo with F(x,g(x)) =0, i.e.

f( f, a; hf’a,Uf’a> = hf’a — hf,aOTa + fO(Id + hf’a) —a—+ Vfa = 0 (99)
T —
m Yy

with (f,a) — hyq and (f,a) — vyq both CYp,-

Proof. Note that for 0 < o <1 the sets U,, V, are open.

The proof of (A) follows from (C0) and (C1) in Theorem 8.7.3 and
Lemma 6 in [Mey75].

To prove (B), note that R is composed of bounded linear operators and

thus, using (8.14) we have

1Rz y)[AZ]lly, < [|(dd + Deh)[S; Mol A2l 0+ IMra—1[A2][lge

< C’”SJl[HIdHo[AZ ] + HAZHZU/

Mix...
< CQy(0 — 0')[Tha—o[Az][lxp 0 + 1A%,
< Qg0 — o)Azl
with Qg(s) = (CQxy(s) +1). Thus R satisfies (4.32).
To establish (4.33), note that by differentiating the functional F defined
in (9.6) with respect to § we have

DyF(f,w;h,v) = Dgh — (Dgh)oT,, + (Dgf)o(Id + h)[Id + Dgh]  (9.10)

Substituting Ah = (Id + Dyh)[W] with W € X, into (9.7) and using (9.10)

we get

Dy F(x;y)[Ay] = [W — WoT, + Av]|+DyF(f,w; h,v)[W] (9.11)

(. J

-

(solvable)
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The above follows section 5 of [Zeh75] which describes how (9.10) can be used
to compute an approximate right inverse for functionals, such at F, which

posses a “group structure.”
Note in (9.8), we have Ah = (Id + Dgh)[S, '[IT1q—0[Az]]] and thus, combining
(9.7) and (9.8) and using (9.11) we get

Az — DoF(z;y)R(x;9)[Az] = Do F(f, w; h,v)[S,  [Ta—o[Az]]] (9.12)

Again using (8.14), note

Az = Do F (w;y) [R(w; y) [A2]]]l 7, < || DoF (f,w; hyv)[S, Ma—o[AZ]]] HZ
< [[DeF (f,wi h,v)]l, /“S [Mra—o[Az]] HZ /

< Qalo = )IF (S, ws b, )z, 1A2] 5,

with Q4(s) = CsQy(s). Thus R also satisfies (4.33).

Finally, the fact that R satisfies (F.W2) and (F.W4) follows from

Proposition 8.5.3.

9.2 Obtaining KAM from IFT

In this section we present the proof of Theorem 9.0.4 using Theorem
9.1.2. Informally, the basic idea in going from Theorem 9.1.2 to Theorem 9.0.4
is to find p € € so that for the corresponding f,, € U, there exists a € Dy
with vy, = 0. Then, as in Remark 9.1.1, (9.9) reduces to (9.1) and hence the

change of variables Id + hy, transforms F), = Id + f into the rotation 7j,.
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Proof of Theorem 9.0.4

Applying Theorem 9.1.2, note that the Whitney derivative of the re-

sulting v, has the form
Doy o[Ap, Ad] = avg[D1F(f, a; b, v)]
with
DyF(f,a; h, v)[Af, Aa] = (Af)e(Id + h) — (Id + DyhoT,)[Ad]

Thus, we have

D,vsq]Aal = —Aa

and

DyvpalAf] = avg[(Af)o(ld + h)]

Taking v, , for (i1, a) € € x Dy and using the Whitney extension theorem (see

Theorem 3.3.1) to extend v, , = vy,  to all of Q x R™ we get

D, [Vya] = —1d (9.13)

#=0,a=wo

and

D/‘ [Uﬂva]MZO,a:wo - Dﬂavg[fﬂ] (914)

By (9.13) we can apply the classical implicit function theorem to v,

around p = 0, a = wp and obtain a(u) with v, ¢, = 0. Define
CF = U_I(DT)
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and
h = hyau
and observe that for any 4 € Cp h, and a, satisfy assertion (a) of Theorem

9.0.4.

Using (9.14) and condition (iii) from Theorem 9.0.4 note that we have
DiMvpalp=0,a=w, = A # 0 and thus D?[a(u)]=0 = A # 0 and hence a(u) =

wo + Ap®™ 4+ O(p”). Using Proposition 8.5.2, note that
| B(wo, €) N Dy| > |B(wog, €)] — Me" /e >0

and hence, applying Proposition B.7, assertion (b), i.e. (9.2), follows. O
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Appendix A

Open Questions

. Compare the definition of a scale of Banach spaces X, a la [Zeh75] in
Section 4.1 with what you would get by completing the various semi-

norms of a “tame Frechet space” a la [Ham82].

. Is there an abstract version of the Arzela-Ascoli in X, i.e. is the embed-

ding of X{™™ into X¢ is compact?

. Given analytic-smoothing in the family X, with respect to X§, viewing

S; as acting in one-parameter family X§, one obtains C*°-smoothing.

. What reasonable conditions can be to placed on T given in Example
4.2.8 to ensure that the function Wq., described in Definition 4.2.5 has
Vg, (s) < Cs™@ for some « (other than taking T(t) = Ct* which simply

leads to Qy(s) = As™® as in Example 4.2.9).

151



Appendix B

Results about The Density of Pullbacks

Proposition B.1. Given a Lipschitz function f : R — R and a measurable

set D C R one has

[f (D) < 1f [l 1D (B.1)

Proof. Since f is Lipschitz, it is also of bounded variation and so f'(x) exists

almost everywhere. Using this we have
O = [ 1du= [ 17@ar< [ e =151, 1D
F(D) D D
which establishes (B.1). O

Definition B.2. Given a set C CR, Kk € R and 0 <~ <1 define

d.(C) = limsupe " |C'N(0,¢€)| (B.2)
e—0t
and
dy~(C) =limsupe ™ |C N (7e, €)| (B.3)
e—0t
|

Remark B.3. The function d.(C) measures a one sided “upper density” at

0. That is, if d(C) = ¢ < oo then given any 6 > 0 there is an e, > 0 so that
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for any 0 < € < €, one has
|C'N(0,6)] < (c+0)e”

Similarly, one could use liminf to define a “lower density” measure to provide

estimates of the form

|C'N(0,€)] > (¢ —0)e”
Other variations for “densities” include using intervals
(_67 0)7 (_67 _Fye)a (_67 6)7 or (_67 —VE)U(’Y@ 6)

in place of (0,€) and (e, €) or using other functions in place of ce® to measure

|C N (0,€).

Proposition B.4. (Properties of d,.(C) and d,,(C))
1. dr(C) =du(C) =0 for any k < 1
2. d.(C) and d,;,(C) are increasing as functions of

3. For any e > 0

de(C) >0 = dy1(C) =0

d.(C) <00 = d,,—(C)=10

and thus for every C' C R there is a unique “critical” value of K such

that for every € > 0, d,—(C) =0 and dy+(C) = o0

153



4. do(C) and d,, ,(C) are related via

0<(1—-79")de(C) <dp(C) <d,(C) <0
5. For any invertible orientation preserving Lipschitz function
f : (_T7 T) —R

with f(0) =0 and Lipschitz inverse f~' such that

[floolly, =1 ase—0 (B.4)
and
1 0.0 p > Lase—0 (B.5)
one has
4(f(C)) = de(C) (B.6)

Proof. Properties 1, 2 and 3 are clear from the definitions.

The only non-trivial inequality in Property 4 is (1—+"%)d.(C) < d,,,(C)
and the only situation in which this asserts a non-vacuous statement is when
de~(C) =c <ooand 0 <y < 1. To establish the inequality in this case let

0 > 0 be given and choose R > 0 so that forall 0 <r < R
rIC N (yrr)| <e+ 4

Note that for 0 < t < R we have

e}

EEIC N (0,6 =D ()" (") IC N (v(y"), (')]) <

n=0

1 —nr
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Taking the limsup as ¢ — 0 implies (1 —v%)d,.(C) < d,.,(C) + ¢ and since &
was arbitrary one has (1 — v7)d,(C) < d,.,(C).

To prove property 5, note that since f~! is Lipschitz given any z with

|z| < r one has

@) = 17 @) = £ O < [ o7 = 0 = [ o ]
so for r’ > THf_lf(o,r)th one has
f(@)n(0,r) € f(CN(0,7))
Using this inclusion along with Proposition B.1, one has
AN On)] < F(C N (0,7D] < [ floam [y, 1€ 0 (0,77)] (B.7)
Let 0 > 0 and pick R > 0 such that for all 0 < ' < R
(F)*1C N (0,7)] < du(C) + 6 (B.8)

Multiplying (B.7) by r* and using (B.8), for » < #'/{| f~*|(0.n Hlip with ' < R

one has

P F(C) N (0,7)] < || Flom ||y, 1€ N (0,7)] (B.9)
< Flom (Hf’llm,r)th)’ﬁ(r’)“ [N (0,7)]
< £l i (1 o [,) ™" (ds(C) + )

Taking the limsup as » — 0 on both sides of (B.9) one obtains

dn(f(c>> S ||f|(0,r’)||hp(dn(0) + 5)
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and letting v — 0 and 6 — 0 gives

d.(f(C)) < du(C)

Replacing f and C' with f~! and f(C), (B.10) also gives

Together, (B.10) and (B.11) establish equality (B.6).

Proposition B.5. For any a,d € R with a > 0,d > 1 define
fR—=R  f(z)= a2’
Let D C R be given and define
C=f7(D)

Then for any 0 < v < 1

QFD/d a0/
( . )dm,ww)sCzﬁ,W(mm « 1>( - >dmwd(D)

where k' =1+ (k — 1)/d < k. In particular

qls—1)/d alr—1)/d
( ; )dH/<D>Sdﬁ<c>sC( . )MD)

with e
k+d—1 rtd— K .

c= LEF§FWT- ifd#1

1 ifd=1
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Proof. Note that
[ fl¢ree Hlip = ade™™!

SO

DA @y, aeh)| = |£ (€N (76, ))
< Hf|(’ye,e)

< ade™™ |C N (e, €)|

|C N (e, €)

lip

in particular

(k—1)/d
<a y > (aed)~(+(=D/d) |D N (ylae?,ae?)| < e [C N (ve )] (B.14)

Similarly
1 ~(1=d)
-1 _ d_dy(1-d)/d _ I (1—1/d
Hf | (ayied aca) lip m(‘W e/ = al/dd (aeh)~ =19
hence
0G0l = 5 (D1 @y ach)
< || fleeolly, [P N (ar?e?, ae?)]
LA N, id
S g (ae?) |D N (ay?e?, ae)|
so that
a_py [(at"D/d dy—(1 /d dd
rION (ve gl <77 d (ae?) (i )/)‘Dﬂ(av €, ae )‘

(B.15)
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Combining (B.14) and (B.15) one has

aF=D/d
( y ) (aed)f(lJr(nfl)/d) ‘D N (’ydaed, aed)’

< 10N (e, )
4(-1/d
< 4@ (T) (aeh)y~ =D D A (yae?, ae®)|  (B.16)
Taking the limsup as € — 0 in (B.16) we obtain (B.12). Using Property 4
of Proposition B.4, (B.12) can be written as in terms of d,(C) and d.(D).
Specifically,
4 (-1)/d
(=% (S5 ) de(D) £ 0.0)

so letting v — 0 one gets

(a(ndl)/d> 4 (D) < d,(C)

which establishes the left hand inequality in (B.13). Similarly note

gy
(1= (€) £ 970 (2 ) D)

so if d =1 the we can again take v — 0 and obtain the right hand inequality
of (B.13) with ¢ = 1. If d # 1, choosing v = ((d — 1)/(d + k — 1))¥* so
as to minimizes the expression 7y~ (*~V /(1 — ~*), one obtains the right hand

inequality of (B.13) with ¢ = y~(4=1 /(1 — %), 0

Corollary B.6. Let
fR—R

be a differentiable function with
f(z) = az™ + o(|z|"),
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for some a >0 andn >1. Let D C R be given and define
C=fD)

Then for any 0 < v < 1 equations (B.12) and (B.13) still hold.

Proof. Define

Note that yof is differentiable for x # 0 and
vof(z)

i 70f (@) =70 f(0) _ . vof(@) _

|z]—0 X |x]—0 x

so yof is differentiable on R and (yof)’(0) = 1. Applying the (finite dimen-

sional) inverse function theorem to o f for some 7" > 0 one obtains a differen-

tiable function ¢ : (=7, T") — R such that for x sufficiently small foyog(x) =z

and ¢’'(0) = 1. Since g and g~! are orientation preserving Lipschitz functions

with ¢(0) = 0 satisfying (B.4) and (B.5), by Property 5 of Proposition B.4 one

has
d.(D) = d,(9(D))
Note that
O = f71(D) = 7og(D)
and for x > 0,

7 (@) = az”

so applying Proposition B.5 with D’ = g(D) and f' = y~! one obtains the

desired control over the set C' = (f')"1(D") = v(g(D)) = C.

159



Proposition B.7. Given a function f : R? — R™ with
1. f(0)=0
2. f(x) = A[z]®™ + o|z|™), where w = A[v]®*™ # 0 for some v € R?
and a set D C R™ with the property that for some 0 < k < 1
de({t:tw ¢ D})=d < 00
then there is positive constants M and r, such that the set
C=f(D)

has

|C' N B(0,r)| > Myd/™

for all r < r,.

Proof. By Corollary B.6, we have
[{t: tv & (C N B(0,r))}] < erttmx=
The same estimate hold, with a smaller ¢, uniformly on the cone
{v" [AR]*" — w| > Jwl|/2}

Estimating the volume of C'N B(0,7) on this cone the result follows.
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