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Summary 

 

Report II is concerned with the extended results of distance function wavelets (DFW).  

The fractional DFW transforms are first addressed relating to the fractal geometry and the 

fractional derivative, and then, the discrete Helmholtz-Fourier transform is briefly 

presented. The Green second identity may be an alternative devise in developing the 

theoretical framework of the DFW transform and series. The kernel solutions of the 

Winkler plate equation and the Burger’s equation are used to create the DFW transforms 

and series. Most interestingly, it is found that the translation invariant monomial solutions 

of the high-order Laplace equations can be used to make very simple polynomial DFW 

series. In most cases of this study, solid mathematical analysis is missing and results are 

obtained intuitively in their conjecture status.  
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1. Introduction 

   

This report is the second in series [1,2] about my latest advances on the distance function 

wavelets (DFW). Unlike the common distance functions, e.g., MQ and TPS, which have 

no provision for scaling and carry out a multiresolution hierarchy by simply dropping or 

adding some points [3], the DFW is comprised of both the scale and translation 

arguments. To better understand what will be presented here, the readers are advised to 

have a look at Report I [1] beforehand. The report is featured with lots of grand 

conjectures, where firm mathematical underpinnings are conspicuously lacking in most 

cases. But nevertheless the author assumes that many results have certain physical 

grounds and are in agreement with the faith that God rules the world with simplicity and 

beauty.  

 

The rest of report is organized into six thematic sections. In section 2, the fractional 

Helmholtz-Fourier transform (HFT) and series and Helmholtz-Laplace transform (HLT) 

are presented in relation to fractal geometries and fractional derivatives. In section 3, we 

briefly present the discrete Helmholtz-Fourier transform without mathematical 

justifications. Section 4 tries to derive the distance function wavelets by the Green second 

identity and the Laplace transform. In section 5, the solutions of the Winkler plate 

equation and the Burger’s equation are utilized to create some novel DFW transforms and 

series. In section 6, the translation invariant monomial solutions of the high-order 

Laplace equations are applied to develop the polynomial DFW series. Finally, section 7 

provides a few supplementary results on the DFW and points out some potential uses.  

 

 

2. Fractional Helmholtz transforms and series 

 

In recent years, much attention has been attracted to the so-called fractional derivative 

[4], fractional Fourier [5] and Laplace transforms and fractal geometry. The underlying 

relationships between them are also unraveled [5-7]. Note that “fractional” is just 

conventional misnomer since it also actually indicates real number relating to the so-
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called fractional derivative and integral transforms. The HFT and HLT [1] were 

recognized as the distance function counterparts of the Fourier and Laplace transforms, 

respectively. By analogy with the latter two, this section addresses the fractional DFW 

Helmholtz transforms and series.  

 

The HFT is given by   
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while the HLT [1] is stated by  
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where Jn/2 and Yn/2 are respectively the Bessel functions of the first and second order of 

the n/2-1 order, and Kn/2 is the modified Bessel function of the second kind. There is a 

number of ways to connect the HFT and HLT with the fractional derivative. One simple 

way is through frequency domain. Obviously, the HFT hold 
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and generally, this process may be iterated for the m-th order divergence derivative to 
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where m is a integer number in the most stereotyped mathematics. Observing (5), there is 

no reason hindering the extension of m to the set of real numbers, and then, comes out the 

fractional derivative. If m<0 in (5), then we have fractional integration. Let us advance a 

little further. m could be even a complex number corresponding to a complex order 

partial differentiation [8], while keeping (5). We could develop a complete theory of 

fractional HFT and HLT by analogy with the fractional Fourier and Laplace transforms. 

 

On the other hand, Blu and Unser [3] have pointed out that the self-similarity of fractal 

geometry is one fundamental concept to create the distance function wavelet. This 

inspired the author to assume that dimensionality n can be a real number. Consequently, 

(1) and (2) turn out to be a new type of the fractional HFT and HLT again 
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The same is for fractional Helmholtz series given in [1]. A fractional n implies fractal 

geometry. It is noted that the DFW HFT has a clear edge over the classic Fourier 

transform in that the dimensionality explicitly appears in the HFT and thus may be 

suitable to serve as an alternative powerful mathematical tool to quantitatively describe 

the fractal geometry. In some areas (e.g. control engineering), the complex dimension is a 

useful concept. Thus, n even could be a complex number. One thing that deserves more 

attention is how to define the Euclidean distance in complex dimension geometry, and 

then how about a negative n. The problem is what physical backdrops are behind these 

exotic mathematical devices. The author conceives that there is an underlying link 

between the complex dimensionality and complex order derivative through the HFT or 

the HLT, when n is a complex number in (1), (2) and (3). It is certain that there are lots of 

issues unanswered out there. 

 

The above research displays that the dimensionality (fractal), scale (frequency) and 

differentiation can be connected through the DFWs. [2] will give a detailed discussion on 

these inherent relationships through the research of the frequency dependent attenuation 

of acoustics and elastic waves.  

 

 

3. Discrete Helmholtz-Fourier transform 

 

In terms of continuous Helmholtz-Fourier transform (1), it is easy to attain the 1D 

discrete Helmholtz-Fourier transform (DHT) as in the discrete Fourier transform. In 

multidimensional cases, the basis functions of the continuous complex HFT, however, 
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encounter the singularity at the origin. It is noted that the basis functions of the 

continuous HF J transform  
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has arbitrary degree of continuity, where kk xx −=r . The HF J transforms are stated as  
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 The corresponding discrete transforms are 
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We do not give any mathematical justification in this section. 
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4. Distance function wavelets generated by Green’s function 

 

[9] derives various coordinate variable transforms from the Green’s function. This section 

tries to follow the same strategy to develop the distance function transforms. Consider the 

partial differential equation 
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where ℜ  is the spatial partial differential operator, and x is a multidimensional variable. 

In terms of the Laplace transform with respect to time t, we have 
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The Green function solution of (13) is  
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where g(x-ξ,-is) is the Green function of the operator ℜ -is satisfying the boundary 

condition (12). Applying the inverse Laplace transform to (14) and let t=0, we attain 
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Let s=iλ, where λ are the eigenvalues of the operator ℜ +λ, we have 
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If ℜ   is a self-adjoint operator, all eigenvalues λ are real. (16) is restated as 
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It is known that the Green functions of many PDEs can be expressed by the 

corresponding eigenfunctions, i.e. 
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where ψm is the eigenfunctions, and the index m is related with different eigenvalues λ. 

To proceed further, we need to postulate that due to the translation or rotational invariant, 

(18) may be restated as 
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where the upper bar denotes the complex conjugate. (20) is a DFW expression of f(x). 

Now substituting (19) into (17) produces the DFW transform 
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On the other hand, it is observed that (17) can also be seen as an anomalous wavelet 

representation. Namely,  

 

( ) ( ) ( ) ξξλξλ dfxgxF
n
∫Ω −= ;, ,    (21a) 

and 

( ) ( )∫
+∞

∞−
= λλ

π
dxF

i
xf ,

2
1 .    (21b) 

 

For instance, in terms of the free Green function of the Helmholtz equation in 1D infinite 

domain, the Fourier transform can be restated 
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The wavelets transforms (21) and (22) have exotic expressions compared with the 

standard wavelet formalism. But nevertheless they have most properties of the wavelets.  

 

 

5. Some distance function wavelets 

 

Except the distance function wavelets developed [1], there are plenty of the solutions of 

various PDEs eligible to create the DFW. This section is dedicated to developing a few 

new types of the DFW.  

 

5.1. DFWs involving Kelvin functions 

 

The deflection of thin elastic plates resting on a Winkler elastic foundation with stiffness 

κ is governed by  
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where ∆i represents the Dirac delta function at a source point i corresponding to the 

fundamental solution (vs. zero for general solution); domain Ω  can be unbounded or 

bounded with or without boundary conditions. The plate is a two dimensions problem. 

However, in this study, we extend equation (23) up to five dimensions since we found 

their fundamental solution [10] 
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where ker and kei are respectively the Kelvin and modified Kelvin functions of the 

second kind, and ber and bei respectively represent the Kelvin and modified Kelvin 

functions of the first kind. Note that ber and bei have arbitrarily degree of differential 

continuity, kei has the second differential continuity, but ker encounters a singularity at 

the origin.  

 

Steady Schrodinger’s equation in a radial domain   
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also has the solutions (24) and (25).  By using the fundamental solution (24), we can 

construct the distance function transform for a suitable function f(x) 
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The solution (25) is also capable to construct the DFW. By analogy with the Helmholtz-

Fourier series [1], we have expansion series 
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where αjk and βjk are the expansion coefficients. Since f0(x) is related to zero value of κ, 

equation (23) degenerates into a biharmonic equation 
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with the boundary data. As we did for the Helmholtz-Fourier series [1], f0(x) can be 

evaluated by the boundary element method or the boundary knot method. 

 

5.2. DFW transform and series with solutions of Burger’s equation 

 

 The Berger’s equation [11] for large deflections of plate is  
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where the Berger parameter α is constant over the domain but nonlinearly depends on the 

lateral load. The nonlinear relation between the external load and the deformation is 

represented by the second right-hand term [11]. We have the fundamental solution [12]  
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and general solution [11] 
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where Kn/2-1 and In/2-1 are respectively the modified Bessel functions of the first and 

second kinds, and Sn(1) is the surface size of unit n-dimensional sphere. By analogy with 

the Helmholtz-Laplace transform, we have 
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The general solution (32) can also be used to construct the DFW series for representing 

the functions bounded within finite domains. 
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6. DFW series with monomial Laplacian solutions 

 

There are numerous solutions of the high-order Laplace equations satisfying rotational or 

translation invariant. This section will develop the distance function wavelets series by 

using the translation invariant monomial solutions. In [2], the rotational invariant 

solutions are employed to create the DFW.  

 

A translation in the plane is a transform  
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Translation invariant with the Laplacian [13] means  
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For p-order Laplacian, invariance holds for m-order translation when m<2p, i.e. under 
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we have 
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Any real function satisfying the Laplacian is called a harmonic function. In this study, we 

call the function, which satisfies the high-order Laplacian, the high-order harmonic 

function. The harmonic function is also called the potential function which includes the 

scalar and vector potential functions in engineering. Thus, the high-order harmonic 

function is also often called the high-order scalar or vector potential functions. A linear 

combination of translates of the monomial high-order harmonic functions can 

approximate many smooth functions under the harmonic basis function space. As an 
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illustrative example, let us consider the two-dimension translation-invariant monomial 

solutions of high order Laplace equations 
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we can construct the DFW series to approximate continuously differential function Q(x,y) 
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where cjk are the expansion coefficients. Note that since the high order Laplacian is scale 

invariant operator, the power exponents of monomials are considered the “scale 

parameter” here. For higher dimension problems, the similar DFW expansion series can 

be constructed. (39) is absolutely not a Taylor expansion although it may look like the 

latter. (39) can be restated as 
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Note (40) in fact have only one expansion coefficient for the constant term, i.e. 

. In terms of the finite difference, least square, collocation or Galerkin 

schemes, the polynomial DFW expansion (40) can be simply used to the function 

approximation and the numerical integration and the solution of partial differential 

equation under arbitrary domain geometry in an explicit multiscale and meshfree fashion 

[14]. As in the wavelets, we can truncate the scales and translates locally and get a sparse 

DFW interpolation matrix in approximating Q(x,y). The completeness, accuracy and 

numerical tests of the presented polynomial DFW are under study and will be reported in 

a subsequent paper.  

∑
=

=
M

k
koocc

1
,0

 14



 

The Laplace equation is typically an elliptical equation. The present polynomial DFW 

series is thus expected to perform well for a variety of elliptical equations. When applied 

to parabolic and hyperbolic equations, it would be more efficient and reliable to modify 

this DFW series (40) via simple function transform to reflect the features of those 

equations. For example, we can transfer the convection-diffusion equation 

 

( tyxbkuuvuD ,,2 =−∇•+∇ v )     (41) 

 

 into the elliptic modified Helmholtz equation  
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by an exponential variable transformation [15,16]  
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v is the distance vector between the source and field points, and 
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The nonsingular general solution of the convection-diffusion equation (41) is given by  
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where n is the dimensionality and rk is the Euclidean distance as defined with (7b). 

Accordingly, we construct the following modified polynomial DFW expansions  
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The approximation series (46) embeds the velocity direction.  

 

We also can simplify (40) in some way. For example, the normal multiquadratic radial 

basis function approximation 

 

( ) ( ) ( )∑
=

+−+−≅
M

k
kkkk syyxxhyxQ

1

222,    (47) 

 

can be understood a simplified version of (40) with a single scale parameter (shape 

parameter sk). Determining sk, however, is often tricky and problem dependent.  

 

In addition, the Laplacian DFW series can be constructed under the polar coordinates, i.e. 
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where θ-θk is the angle between vectors (x,y) and (xk,yk). j indicates the scale. (48) is not 

easy to use in general because of the difficulty in the evaluation of the angle.  

 

It is feasible to create similar translation invariant DFW series via the translation 

invariant sine and cosine solutions of the multidimensional Helmholtz equations in 

handling periodic problems. In 2D case, we have 

 

 16



( ) ( )( ) ((∑∑∑
= = =

−−≅
x yN

i

N

j

M

k
kkkij yyjxxicyxP

0 0 1
, 2cos2sin, ππ ))

)

.  (49) 

 

For the diffusion and convection-diffusion problems, the similar DFW expansion can be 

made via exp(-τ(x-xk)) and exp(-τ(y-yk)) and their combination with the velocity term as 

shown in (43). In some particular application, we can construct a special translation 

invariant distance functions which reflects the systematic characteristics (PDE and outer 

forcing terms).  

 

It is very desirable to have the orthogonal DFW expansion of the form: 
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where  and  are orthogonal eigenfunctions. It is very interesting to note that unlike 

the fundamental solution and general solution DFWs in [1] and the preceding sections, 

the polynomial and trigonometric DFW series developed in this section could have their 

basis functions from the PDE solution (the separation of the variables) under the 

rectangular or hypercube domains instead of the circle or hypersphere domains. As such, 

(50) can nevertheless be simply used to handle arbitrary domain problems due to its 

translation invariant property. For plenty of PDEs, orthogonal eigenfunctions under 

rectangular and cube domains can be found in literature. Thus, it is not a difficult task to 

construct such translate DFW series to solve a broad variety of problems. However, we 

do not know if these eigenfunctions are still orthogonal under arbitrary domains. 

x
iφ y

iφ

 

The essential distinction of the present DFW expansions from the other coordinate 

variable expansion approaches lies in that we use the translation invariant distance 

variable solutions of the high order PDE to get the meshfree and multiscale interpolation 

schemes. It is stressed that as the spherically symmetric solutions are closely related to 

the fundamental and general solutions, most of the coordinate variable kernel solutions of 
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PDEs under regular domains are translate invariant solutions for arbitrary domain 

problems.  

 

The above polynomial DFW series in space can be extended to the time-space DFW. It is 

known that the wave and heat problems have the time-harmonic solutions, which are in 

some sense similar to the spatial harmonic functions of the Laplacian. In particular, the 

wave equation has the time-reversal invariance solution. We may have the time-space 

polynomial DFW series 
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where t-tk≥0 for the diffusion problem and  for wave problems are 

required to ensure the principle of casualty.  

( ) 0222 ≥−− kk rttc

 

To illustrate the difference between the translation and rotational polynomial DFW series 

of harmonic functions, we briefly list the rotational invariant Laplacian DFW series [2]  
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where is the fundamental solution of the m-th order Laplacian ∇*
m
nL

u 2(m+1)u. When the 

order m≥1, the high-order Laplacian fundamental solutions of 2D and 3D cases [17] are 

no longer singular at the origin. Q0(x) is evaluated via the Green second identity  
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where Sn-1  are the surface of finite domains. (53) can be easily evaluated by the boundary 

element method (BEM) with boundary data, and then Q0(x) at any inner locations can be 

calculated via (52). The boundary knot method [10] is also an alternative to the BEM for 

this task. For more details on the rotational invariant DFW series see the section 5 of [2]. 

(52) has simpler form and fewer expansion coefficients for high dimension problems than 

the preceding monomial Laplacian DFW series, and u  of different orders m are 

orthogonal. The drawback is that the calculation of the Laplacian fundamental solution is 

more costly than that of monomials. 

*
m
nL

 

 

7. Supplementary results 

 

The DFW is easily extended to hand the problems with anisotropic parameters via the 

modified definition of the distance variable [18]. For instance, consider the Helmholtz 

equation 

 

( )


 ∆−

=+∇∇
,0

,2 iuu λη  in Ω,    (54) 

 

where η={ηj} are the anisotropic parameters in different coordinate directions. If all ηj 

are constants, we have the common fundamental and general solutions via the modified 

Euclidean distance variable 

 

∑
=

−=
n

j

j
k

jj
k xxr

1

2)(ˆ η .    (55) 

 

Then, we can replace the standard Euclidean variable in the HFT and HLT with the above 

definition of distance variable. These modified HFT and HLT will be more efficient to 

handle anisotropic problems.  
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For nonlinear problems, the distance variable may be defined by 

 

( )( )∑
=

−=
n

j

j
k

jj
k xxxur

1

2)(ˆ η .    (56) 

 

Another useful technique handling nonlinear problems is to use the Kirchhoff transform 

as in the boundary element method. For detailed discussions of different definitions of the 

Euclidean distance variable see [18]. For data processing, we need to keep in mind the 

physical mechanism (PDE model) behind the data and consider the PDE-specific DFW 

technique.   

 

The distance function wavelets have some potential important applications. For example, 

the Helmholtz-Fourier transform may be a competitive alternative to the Fourier 

transform in various data processing techniques such as filtering, modulation and 

correlation.  

 

The DFW transform and series are established on the kernel distance variable solutions of 

various linear time-space invariant PDE systems. In more general sense, the strategy can 

be extended to the gauge invariant PDE model (gauge group) such as Yang-Mills 

equation. Further, the inverse-scattering transform reveals that invariance (the 

superposition principle) also holds in some important nonlinear PDE models. We are now 

under way to research the DFW transform and series based on such nonlinear invariance 

mechanism. [13] puts it “the invariance has powerful consequences which lie at the heart 

of the physical idea”. We add that “distance” (various relative differences) is an 

underlying fundamental devise depicting the invariant relativity. Such philosophy implies 

the distance function wavelets, which underlie invariance and relativity, may be a 

powerful tool to display, analyze and exploit universe symmetry, simplicity and beauty 

out of mundane irregularity, clutter and difficulty. 

 

It is worth pointing out again that most results in this report are intuitively attained 

without any rigorous mathematical analysis. The readers need to note their conjecture 
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status. Further research is now under way and the author would like to get any comments 

and opinions 
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