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Fakultät für Mathematik, Ruhr-Universität Bochum, Germany

and SFB 237 ”Unordnung und große Fluktuationen”
www.ruhr-uni-bochum.de/mathphys

18th February 2002

Dedicated to Jean-Michel Combes on the occasion of his Sixtieth Birthday

Abstract

We prove a Wegner estimate for generalized alloy type models at neg-
ative energies (Theorems 8 and 13). The single site potential is assumed
to be non- positive. The random potential does not need to be stationary
with respect to translations from a lattice. Actually, the set of points to
which the individual single site potentials are attached, needs only to sat-
isfy a certain density condition. The distribution of the coupling constants
is assumed to have a bounded density only in the energy region where we
prove the Wegner estimate.
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1 Introduction

It is well known that random Schrödinger operators show spectral behaviour
which is unusual for earlier well studied atomic or N -body Hamiltonians. In di-
mension d = 1 such random operators typically have pure point spectrum. The
same phenomenon is believed to occur in dimension d = 2. Physical arguments
suggest that in higher dimensions and for low disorder random Schrödinger op-
erators have pure point spectrum near the boundary of the spectrum, while
absolutely continuous spectrum should occur well inside the spectrum.

Mathematically only the pure point spectrum at the spectral boundary is
understood, especially at the infimum of the spectrum. We refer to [15, 36, 39,
1, 9, 28] and especially to the recent book [37] and the extensive literature given
there.

Most models treated so far by mathematicians are either alloy type models
of the form

Vω(x) =
∑
k∈Z

qk(ω)u(x− k) (1)

or close relatives. Moreover, all known proofs of localization in multidimensional
configuration space require that the distribution of the random variables qi is
absolutely continuous (or at least Hölder continuous). While there seems to
be no physical reason for this assumption it turns out to be crucial for the
mathematical techniques to work, both for the Aizenman-Molchanov method
and for the multiscale analysis. One of the major ingredients of the multiscale
analysis is the Wegner estimate. It is exactly this step that requires regularity
of the distribution of the random variables.

For one-dimensional models there are proofs of localization which do not
require the continuous distribution of the coupling constants, cf. [5, 12, 4].
These proofs do not rely on the multiscale analysis and do not imply regularity
properties of the integrated densities of states.

In this paper we will among other things prove a Wegner estimate at low
energies for distributions of qk which may have a point mass away from the
relevant extremal value of their support. As we work with non-positive single
site potentials, this means that the distribution of the qk is assumed to have
a density near the supremum of its support but may be arbitrary singular
elsewhere. Moreover, we will treat models with non stationary random variables
as well as various deviations from the alloy-type model (including surface and
sparse potentials). This estimate allows us to prove corresponding localization
results (see [2]).

The Wegner estimate is also related to the integrated density of states (IDS).
This quantity encodes mathematically the average number of electron states per
unit volume up to a given energy. The application of our results to the usual
alloy type model imply the Hölder continuity of the IDS at the infimum of the
spectrum of the considered random operator.

Acknowledgements: The authors would like to thank S. Böcker for sug-
gestions concerning an earlier version of this paper.
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2 Generalized alloy type models

We denote the unit cube at the lattice site j ∈ Zd by Λ(j) := Λ1(j) :=
[−1/2, 1/2]d+j. Cubes of sidelength l ∈ N are denoted by Λl(j) = [−l/2, l/2]d+
j, while the abbreviation Λ (or Λl) stands for Λ1(0) (respectively Λl(0)). We let
Lp

loc,unif (Rd) denote the space of measurable functions f for which there exists
a finite constant A > 0 so that ‖f‖Lp(C) ≤ A, for any unit cube C ∈ Rd. The
class of Schrödinger operators we will consider is given by the following

Assumption 1 (i) H0 := −∆+V0 is a Schrödinger operator with a potential
V0 in Lp

loc,unif (Rd) where p = 2 for d ≤ 3 and p > d/2 for d ≥ 4.

(ii) Ξ := {ξk}k∈N is a countable set of points in Rd.There is a function θ : R →
R such that the quantities L(j) := #{k ∈ N| ξk ∈ Λ(j)} satisfy

L(j) ≤ C1θ(‖j‖∞) + C2 ∀j ∈ Zd. (2)

Typically θ will be a quadratic function of ‖j‖∞.

(iii) The sequence uk ∈ L∞(Λl∞), k ∈ N consists of non-positive, measurable
functions called single site potentials. Here l∞ is a length scale indepen-
dent of k ∈ N. There exists a u∞ <∞ such that

‖uk‖∞ ≤ u∞ ∀k ∈ N. (3)

(iv) (Ω,A,P) is a probability space and qk : Ω → R, k ∈ N is a family of
random variables called coupling constants, each taking values in a subset
of the interval [0, q+] for some fixed, positive q+ > 0. Denote the condi-
tional probability measure of qk with respect to the other random variables
q⊥k := {ql}l∈N\k by µk. There exists a constant qc ∈ [0, q+[ such that the
restriction µk|]qc,q+] has a density fk obeying

sup
k∈N

‖fk‖∞ ≤ f∞ <∞. (4)

Definition 2 The set of points ξk ∈ Rd, k ∈ N and the two sequences qk, k ∈ N
and uk, k ∈ N define a random potential Vω by

Vω(x) :=
∑
k∈N

qk(ω)uk(x− ξk). (5)

Finally we have a family of random Schrödinger operators:

H = Hω := H0 + Vω, ω ∈ Ω (6)

which we call generalized alloy type models.

Remark 3 1. It would be enough to assume that V0 lies in an appropriate
Kato-class.
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2. The clustering condition (ii) on the points in Ξ is needed on the one hand
to ensure the essential selfadjointness (see Section 3), on the other hand
to obtain a Wegner estimate with reasonable volume dependence. For the
selfadjointness result θ may grow at most quadratically, while interestingly
for the Wegner estimate only a subexponential bound

θ(x) ≤ exp(xβ) for all x > 0 and some β < 1 (7)

is necessary to give a useful estimate for the multiscale analysis, cf. e.g. [37].

3. In the above assumptions on the random operator Hω the points ξk ∈
Rd, k ∈ N form a deterministic set. In the case ξk = k ∈ Zd the operator
Hω describes an Anderson or alloy type model. However, the set Ξ may
be much more general, having nothing in common with a lattice structure.
It is also interesting to consider the case where it is itself random, i.e. the
points ξk ∈ Rd, k ∈ N are the support of a random point process Ξ(ω).

We list several examples which are covered by Assumption 1.

Examples 4 (1) ”Standard” alloy type model. The set Ξ is simply the
lattice Zd. In this case the Wegner estimate is well understood even under
much more general assumptions. We refer to [28, 18, 10] and the references
therein. Particularly, there exist results also in the case where the coupling
constants are unbounded [18], where the single site potentials are of long
range type [27] or are allowed to change sign [29, 38, 16]. Moreover, there
are results [9, 18, 38] valid not only at spectral band edges but for any
bounded energy intervals, which imply the existence of a density of the
IDS.

(2) Alloy type model with random displacements. The Wegner estimate
has been proven also for some generalizations of the alloy type potential.
Already in the paper [9] it was shown that one can incorporate random
displacements of the lattice points, at which the single site potentials are
attached. The random potential has the form

Vω(x) :=
∑
k∈Zd

qk(ω)u(x− k − ξk(ω))

where the ξk, k ∈ Zd are independent, identically distributed (i.i.d.) random
variables taking values in the unit cube at zero. The single site potential
u has a fixed shape independent of k. In [40] it was shown that the ran-
dom displacements are compatible with long range single site potentials in
the sense that one can prove a Wegner estimate and thereby localization
combining the techniques of [9] and [27].

(3) Sparse potentials of alloy type. In [25, 17] several types of sparse alloy
type potentials are considered and results about the properties of the spec-
trum of the corresponding Schrödinger operators are derived. Particularly
the existence of absolutely continuous spectrum on the positive energy half
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axis is established. Our Wegner estimate applies to their models II and
III. This is also the case for the analog models on l2(Zd). See [26, 32] and
the references therein for a discussion of sparse Schrödinger operators of
discrete type.

(4) Surface potentials of alloy type. If the random potential Vω is concen-
trated near a lower dimensional surface in Rd, e.g.

Vω(x) :=
∑

k∈Zd1×0

qk(ω)uk(x− k), (8)

we call Vω a surface potential. Here d = d1 + d2, i.e. the lattice Zd is
directly decomposed into Zd1 ×Zd2 and the 0 in (8) denotes the zero vector
in Zd2 . Results on this type of potentials can be found amongst others in
[13, 21, 22, 6, 7, 8, 19, 20] for the discrete case and in [14, 30, 3] in the case
of continuous configuration space.

(5) Subset of Zd containing no nearest neighbours. Let Γ ⊂ Zd be the
maximal set containing 0 but no nearest neighbours, i.e. no two points
x, y ∈ Zd with ‖x− y‖1 = 1, and consider

Vω(x) :=
∑
k∈Γ

qk(ω)uk(x− k).

The discrete analog of the corresponding Schrödinger operator is analyzed
in [33]. There a Wegner estimate for the discrete model can be found, as
well as a proof of localization.

(6) Ergodic Poissonian random potential with coupling constants.
Ergodicity w.r.t. Rd or Zd possible. Let p : Rd → [0,∞[ be a bounded
Zd-periodic function and νω, ω ∈ Ω a Poisson point process with intensity
measure dλ(x) = p(x)dx where dx denotes the Lebesgue measure on Rd.
I.e. νω is defined by

P {ω|#{supp νω ∩A} = n} = e−λ(A) (λ(A))n

n!

and the condition that for any two disjoint, measurable sets A,B ⊂ Rd the
random variables #{supp νω∩A} and #{supp νω∩B} are independent. The
process is assumed to be independent of the random variables qk, k ∈ N. We
denote the (countable) set of points in supp νω by Ξ(ω) := {ξk(ω)}k∈N. In
Lemma 7 we prove that the collection of Poissonian points Ξ(ω) = supp νω

satisfies almost surely condition (ii) in Assumption 1 with θ(x) = x2.

The Lifschitz-Poisson model is given by the Schrödinger operator with the
random potential

Vω(x) :=
∑
k∈N

qk(ω)uk(x− ξk(ω)). (9)

If we assume that all the single site potentials u = uk have the same shape
and moreover the coupling constants ωk, k ∈ N are i.i.d., the stochastic
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process Vω(x) is ergodic with respect to translations from Zd since the
intensity measure p(x)dx is periodic. Particulary, if p is a constant, the
potential Vω(x) is even ergodic with respect to Rd, see e.g. [23, 9].

Actually we do not need to assume that the intensity measure λ has a
density. Under the assumption that λ is a Radon measure the Poisson
process νω is well defined as well as the potential in (9) (as a multiplication
operator).

(7) Decaying (sparse) Poissonian random potential with coupling con-
stants. Similarly as in the example before we can consider a function
p : Rd → [0,∞[ decaying at infinity. The induced Poissonian cloud of points
defines again a random potential by the formula (9). However, now the po-
tential is not any more ergodic since p decays at infinity.

(8) Growing Poissonian random potential with coupling constants.
Now consider an intensity measure growing at infinity at a rate

λ(Λ(j)) ≤ const‖j‖β
∞ + const

for some β < 2 and define the Poisson point process and the Lifschitz-
Poisson model as before. In Lemma 7 we prove that the points Ξ(ω) =
supp νω satisfy condition (ii) in Assumption 1 with θ(x) = x2 almost surely.

(9) Compound diluted alloy potential. In the Example (6) consider the
intensity measure

λ(x) =
∑
k∈Zd

δk(x) (10)

and moreover the case that all un = u, n ∈ N are equal and the qn, n ∈ N
are i.i.d. with single site measure µ. The potential has the form

Vω(x) =
∑
k∈N

qk(ω)u(x− ξk(ω)) =
∫

Rd

qk(ω)u(x− y) dνω(y). (11)

However, it can be also written as an alloy type potential

Vω(x) =
∑
k∈Zd

Qk(ω)u(x− k). (12)

The new coupling constants Qk, k ∈ N are i.i.d., too, and have the distri-
bution measure

µQ = e−1

(
δ0 +

∑
n∈N

1
n!

(µ)∗n
)

(13)

Here (µ)∗n denotes the n-fold convolution of µ with itself.

(10) Discrete analoga. Our proofs remain valid if we replace everywhere in
the Assumption 1 the continuous configuration space Rd by the lattice Zd

and consider the discrete analoga of continuous Schrödinger operators.
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Remark 5 1. Note that we require the single site distributions µk to be
absolutely continuous near their extremal value q+ since we want to prove
a Wegner estimate only near the infimum of the spectrum. The new
technique presented in Section 5 requires the absolute continuity of the
coupling constants only in the relevant energy region.

2. In [10] an abstract Wegner estimate applicable to quite general operators
which need not be of Schrödinger type can be found.

Let Λ+ = {k ∈ N| suppuk ∩ Λ 6= ∅} be the set of indices whose coupling
constants influence the value of the potential in the cube Λ and L := #{Λ+}
their cardinality. The expectation with respect to q := {qk}k∈Zd is denoted by
E. The set of lattice points Λ ∩ Zd is denoted by Λ̃.

3 Selfadjointness

In this section we discuss the selfadjointness property of random Schrödinger
operators obeying Assumption 1. Regarding the clustering property (ii) we
assume θ(x) = x2.

Proposition 6 Under the Assumption 1 with θ(x) = x2 each Schrödinger op-
erator of the family Hω, ω ∈ Ω is essentially selfadjoint on C∞0 (Rd). For any
cube Λl(j) we can restrict Hω to L2(Λl(j)) with Dirichlet boundary conditions
(b.c.), resulting in a selfadjoint operator H l,j

ω .

Let W 2,2
0 (Λl(j)) denote the domain of the Dirichlet Laplacian on L2(Λl(j)).

For any selfadjoint operator A on L2(Rd) we will use the notation Al,j for its
restriction to W 2,2

0 (Λl(j)).
Proof: For an x ∈ Rd let n ∈ Zd denote any lattice point with ‖x− n‖ ≤ 1/2.
By the uniform bound uk ≥ −u∞ for all k ∈ N we infer

−(q+u∞)−1 Vω(x) ≤
∑
k∈N

χΛl∞ (x)(ξk) ≤
∑
k∈N

∑
j∈Λ̃l∞+1(n)

χΛ(j)(ξk)

≤
∑

j∈Λ̃l∞+1(n)

(C1‖j‖2
∞ + C2)

≤ (l∞ + 2)d(C1(‖n‖∞ + (l∞ + 1)/2)2 + C2)

≤ const ‖x‖2
2 + const.

This implies that the potential in Hω can be written as V1 + V2 satisfying
0 ≥ V1(x) ≥ −const ‖x‖2

2 − const and V2 ∈ Lp
loc,unif (Rd) with p = p(d) as

in Assumption 1. Now essential selfadjointness follows by the Farris-Lavine
theorem, cf. Corollary of Theorem X.38 in [34].

On a finite cube we have V1 + V2 ∈ Lp(Λl(j)) which suffices for the selfad-
jointness.

q.e.d.
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In the case where the set of points Ξ = {ξk}k∈N is generated by a random
Poisson process we give a condition on the intensity measure λ(x) of the process
which ensures that the resulting family of random Schrödinger operators (9) is
essentially selfadjoint almost surely.

Lemma 7 Let λ be a Radon measure satisfying the growth condition

λ(Λ(j)) ≤ c1 ‖j‖β + c2 (14)

for some β < 2 and all j ∈ Zd. Define the Poisson point process νω with
intensity measure λ as in Example 4 (6). Then the set of points Ξ(ω) = supp νω

satisfies condition (ii) of Assumption 1 with finite constants C1 = 1, C2 = C2(ω)
and θ(x) = x2 almost surely.

Proof: It is sufficient to prove

P{ω|There are infinitely many j ∈ Zd with L(j) > ‖j‖2} = 0. (15)

Namely, if (15) is satisfied, there exists for all ω in a set Ω′ ⊂ Ω of full measure
an exceptional, finite set Γ(ω) ⊂ Zd such that

L(j) = Lω(j) = #{supp νω ∩ Λ(j)} ≤ ‖j‖2
∞ ∀j ∈ Zd \ Γ(ω).

On the other hand, for almost all ω ∈ Ω′

#{supp νω ∩
⋃

j∈Γ(ω)

Λ(j)}

is bounded by a finite real C2(ω). Thus

Lω(j) ≤ ‖j‖2
∞ + C2(ω)

for almost all ω.
Equation (15) is proven by the Borel-Cantelli Lemma if∑

j∈Zd

P{ω| Lω(j) > ‖j‖2
∞} <∞. (16)

To prove (16) we apply the Čebyšev inequality and consider∑
j∈Zd

e−‖j‖
2
∞ E(eLω(j)) (17)

Now for the Poisson process E(eLω(j)) = e(e−1)λ(Λ(j)) ≤ e(e−1)(c1‖j‖β
∞+c2) by

condition (14). Thus

(17) ≤
∑
j∈Zd

exp(−‖j‖2
∞ + (e− 1)c1‖j‖β

∞ + (e− 1)c2) <∞.

q.e.d.
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4 Wegner estimate for generalized alloy type poten-
tials

One of the two crucial ingredients for the localization proof via multiscale anal-
ysis is the so called Wegner estimate. It controls the probability of the appear-
ance of quantum mechanical resonances, i.e. tunneling events, between disjoint
regions of configuration space.

In this section we consider the case that the conditional single site measure
µk has a density fk on the whole of its support. I.e. in the language of As-
sumption 1 we have qc < 0. The changes needed for the general case will be
treated in the next section.

The Wegner estimate is an assertion about the spectral properties of a
random Schrödinger operator restricted to a cube Λl(j). We assume without
loss of generality inf σ(H l,j

0 ) = 0 which may be ensured by adding a constant to
the potential. We denote the spectral projection of H l,j

ω on the energy interval
I =]E1, E2[ by P l,j

ω (I). Denote Θ := Θ(l, j) =
∑

k∈Λ+
l (j) θ(k), E+ := E + 2ε for

an E ∈ R and some ε > 0, and

Θ̃ := Θ̃(l, j) := max

{∫
Λl(j)

(|V0 − E+|+ 1)p̃dx,Θ(l, j)p̃

}
,

where p̃ = d/2 for dimensions d ≥ 3 and p̃ = 2 in the one and two dimensional
case. Note that

∫
Λ |V0 − E+|p̃dx ≤ ld supm∈Zd

∫
Λ(m) |V0 − E+|p̃dx < ∞ by our

Assumption 1.

Theorem 8 Let E < 0 and ε > 0 be such that −δ := E + 2ε < 0. Then there
exists a constant C(δ) such that for all l ∈ N

E
[
TrP l,j

ω (]E − ε, E + ε[)
]
≤ C(δ) ε ΘΘ̃. (18)

Let h ∈]0, 1[. Then there exists an constant C(h, δ) such that

E
[
TrP l,j

ω (]E − ε, E + ε[)
]
≤ C(h, δ) εh Θ. (19)

Corollary 9 In the case Ξ = Zd we have under the assumptions of Theorem 8

E
[
TrP l,j

ω (]E − ε, E + ε[)
]
≤ min[C(δ)ε l2d, C(h, δ)εh ld]. (20)

This follows if we replace the estimates (29) and (30) in the proof of Theorem
8 by standard estimates as found in [24].

Remark 10 1. By the Čebyšev inequality (18) and (19) imply

P{ω|σ(H l,j
ω )∩]E − ε, E + ε[6= ∅} ≤ E

[
TrP l,j

ω (]E − ε, E + ε[)
]
.

≤ min
[
C(δ)ε ΘΘ̃, C(h, δ)εh Θ

]
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Actually for the application in the multiscale analysis only this weaker
form of the Wegner estimate is needed. It tells us that the probability
that an eigenvalue of the restricted operator hits a given energy interval
becomes small if we shrink the interval.

2. The second bound (19) in Theorem 8 implies that the IDS is Hölder
continuous below the spectrum of the unperturbed operator H0, if we
know a priory (by ergodicity) that the IDS exists. This is the case if Ξ =
Zd, all single site potentials uk = u have the same shape and the coupling
constants qk are i.i.d. Then one can define the IDS as the thermodynamic
limit Λl(j) → Rd of the normalized eigenvalue counting functions

N l
ω(E) = l−d#{i| λi(H l

ω) < E} = l−d TrP l
ω(]−∞, E[) (21)

of H l
ω, which converge for almost all ω to a limit N := liml→∞N l

ω which
is ω-independent. Now Corollary 9 implies

N(E2)−N(E1) ≤ C(h, δ)(E2 − E1)h ∀E1 ≤ E2 ≤ −δ < 0.

3. We state two versions of the upper bound in Theorem 8. In the ergodic
case in the limit l→∞ the first one diverges while the second one yields
the Hölder continuity of the IDS. Still, as one often has to consider opera-
tors restricted to finite cubes for technical reasons, the linear dependence
on the length of the energy interval, as given in the fist bound (18), may
be easier to work with.

Proof: Let ρ : R → [0, 1] denote a smooth monotone function taking the value
0 on ] − ∞,−ε] and the value 1 on [ε,∞[. Denote with En(q) = El,j

n (ω) the
n-th eigenvalue of H l,j

ω counted from below. We estimate the expectation of the
trace of the spectral projector as in the proof of Proposition 1 in [24]:

E
(
TrP l,j

ω ([E − ε, E + ε])
)
≤
∫

RL

∏
k∈Λ+

fk(qk)dqk
∑
n∈N

∫ 2ε

−2ε
dt ρ′(En(q)−E+t).

(22)

One crucial step in Wegner’s original paper (and in the proof of the Proposi-
tion 1 in [24]) is the replacement of the derivative ρ′ by derivatives with respect
to the coupling constants qk, k ∈ Zd. We write Λ+ = Λ+

l and suppress the
dependence on l. The chain rule gives∑

k∈Λ+

∂ρ(En(q)− E + t)
∂qk

= ρ′(En(q)− E + t)
∑

k∈Λ+

∂En(q)
∂qk

,

so it remains to find a bound on
∑

k∈Λ+
∂En(q)

∂qk
which is independent of n and

Λ. To achieve this aim we modify a trick from the recent paper [10, p.16] and
prove
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Lemma 11 Assume that the n-th eigenvalue of the operator H l,j
ω satisfies En(q) ≤

−δ < 0. Then

ρ′(En(q)− E + t) ≤ q+
δ

− ∑
k∈Λ+

∂ρ(En(q)− E + t)
∂qk

 .
Proof of the lemma: Let ψn be the normalized eigenfunction corresponding to
En(q). Then ψn satisfies by definition 〈ψn, (H

l,j
0 − En(q))ψn〉 = −〈ψn, V

l,j
ω ψn〉.

We have

−
∑

k∈Λ+

qk 〈ψn, uk(· − ξk)ψn〉 = −〈ψn, V
l,jψn〉 = 〈ψn, (H

l,j
0 − En(q))ψn〉 ≥ δ.

Now we have by the Hellman-Feynman theorem

−
∑

k∈Λ+

∂En(q)
∂qk

= −
∑

k∈Λ+

〈ψn, uk(·−ξk)ψn〉 ≥ −q−1
+

∑
k∈Λ+

qk 〈ψn, uk(·−ξk)ψn〉 ≥
δ

q+

(23)

uniformly for all eigenvalues not exceeding δ < 0. This gives

ρ′(En(q)− E + t) = −

− ∑
k∈Λ+

∂En(q)
∂qk

−1 ∑
k∈Λ+

∂ρ(En(q)− E + t)
∂qk

≤ q+
δ

− ∑
k∈Λ+

∂ρ(En(q)− E + t)
∂qk

 .
Note that since ρ is monotone increasing and u is non-positive,

−
∑

k∈Λ+

∂ρ(En(q)− E + t)
∂qk

(24)

is a non-negative real.

Remark 12 1. Our modification in comparison to [10, p.16] lies in the fact
that we consider the quadratic form 〈f, V l,j

ω f〉 rather than the square of
the norm ‖V l,j

ω f‖2 and thus replace quadratic dependence on the cou-
pling constants by a linear one. The quadratic dependence leads to some
restrictions of the single site potentials u to which the estimate can be
applied, e.g. the single site potentials may not overlap.

On the other hand, the estimate in [10] is more general, in that it can be
used for Wegner estimates for energy intervals in spectral gaps.

2. The Lemma presented above relies heavily — as is often the case for
certain steps of the proof of the Wegner estimate — on the fact that
the considered eigenvalues lie outside the unperturbed spectrum σ(H0).
In a sense the proof of the result is a perturbation argument. Under
additional assumptions an analog of the Lemma can be proven also for
energy eigenvalues inside the unperturbed spectrum, cf. [24].
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Continuation of the proof of the theorem:
Denote with H l,j

ω (qj = q+) = H l,j
ω +(q+−qk)uk(·−ξk) the operator H l,j

ω , but
with the j-th coupling constant set to its maximal value, and with En(q, qj =
q+) its n-th eigenvalue. H l,j

ω (qj = 0) and En(q, qj = 0) are defined analogously.
We consider the term in (24) with the derivative with respect to qj and

integrate it over the same random variable:

−
∫ q+

0
fk(qj)dqj

∂ρ(En(q)− E + t)
∂qj

≤ f∞ [ρ(En(q, qj = 0)− E + t)− ρ(En(q, qj = q+)− E + t)] (25)

where we used monotonicity of the functions E 7→ ρ(E) and qj 7→ En(qj). This
gives

E
(
TrP l,j

ω ([E − ε, E + ε])
)
≤ q+f∞

δ

∑
j∈Λ+

∫
RL−1

∏
k∈Λ+\j

fk(qk)dqk

∫ 2ε

−2ε
dt
∑
n∈N

[ρ(En(q, qj = 0)− E + t)− ρ(En(q, qj = q+)− E + t)] . (26)

There are now two ways to estimate∑
n∈N

[ρ(En(q, qj = 0)− E + t)− ρ(En(q, qj = q+)− E + t)]

= Tr
[
ρ(H l,j

ω (qj = 0)− E + t)− ρ(H l,j
ω (qj = q+)− E + t)

]
(27)

1. Either one simply bounds (27) by

#{n ∈ N|En(q, qj = 0) > E − t− ε, En(q, qj = q+) < E − t+ ε}
≤ #{n ∈ N|En(q, qj = q+) < E + 2ε} (28)

and then uses the Cwikel-Lieb-Rosenbljum or the Lieb-Thirring bound,
depending on the dimension d, cf. [35]. In the following we suppress the
argument (q, qj = q+) of the eigenvalue, write E+ := E + 2ε and denote
with

V = V0 + q+uj(· − ξj) +
∑

k∈N\j

qk(ω)uk(x− ξk)

the full potential energy. In the case d ≥ 3 we have

#{n ∈ N|En < E+} ≤ Cd

∫
Λ∩{V≤E+}

|V − E+|d/2dx

≤ Cd

‖|V0 − E+|d/2‖Ld/2(Λ) +
∑

k∈Λ+

qk‖uk‖Ld/2(Λ)

d/2

≤ 2d/2Cd max{1, (q+u∞)d/2ld∞} max
{∫

Λ
|V0 − E+|d/2dx,Θ(l, j)d/2

}
,

(29)
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which leaves us with the case d = 2 and d = 1. Here we estimate similarly

#{n ∈ N|En < E+} ≤ Cd

∫
Λ∩{V≤E++1}

|V − E+ − 1|2dx

≤ Cd

‖|V0 − E+ − 1|2‖L2(Λ) +
∑

k∈Λ+

qk‖uk‖L2(Λ)

2

≤ 4Cd max{1, (q+u∞)2ld∞} max
{∫

Λ
|V0 − E+ − 1|2dx,Θ(l, j)2

}
(30)

finishing the proof of (18).

2. Or one proceeds using estimates on the spectral shift function, as done in
[11], cf. equations (3.29)–(3.32) there. For any h ∈]0, 1[ there is a C(h)
such that

Tr
[
ρ(H l,j

ω (qj = 0)− E − t)− ρ(H l,j
ω (qj = q+)− E − t)

]
≤ C(h) εh−1

In this case we can bound (26) by 4C(h)δ−1q+f∞ εh Θ.

q.e.d.

5 Wegner estimate for single site measures with sin-
gular components

Consider a generalized alloy type potential Vω where only the restrictions of
the single site measures µk to the interval ]qc, q+] have a density fk. I.e. the
extremal configurations of the potential are continuously distributed. We prove
a Wegner estimate at the bottom of the spectrum of Hω.

In a sense qc is a critical value for the random variables qk: for qk > qc we
know that qk is continuously distributed, for smaller values we know nothing.
There is a corresponding decomposition of the ”probability ”space ×k∈Λ+R =
RL which will turn out to be useful. For a given configuration of coupling
constants {qk}k∈Λ+ set Aac(ω) = {k ∈ Λ+| qk > qc}, then∑

A⊂Λ+

∫
RL

∏
k∈Λ+

dµk(qk)χ{Aac(ω)=A} (ω) = 1. (31)

Define now an auxiliary background potential V1 =
∑

k∈Λ+ qcuk(· − ξk) and by
adding a constant assume inf σ((H0 + V1)l,j) = 0. Furthermore set

V 1
ω :=

∑
k∈Λ+,qk≤qc

qkuk(· − ξk) +
∑

k∈Λ+,qk>qc

qcuk(· − ξk) ≥ V1 (32)

V 2
ω :=

∑
k∈Λ+,qk>qc

rkuk(· − ξk) =
∑

k∈Aac

rkuk(· − ξk), where rk = qk − qc > 0.

(33)
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Theorem 13 Let E < 0 and ε > 0 be such that −δ := E + ε < 0. Then there
exists a constant C(δ) such that for all l ∈ N

E
[
TrP l,j

ω (]E − ε, E + ε[)
]
≤ C(δ)ε ΘΘ̃. (34)

Let h ∈]0, 1[. The there exists an constant C(h, δ) such that

E
[
TrP l,j

ω (]E − ε, E + ε[)
]
≤ C(h, δ)εh Θ. (35)

Corollary 14 In the case Ξ = Zd we have under the assumptions of Theorem
13

E
[
TrP l,j

ω (]E − ε, E + ε[)
]
≤ min[C(δ)ε l2d, C(h, δ)εh ld]. (36)

Remark 15 Actually the Wegner estimate is valid for any energy interval lying
below inf σ((H0 + V1)l,j) which we have set to zero. In the case of an periodic
background operator H0 and ergodic Vω (this means all the single site potentials
u = uk have the same shape and moreover the coupling constants qk, k ∈ N are
i.i.d.) this value does not depend on l ∈ N and j ∈ Zd if we impose periodic
b.c. on the boundary of the cube Λl(j).

Proof: We have for En ≤ −δ < 0 and Hωψn = Enψn

−〈ψn, V
2
ωψn〉 = 〈ψn, (H0 + V 1

ω − En)ψn〉 ≥ 〈ψn, (H0 + V1 − En)ψn〉 ≥ δ,

which implies similarly as in Lemma 11

−
∑

j∈Aac

∂En(q)
∂qj

≥ − 1
q+ − qc

∑
j∈Aac

rj 〈ψn, uj(·−ξj)ψn〉 = −〈ψn, V
2
ωψn〉

q+ − qc
≥ δ

q+ − qc
.

(37)

Consider first the case ∅ 6= A ⊂ Λ+ and estimate∫
RL

∏
k∈Λ+

dµ(qk)χ{Aac(ω)=A} (ω)
∑
n∈N

∫ 2t

−2t
ρ′(En(q)− E + t)

≤ q+ − qc
δ

∫
RL

∏
k∈Λ+

dµ(qk)χ{Aac(ω)=A} (ω)
∑
n∈N

∫ 2t

−2t
dt

− ∑
j∈Aac

∂ρ(En(q)− E + t)
∂qj

 .
(38)

As we know that all sites j ∈ Aac correspond to coupling constants qj with
values in the absolutely continuous region of the conditional density fj we may

14



estimate as in the proof of Theorem 8:

−
∑
n∈N

∫
R
dµ(qj)χ{Aac(ω)=A} (ω)

∂ρ(En(q)− E + t)
∂qj

= −
∑
n∈N

∫ q+

qc

fj(qj)dqj
∂ρ(En(q)− E + t)

∂qj

≤ f∞
∑
n∈N

[ρ(En(q, qj = qc)− E + t)− ρ((En(q, qj = q+)− E + t)]

≤ f∞min
[
C Θ̃, C(h)εh−1

]
. (39)

We have to say something how we deal with the special case A = ∅. In this
situation V 2

ω ≡ 0 and Hω = H0 + V 1
ω ≥ H0 + V1 ≥ 0. Thus there are no

eigenvalues in the considered energy interval for this potential configuration.
Finally we use the decomposition (31) to finish the proof:

E
(
TrP l,j

ω ([E − ε, E + ε])
)

≤
∑

A⊂Λ+

∫
RL

∏
k∈Λ+

dµ(qk)χ{Aac(ω)=A} (ω)
∑

j∈Aac

(q+ − qc)
δ

4εf∞min
[
C Θ̃, C(h)εh−1

]
≤ (q+ − qc)

δ
4εf∞min

[
C ΘΘ̃, C(h)εh−1 Θ

]
. (40)

q.e.d.

6 Comments on the spectral type

The interesting feature of many generalized alloy type potentials is the presence
of different spectral types. This is the case for sparse potentials [31, 25, 17],
i.e. if the average concentration of the points in Ξ decays to 0 as one goes out to
infinity on the configuration space. The same is true for models with decaying
randomness [26, 32].

For several examples of this type it has been proven that there exist energy
regions with pure absolutely continuous and others with pure point spectrum.
In some cases one even knows that there exists an energy value called mobility
edge that separates the intervals with pure point and absolutely continuous
spectrum, see e.g. [26, 32]. In fact, ergodic alloy type models are expected
to have the same type of mixed spectrum at last for space dimensions d ≥ 3.
However, at the moment a proof of extended states in the ergodic continuous
alloy type or the discrete Anderson model seems out of reach.

In a subsequent work [2] we will extend the scattering methods form [17]
to several examples presented in this paper to prove existence of absolutely
continuous spectrum. On the other hand we will give an adaptation of the
multiscale analysis for sparse alloy type potentials. This is the main tool to
prove existence of pure point spectrum in an energy interval I lying at the
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bottom of the spectrum of Hω. More precisely, to show that there exists a
subset Ω′ ⊂ Ω of full measure and a Ω′′ ⊂ Ω′ of positive measure such that

σc(Hω) = ∅ ∀ω ∈ Ω′ and σ(Hω) 6= ∅ ∀ω ∈ Ω′′. (41)

Besides the multiscale analysis an initial scale estimate for the decay of the
resolvent is necessary for the localization proof. This will be established in [2]
for several generalized and sparse alloy type potentials, as well as upper bounds
for the infimum of the spectrum of such operators.
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